23
EO – 24/06/2008 1 épartement Energie Workshop on Information, Energy and Environment Princeton University, Supélec, Ecole Centrale Paris and Alcatel-Lucent Bell Labs Workshop on Information, Energy and Environment Environmental Applications of Environmental Applications of Atmospheric Pressure Atmospheric Pressure Non-Thermal Plasmas Non-Thermal Plasmas Emmanuel Odic , Michael J. Kirkpatrick, Ange Mfopara Power & Energy Systems Department, SUPELEC, Gif-sur-Yvette

EO – 24/06/2008 1 Département Energie Workshop on Information, Energy and Environment Princeton University, Supélec, Ecole Centrale Paris and Alcatel-Lucent

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

EO – 24/06/2008 1

Département Energie

Workshop on Information, Energy and Environment

Princeton University, Supélec, Ecole Centrale Paris and Alcatel-Lucent Bell Labs

Workshop on Information, Energy and Environment

Environmental Applications of Environmental Applications of Atmospheric Pressure Atmospheric Pressure Non-Thermal PlasmasNon-Thermal Plasmas

Emmanuel Odic, Michael J. Kirkpatrick, Ange MfoparaPower & Energy Systems Department, SUPELEC, Gif-sur-Yvette

EO – 24/06/2008 2

Département Energie

Workshop on Information, Energy and Environment

St-Elmo’s fireLightning

Atmospheric phenomena

Introduction

EO – 24/06/2008 3

Département Energie

Workshop on Information, Energy and Environment

Hall 1MV LGE EDF les Renardières (1997)

280 cm

Ground plate

HV transport line losses

Introduction

EO – 24/06/2008 4

Département Energie

Workshop on Information, Energy and Environment

Introduction

W. V Siemens Ozonizer (1857)water treatmentdisinfection paper bleaching

Electrostatic Precipitator (1890)dust removal

Early application of electrical discharges for environmental applications

EO – 24/06/2008 5

Département Energie

Workshop on Information, Energy and Environment

1. Fundamentals on non-thermal plasmasElectrical dischargePlasma typesSource of active species

2. Flue gas treatmentdilute VOC treatment

Energy cost considerationsSolid by-product treatment

3. Surface treatmentbio-decontamination / sterilization

Outline

Environmental Applications of Atmospheric Pressure Non-Thermal Plasmas

EO – 24/06/2008 6

Département Energie

Workshop on Information, Energy and Environment

E+

+

-

E

E

+

*

+

Ionizationavalanche

Electron attachment

Photo-ionizationSecondary electrons

d EV

Air, atm. press., room temp. ne ~ 106 m-3 N ~ 2.1025 m-3 ~ 1 µm

d = 1 cm V = 32 kVEq

Mean electron energy

Electrons density ne

Eqnj e

1. Electrical discharges : fundamentals

EO – 24/06/2008 7

Département Energie

Workshop on Information, Energy and Environment

0 10 20 30We (eV)

dn/n

(2)(1) (3) (5)(4)

Electron energy distribution function (air, atm. press.)

Species First electronic excitation (eV)

Dissociation (eV) Ionization (eV)

H2 11,47 4,477 15,422

O2 1,635 (1) 5,115 (2) 12,2 (3)

O3 - 6,17 -

N2 5,23 9,762 (4) 15,576 (5)

NO 5,38 6,507 9,25CO 6,04 11,111 14,00CO2 10,0 5,46 13,7

H2O 7,6 9,511 12,6

N2O - - 11,0

OH 4,06 4,45 12,9Loeb 1965

1. Electrical discharges : fundamentals

EO – 24/06/2008 8

Département Energie

Workshop on Information, Energy and Environment

HV Transformer

Gas inletGas outlet

HV connection

Stainless steel mesh

DBD discharge in airDBD discharge in air

• Active length of discharge: 150 mm• Gap: 1.5 mm• Reactor volume: 14.5 ml• Residence time @ 5L/min: ~170 µs

Co-axial dielectric barrier discharge reactor

(1)

(3)

(2)

(2)

(3)

(4)

(4) gas

gas

(1)

(3)

(2)

(2)

(3)

(4)

(4) gas

gas

(1) High voltage electrode : ext. diam. 19 mm

(2) Dielectric barrier (Al2O3 ceramic / Pyrex )

(3) Counter electrode (mesh electrode)

(4) Gas gap : 1,5 mm

2. Pollution control

VOC treatment

EO – 24/06/2008 9

Département Energie

Workshop on Information, Energy and Environment

isopropanol removal rate as a function of the energy density for thermal oxidation treatment and for NTP treatment. Initial isopropanol concentration: 1000 ppmv (3000 ppm Ceq) in dry air, gas flow: 300 L/h

Energy cost considerations

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800

Energy Density (J/l)

Isop

ropa

nol C

onve

rsio

n R

ate

(%)

TO

NTP

2. Pollution control

VOC treatment

EO – 24/06/2008 10

Département Energie

Workshop on Information, Energy and Environment

Non-thermal plasma : low temperature oxidation

ISOPROPANOL BY-PRODUCTS (ppmv)

CH4 C2H4 C3H6 CH3CHO CH3CO CH3 CH3CHOHCH3 CO CO2

42 30 64 26 182 222 1139 399

- - traces traces 214 146 1298 622

Example 1 : Isopropanol (3000 ppm Ceq)thermal oxidation treatment of 1000 ppmv isopropanol in air at 650°C (tr = 1 s ; R = 78% ; S = 26%)NTP treatment of 1000 ppmv isopropanol in air ( tr ~ 10 ms ; R = 85.5% ; S = 32.5%)

TOLUENE BY-PRODUCTS (ppmv)

CH4 C2H4 C3H6 C4H8 C4H10 HCOOH C6H6 C7H8 C6H5OH C6H5CHO CO CO2

75 139 21 3.6 2.6 139 9 363 28 26 2022 630

- - - - - traces 8 255 traces traces 2894 2223

Example 2 : Toluene (7000-9100 ppm Ceq)thermal oxidation treatment of 1000 ppmv toluene in air at 650°C (tr = 0.5 s ; R = 64% ; S = 24%) NTP treatment of 1300 ppmv toluene in air ( tr ~ 10 ms ; R = 80.5% ; S = 43.5%)

Parissi L., Odic E., Goldman A., Goldman M., Borra J-P.: "Temperature effects on plasma chemical reaction. Application to VOC removal ", contribution for a chapter 11 to "Electrical Discharges for Environmental purposes : background and

applications", E.V. Veldhuizen ed., Nova Science Publisher, New York, 2000, pp. 279-313.

2. Pollution control

VOC treatment

EO – 24/06/2008 11

Département Energie

Workshop on Information, Energy and Environment

Successful VOC treatment means

Total conversion in gas phase

Total carbon recovery

But …

Background2. Pollution control

VOC treatment

benzene (0.5%)

toluene (19.5%)

CO (32%)CO2 (24.5%)

missing C(23.5%)

DBD treatment of toluene in dry air

EO – 24/06/2008 12

Département Energie

Workshop on Information, Energy and Environment

Simplest PAH – relatively lowtoxicity for lab safety concerns

High conversion in gas phasebut very low carbon balance

Model compound: naphthalene C10H8

Polycyclic Aromatic Hydrocarbons (PAH) are particulate precursors Automotive aim: cold start application Public Health: some PAH are known or suspected carcinogens

2. Pollution control

VOC treatment

EO – 24/06/2008 13

Département Energie

Workshop on Information, Energy and Environment

Naphthalene removal

0

10

20

30

40

50

60

0 50 100 150Specific Energy Density [J/L]

Nap

hth

alen

e [p

pm

]

0

50

100

150

200

250

300

CO

, CO

2 [

pp

m]

Naphthalene CO2 CO

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

Specific Energy Density [J/L]

Nap

hth

alen

e [p

pm

]

0

40

80

120

160

200

240

280

320

360

CO

2, C

O [

pp

m]

Naphthalene CO2 CO

90% conversion @ 100J/L

90% conversion @ 60J/L

[C10H8]in = 50 ppm [C10H8]in = 160 ppm

• Major byproducts: CO and CO2

• CO below the detection limit for lower naphthalene concentration• Minor byproducts: phthalic anhydride and naphthalenedione

2. Pollution control

VOC treatment

A. Mfopara Ph.D. 2006-2008

EO – 24/06/2008 14

Département Energie

Workshop on Information, Energy and Environment

Carbon recovery

0

20

40

60

80

100

0 50 100 150 200Specific Energy Density [J/L]

Co

ut/

Cin

[%

]

160 ppm 50 ppm

100*][*10

][*10][][%

810

8102

in

outoutin HC

HCCOCOCC

• Better carbon balance with less naphthalene• Deposit located at gas inlet

HV electrode after 2h of C10H8 introduction

Gas inlet Gas outlet

2. Pollution control

VOC treatment

A. Mfopara Ph.D. 2006-2008

EO – 24/06/2008 15

Département Energie

Workshop on Information, Energy and Environment

0

10

20

30

40

50

60

0 25 50 75 100 125 150

Time [min]

Nap

hth

alen

e [p

pm

]

0

20

40

60

80

100

120

CO

2, C

O [

pp

m]

naphthalene CO2 CO

Rea

cto

r o

pen

C10H8 offdischarge on discharge on

‘Cleaning’ of solid deposit, ~150 J/L

[C10H8]in = 50 ppm

2. Pollution control

VOC treatment

A. Mfopara Ph.D. 2006-2008

EO – 24/06/2008 16

Département Energie

Workshop on Information, Energy and Environment

Concluding remarks

• DBD reactor effective for HCs removal from gas phase• Two major byproducts : CO2 and CO• Low carbon balance explained by deposit formation• Possible storage and post-treatment of solid by-products

Industrial applicationsautomotive application (cold start)paint industrystationary emission source (factory, …)

2. Pollution control

VOC treatment

EO – 24/06/2008 17

Département Energie

Workshop on Information, Energy and Environment3. Surface treatment

Bio-decontamination

More and more polymeric parts in surgical / medical tools (e.g. endoscope) Wet heat (reference treatment : 121-134°C - 2.2 bar) treatment not applicable

for sterilization Need of a « low » temperature sterilization process

Potential technology: non-thermal plasma process

Atmospheric pressure non-thermal plasmas for surface sterilization

EO – 24/06/2008 18

Département Energie

Workshop on Information, Energy and Environment

Droplets (dried or not) containing bacteria: 10μL, 104-107 bacteria total

Quantified using a direct plate counting method

Pyrex ®

Gas mixture

HV

Non-thermal plasma source

Treated surface

3. Surface treatment

Bio-decontamination

B. Dodet Ph.D. 2003-2005

EO – 24/06/2008 19

Département Energie

Workshop on Information, Energy and Environment

a. Dried spore samples submitted to a wet air discharge effluentb. Liquid spore samples submitted to a dry air discharge effluentc. Dried spore samples submitted to a dry air discharge effluent

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

0 2 4 6 8 10Time (minutes)

Surv

ivor

s

(a) Dried spore samples submitted to awet air discharge effluent (90% RH)(b) Liquid spore samples submitted to adry air discharge effluent (RH<15%)

(c) Less than 1 Log population reduction after a 10 minute treatment time

Only wet samples efficiently decontaminated

B. Subtilis

3. Surface treatment

Bio-decontamination

B. Dodet Ph.D. 2003-2005

EO – 24/06/2008 20

Département Energie

Workshop on Information, Energy and Environment

1 – 1.5 µm

Exosporium

Core

Coats

CortexDNA

Protein shell

nucleic acid

model DNA : plasmid PET9SnI (ring double string molecule – 4285 base pairs)

protein

model protein : RNAse A (thermo resistant, 124 AA, 13.7 kDa)

Interaction of the DBD effluents with

Scanning electron micrograph of Bacillus Subtilis spores

3. Surface treatment

Bio-decontamination

EO – 24/06/2008 21

Département Energie

Workshop on Information, Energy and Environment

10 min

C C C CCM

Dry gas

5 min 20 min 5 min2 min

Humid gasDry gas

1 85 76432 9 10 11

Dried sampleLiquid sample

10 min

C C C CCM

Dry gas

5 min 20 min 5 min2 min

Humid gasDry gas

1 85 76432 9 10 11

Dried sampleLiquid sample

Lane 1: molecular weight marker (M) Lanes 3, 5, 7, 9, 11: Controls (C)

Liquid sample / dry Ar/O2 : Lane 2: 10 minute treatment time Lane 4: 5 minute treatment time Lane 6: 2 minute treatment time

Dried sample / dry Ar/O2 : Lane 8: 20 minute treatment time

Dried sample / humid Ar/O2 : Lane 10: 5 minute treatment time

PET9SnI agarose gel electrophoresis of plasmid for different treatments

DNA treatment

1. Plasmid incubated 10 minutes in HNO3 sol. (pH 1.8)

→ no modification of migration bands

2. 10 minutes treatment → negative PCR test

3. Strong decay of the 260 nm absorption band → bases degradation

4. Aqueous phase is required for DNA fragmentation

3. Surface treatment

Bio-decontamination

B. Dodet Ph.D. 2003-2005

EO – 24/06/2008 22

Département Energie

Workshop on Information, Energy and Environment

C M

N2 / O2 Ar / O2Acid

1 85 76432

C M

N2 / O2 Ar / O2Acid

1 85 76432

Lane 1: Control

Lane 3: molecular weight marker

Lane 2&4: N2/O2 discharge treatment

Lanes 5&6: Acid control

Lanes 7&8: Ar/O2 discharge treatment

RNAse A SDS-PAGE for different treatments (20 minutes)

Protein treatment

1. RNAse A incubated 20 minutes in HNO3 sol. (pH 1.8)

→ no modification of migration bands

2. RNAse degradation with and without HNO3 formation

3. Aqueous phase is required for protein degradation

3. Surface treatment

Bio-decontamination

B. Dodet Ph.D. 2003-2005

EO – 24/06/2008 23

Département Energie

Workshop on Information, Energy and Environment

CONCLUSION

For the plasma process under investigation i.e. interaction of the biologic material with an atmospheric pressure DBD effluent :

Spore bacteria D = 1 (12 minute sterilization time) for B. SubtilisD = 2.3 (28.6 minute sterilization time) for B. Stearothermophilus

Work in progress : application to biofilmssearch for “soft” operating conditionsapplication to Prion

3. Surface treatment

Bio-decontamination

THANK YOU