121
Engineering Guide

Engineering Guide

Embed Size (px)

Citation preview

Engineering Guide

ECLIPSE COMBUSTION ENGINEERING GUIDE

Published by Eclipse, Inc.

Copyright 1986 by Eclipse, Inc. 1665 Elmwood Road Rockford, Illlinois 61103

All Rights Reserved.

Eighth Edition EFE-825, 8/04

Printed in the United States of America

CONTENTS

1. Orifices & Flows Coefficients of Discharge for Various Types of Orifices . . . . . . . . . . . . . . . . . . . . Orifice Flow Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Orifice Capacity Tables, Low Pressure Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Orifice Capacity Tables, High Pressure Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piping Pressures Losses, Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piping Pressure Losses, Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High Pressure (Compressible) Flow of Natural Gas in Pipes . . . . . . . . . . . . . . . . . Equivalent Lengths of Standard Pipe Fittings & Valves . . . . . . . . . . . . . . . . . . . . Simplified Selection of Air, Gas and Mixture Piping Size . . . . . . . . . . . . . . . . . . . Quick Method for Sizing Air Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sizing Branch Piping by the Equal Area Method . . . . . . . . . . . . . . . . . . . . . . . . . Cv Flow Factor Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Duct Velocity & Flow Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Fan Laws & Blower Application Engineering Theoretical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fan Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blower Horsepower Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blowers Used as Suction Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Effect of Pressure on Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Effect of Altitude on Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Effect of Temperature on Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Gas Physical Properties of Commercial Fuel Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . Combustion Properties of Commercial Fuel Gases Air/Gas Ratio, Flammability Limits, Ignition Temperature & Flame Velocity . . . Heating Value, Heat Release & Flame Temperature . . . . . . . . . . . . . . . . . . . . . Combustion Products & CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equivalent Propane/Air & Butane/Air Btu Tables . . . . . . . . . . . . . . . . . . . . . . . . . Propane/Air & Butane/Air Mixture Specifications . . . . . . . . . . . . . . . . . . . . . . . . 4. Oil Fuel Oil Specifications Per ANSI/ASTM D 396-79 . . . . . . . . . . . . . . . . . . . . . . . Typical Properities of Commercial Fuel Oils in the U.S. . . . . . . . . . . . . . . . . . . . . Fuel Oil Viscosity Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . API Vs. Oil Specific Gravity & Gross Heating Value . . . . . . . . . . . . . . . . . . . . . Oil Piping Pressure Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oil Temperature Drop in F Per 100 Foot of Pipe . . . . . . . . . . . . . . . . . . . . . . . . . 5. Steam & Water Boiler Terminology & Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Properties of Saturated Steam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Btu/Hr. Required to Generate One Boiler H.P. . . . . . . . . . . . . . . . . . . . . . . . . . . . Sizing Water Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sizing Steam Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

4 4 5 9 12 13 14 14 15 15 16 16 17 18 19 20 20 20 20 21 22 22 23 23 24 24 25 26 26 27 27 29 30 30 31 31 31

6. Electrical Data Electrical Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Electrical Wire Dimensions & Ratings . . . . . . . . . . . . . . . . . . . . . . . . . 33 NEMA Size Starters for Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 NEMA Enclosures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Electric Motors Full Load Current, Amperes . . . . . . . . . . . . . . . . . . . . . . 34 7. Process Heating Heat Balances Determining the Heat Needs of Furnaces and Ovens . . . . 35 Thermal Properties of Various Materials . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Thermal Capacities of Metals & Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Industrial Heating Operations Temperature & Heat Requirements . . . . . . 41 Crucibles for Metal Melting Dimensions & Capacities . . . . . . . . . . . . . . 43 Radiant Tubes Sizing & Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Heat Losses, Heat Storage & Cold Face Temperatures Refractory Walls . 44 Air Heating & Fume Incineration Heat Requirements Using Raw Gas Burners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Using Burners with Separate Combustion Air Sources . . . . . . . . . . . . . . . 45 Fume Incineration Selection & Sizing Guidelines . . . . . . . . . . . . . . . . . . 46 Liquid Heating Burner Sizing Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 47 Black Body Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Thermocouple Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Orton Standard Pyrometric Cone Temperature Equivalents . . . . . . . . . . . . . 50 8. Combustion Data Available Heat for Birmingham Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . 51 Available Heat for Various Fuel Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Flue Gas Analysis Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Theoretical Flame Tip Temperature vs. Excess Air . . . . . . . . . . . . . . . . . . . 52 Heat Transfer Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Thermal Head & Cold Air Infiltration into Furnaces . . . . . . . . . . . . . . . . . . 53 Furnace Flue Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9. Mechanical Data Dimensional and Capacity Data Schedule 40 Pipe . . . . . . . . . . . . . . . . . . 54 Dimensions of Malleable Iron Threaded Fittings . . . . . . . . . . . . . . . . . . . . . 55 Sheet Metal Gauges & Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Steel Wire Gauges & Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Circumferences & Areas of Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Drill Size Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Tap Drill Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Drilling Templates Pipe Flanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 10. Abbreviations & Symbols Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Electrical Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 11. Conversion Factors General Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Temperature Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Pressure Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Index . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Tech Notes Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .733

CHAPTER 1 ORIFICES & FLOWSCOEFFICIENTS OF DISCHARGE FOR VARIOUS TYPES OF ORIFICES

Orifices and Nozzles Discharging from PlenumCoefficient of Discharge (Cd) 0.95 0.93 0.91 0.89 0.87 0.85 0.83 0 2 4NOTE: The loss is least at 13

Sharp Edge Cd = 0.60

Round Edge 0.97

Short Pipe 0.82

Reentrant 0.72

Converging depends on angle. See curve at right.

6 8 10 12 14 16 18 20 Angle of Convergence in Degrees

22

24

ORIFICE FLOW FORMULAS The flow of air or gas through an orifice can be determined by the formula h Q = 1658.5 x A x Cd g where Q =flow, cfh A =area of the orifice, sq. in. (see Pages 57 & 58) Cd =discharge coefficient of the orifice (see above) h =pressure drop across the orifice, w.c. g =specific gravity of the gas, based on standard air at 1.0 (see Pages 19, 20, & 22 thru 24.)

3.Effect of Changes in Operating Conditions on Pressure Drop Across an OrificeGeneral Relationship:h2 Q 2 A 2 C 2 g = Q2 x A1 x Cd1 x g 2 h1 1 2 1 d2 Again, if any of the factors in this equation are unchanged from Condition 1 to Condtion 2, they can be dropped out to form simplified relationships:

( ) ( ) ( )

3a. Pressure Drop Change vs. Flow Changeh2 Q 2 = Q2 h1 1 This is the square root law, stated another way.

( )

1. Sizing Orifice PlatesTo calculate the size of an orifice plate, this equation can be rearranged as follows: Q A= x g h 1658.5 x Cd

3b. Pressure Drop Change vs. Orifice Area Changeh2 A1 h1 = A2

( )

2

3c. Pressure Drop Change vs. Specific Gravity Changeh2 g2 h1 = g1 This relationship may not apply where specific gravity has been changed by a change in gas temperature. See Page 25.

2. Effect of Changes in Operating Conditions on Flow through an Orifice General RelationshipQ2 A2 Cd2 h g = x x 2 x g1 Q1 A1 Cd1 h1 2 If any of the factors in this relationship remain constant from Condition 1 to Condition 2, they can be dropped out of the equation, yielding these simplified relationships. Each of them assumes only one factor has been changed.

4. Effect of Changes in Gas Temperature on Flow and Pressure Drop through an OrificeRaising a gass temperature has two effects it increases the volume and decreases the specific gravity, both in proportion to the ratio of the absolute temperatures. If we are concerned with changes in mass flows (scfh), these relationships must be used:

2a. Flow Change vs. Orifice Area ChangeQ2 A2 = Q1 A1

4a. Flow Change vs. Temperature ChangeQ2 TADS1 Q1 = TABB2

2b. Flow Change vs. Pressure Drop ChangeQ2 h = 2 Q1 h1 This is the so-called square root law.

4b. Pressure Drop Change vs. Temperature Changeh2 TABS2 h1 = TABS1 to maintain constant scfh

2c. Flow Change vs. Specific Gravity Changeg Q2 = g1 Q1 24

ORIFICE CAPACITY TABLES LOW PRESSURE GASFlows in these tables are based on an orifice pressure drop of 1 w.c. and a coefficient of discharge (Cd) of 1.0. To determine flow through an orifice of a known diameter: 1. Locate the orifice diameter in the left-hand column of the table. 2. Read across to the column corresponding to the gas being measured. This is the uncorrected flow. 3. Multiply this flow by the coefficient of discharge of the orifice. (see page 4) 4. Correct this flow to the pressure drop actually measured, using the square root law (equation 2b, page 4). Example: What is the flow of natural gas through a 7/32" diameter sharp edge orifice at 6 w.c. pressure drop? From the table, uncorrected natural gas flow through a 7/32" orifice is 80.7 cfh at 1 w.c. Cd for a sharp edge orifice is 0.60 (page 1.1), so corrected flow is 80.7 x 0.60 = 48.4 cfh at 1" w.c. pressure drop. Per equation 2b, page 4, h h2 Q2 = 2 or Q2 = Q1 x Q1 h1 h1 Substituting the numbers for this case: Q2 = 48.4 x 6 w.c. = 119 cfh 1 w.c. To determine the orifice size to handle a known flow at a specified pressure drop, reverse the process: 1. Correct the known flow to a pressure drop of 1 w.c., using the square root law. 2. Divide the flow by the orifice coefficient. 3. In the orifice table, locate the column for the gas under consideration. In this column, locate the flow closest to the corrected value found in step 2. 4. Read to the left to find the corrected orifice size. Example: Size a gas jet for a mixer. Entrance to the jet orifice converges at a 15 included angle. Gas is propane. Required flow is 120 cfh at 30 w.c. pressure drop. Per equation 2b, page 4, h h Q2 = 2 , or Q2 = Q1 x 2 Q1 h1 h1 Substituting the numbers for this case: Q2 = 120 x 1 = 22 cfh 30 From page 1.1, Cd for a 15 convergent nozzle is 0.94, so corrected flow is 22 0.94 = 23.4 cfh. Locate 23.4 cfh in the propane column of the orifice table and then read to the left to find a #26 drill size orifice.

CAPACITY, CFH @ 1 W.C. PRESSURE DROP AND COEFFICIENT OF DISCHARGE OF 1.0Drill Size 80 79 1/64 78 77 76 75 74 73 72 71 70 69 68 1/32 67 66 65 64 63 62 61 60 59 58 Dia. In. .0135 .0145 .0156 .016 .018 .020 .021 .0225 .024 .025 .026 .028 .0292 .030 .0312 .032 .033 .035 .036 .037 .038 .039 .040 .041 .042 Area .000143 .000165 .00019 .00020 .00025 .00031 .00035 .00040 .00045 .00049 .00053 .00062 .00067 .00075 .00076 .00080 .00086 .00092 .00102 .00108 .00113 .00119 .00126 .00132 .00138 Natural Gas 0.60 Sp. Gr. .308 .355 .409 .431 .538 .668 .754 .861 .969 1.06 1.14 1.33 1.44 1.61 1.64 1.72 1.85 2.07 2.20 2.33 2.43 2.56 2.71 2.84 2.97 Air 1.0 Sp. Gr. .239 .275 .317 .334 .417 .517 .584 .668 .751 .817 .884 1.03 1.12 1.25 1.27 1.33 1.43 1.60 1.70 1.80 1.88 1.98 2.10 2.20 2.305

Propane/ Air 1.29 Sp. Gr. .210 .242 .279 .294 .367 .455 .514 .587 .661 .720 .778 .910 .984 1.10 1.12 1.17 1.26 1.41 1.50 1.59 1.66 1.75 1.85 1.94 2.03

Propane 1.5 Sp. Gr. .195 .225 .259 .272 .340 .422 .477 .545 .613 .667 .722 .844 .912 1.02 1.04 1.09 1.17 1.31 1.39 1.47 1.54 1.62 1.72 1.8 1.88

Butane 2.0 Sp. Gr. .169 .195 .224 .236 .295 .366 .413 .472 .531 .578 .625 .731 .790 .885 .896 .944 1.01 1.13 1.20 1.27 1.33 1.40 1.49 1.56 1.63

CAPACITY, CFH @ 1 W.C. PRESSURE DROP AND COEFFICIENT OF DISCHARGE OF 1.0Drill Size 57 56 3/64 55 54 53 1/16 52 51 50 49 48 5/64 47 46 45 44 43 42 3/32 41 40 39 38 37 36 7/64 35 34 33 32 31 1/8 30 29 28 9/64 27 26 25 24 23 5/32 22 21 20 19 18 11/64 17 16 15 14 13 3/16 Dia. In. .043 .0465 .0469 .0520 .0550 .0595 .0625 .0635 .0670 .070 .073 .076 .0781 .0785 .081 .082 .086 .089 .0935 .0937 .096 .098 .0995 .1015 .104 .1065 .1093 .110 .111 .113 .116 .120 .125 .1285 .136 .1405 .1406 .144 .147 .1495 .152 .154 .1562 .157 .159 .161 .166 .1695 .1719 .175 .177 .180 .182 .185 .1875 Area .00145 .00170 .00173 .00210 .0023 .0028 .0031 .0032 .0035 .0038 .0042 .0043 .0048 .0049 .0051 .0053 .0058 .0062 .00687 .0069 .0072 .0075 .0078 .0081 .0085 .0090 .0094 .0095 .0097 .0100 .0106 .0113 .0123 .0130 .0145 .0155 .0156 .0163 .0174 .0175 .0181 .0186 .0192 .0193 .0198 .0203 .0216 .0226 .0232 .0235 .0246 .0254 .0260 .0269 .0276 Natural Gas 0.60 Sp. Gr. 3.12 3.66 3.73 4.52 4.95 6.03 6.68 6.89 7.54 8.18 9.04 9.26 10.3 10.5 11. 11.4 12.5 13.4 14.8 14.9 15.5 16.2 16.8 17.4 18.3 19.4 20.2 20.5 20.9 21.5 22.8 24.3 26.4 27.9 31.1 33.3 33.5 35. 37.3 37.5 38.8 39.9 41.2 41.4 42.5 43.6 46.3 48.5 49.8 50.4 52.8 54.5 55.8 57.7 59.2 Air 1.0 Sp. Gr. 2.42 2.84 2.89 3.50 3.84 4.67 5.17 5.34 5.84 6.34 7.01 7.17 8.01 8.17 8.51 8.84 9.67 10.3 11.4 11.5 12. 12.5 13. 13.5 14.2 15. 15.7 15.8 16.2 16.7 17.7 18.8 20.4 21.6 24.1 25.8 25.9 27.1 28.9 29.1 30.1 30.9 31.9 32.1 32.9 33.7 35.9 37.6 38.6 39.1 40.9 42.2 43.2 44.7 45.96

Propane/ Air 1.29 Sp. Gr. 2.13 2.5 2.54 3.08 3.38 4.11 4.55 4.7 5.14 5.58 6.17 6.31 7.05 7.2 7.49 7.78 8.52 9.11 10. 10.1 10.6 11. 11.5 11.9 12.5 13.2 13.8 14. 14.2 14.7 15.6 16.6 18. 19. 21.2 22.7 22.8 23.9 25.5 25.6 26.5 27.2 28.1 28.2 29. 29.7 31.6 33.1 33.9 34.4 36. 37.2 38. 39.4 40.4

Propane 1.5 Sp. Gr. 1.97 2.32 2.36 2.86 3.13 3.81 4.22 4.36 4.77 5.18 5.72 5.86 6.54 6.67 6.95 7.22 7.9 8.44 9.36 9.40 9.81 10.2 10.6 11.0 11.6 12.3 12.8 12.9 13.2 13.6 14.4 15.4 16.7 17.6 19.7 21. 21.2 22.1 23.6 23.7 24.6 25.2 26.1 26.2 26.9 27.5 29.3 30.7 31.5 31.9 33.4 34.5 35.3 36.5 37.5

Butane 2.0 Sp. Gr. 1.71 2.01 2.04 2.48 2.71 3.30 3.66 3.77 4.13 4.48 4.95 5.07 5.66 5.78 6.02 6.25 6.84 7.31 8.1 8.14 8.49 8.85 9.2 9.55 10. 10.6 11.1 11.2 11.4 11.8 12.5 13.3 14.5 15.3 17. 18.2 18.3 19.2 20.4 20.6 21.3 21.9 22.6 22.7 23.3 23.9 25.4 26.6 27.3 27.6 28.9 29.9 30.6 31.6 32.4

CAPACITY, CFH @ 1 W.C. PRESSURE DROP AND COEFFICIENT OF DISCHARGE OF 1.0Drill Size 12 11 10 9 8 7 13/64 6 5 4 3 7/32 2 1 A 15/64 B C D 1/4 F G 17/64 H I J K 9/32 L M 19/64 N 5/16 O P 21/64 Q R 11/32 S T 23/64 U 3/8 V W 25/64 X Y 13/32 Z 27/64 7/16 29/64 15/32 Dia. In. .189 .191 .1935 .196 .199 .201 .2031 .204 .2055 .209 .213 .2187 .221 .228 .234 .2343 .238 .242 .246 .250 .257 .261 .2656 .266 .272 .277 .281 .2812 .290 .295 .2968 .302 .3125 .316 .323 .3281 .332 .339 .3437 .348 .358 .3593 .368 .375 .377 .386 .3906 .397 .404 .4062 .413 .4219 .4375 .4531 .4687 Area .02805 .02865 .0294 .0302 .0311 .0316 .0324 .0327 .0332 .0343 .0356 .0376 .0384 .0409 .0430 .0431 .0444 .0460 .0475 .0491 .0519 .0535 .0554 .0556 .0580 .0601 .0620 .0621 .0660 .0683 .0692 .0716 .0767 .0784 .0820 .0846 .0866 .0901 .0928 .0950 .1005 .1014 .1063 .1104 .1116 .1170 .1198 .1236 .1278 .1296 .1340 .1398 .1503 .1613 .1726 Natural Gas 0.60 Sp. Gr. 60.2 61.5 63.1 64.8 66.7 67.8 69.5 70.2 71.2 73.6 76.4 80.7 82.4 87.8 92.3 92.5 95.3 98.7 102. 105. 111. 115. 119. 119.3 124. 129. 133. 133.2 142. 147. 148. 154. 165. 168. 176. 182. 186. 193. 199. 204. 216. 218. 228. 237. 239. 251. 257. 265. 274. 278. 288. 300. 322. 346. 370. Air 1.0 Sp. Gr. 46.6 47.6 48.9 50.2 51.7 52.5 53.8 54.3 55.2 57.0 59.2 62.5 63.8 68. 71.5 71.6 73.8 76.5 78.9 81.6 86.3 88.9 92.1 92.4 96.4 99.9 103. 103.2 110. 113. 115. 119. 127. 130. 136. 141. 144. 150. 154. 158. 167. 169. 177. 184. 185. 194. 199. 205. 212. 215. 223. 232. 250. 268. 287.7

Propane/ Air 1.29 Sp. Gr. 41. 41.9 43. 44.2 45.5 46.2 47.4 47.8 48.6 50.2 52.1 55. 56.2 59.8 62.9 63.1 65. 67.3 69.5 71.8 75.9 78.3 81.1 81.4 84.9 87.9 90.7 90.9 96.6 99.9 101. 105. 112. 115. 120. 124. 127. 132. 136. 139. 147. 148. 156. 162. 163. 171. 175. 181. 187. 190. 196. 205. 220. 236. 253.

Propane 1.5 Sp. Gr. 38.1 38.9 39.9 41. 42.2 42.9 44. 44.4 45.1 46.5 48.3 51. 52.1 55.5 58.4 58.5 60.3 62.4 64.5 66.6 70.4 72.6 75.2 75.4 78.7 81.6 84.1 84.3 89.6 92.7 93.9 97.2 104. 106. 111. 115. 118. 122. 126. 129. 136. 138. 144. 150. 151. 159. 163. 168. 173. 176. 182. 190. 204. 219. 234.

Butane 2.0 Sp. Gr. 33. 33.7 34.6 35.5 36.5 37.1 38.1 38.4 39. 40.3 41.8 44.2 45.1 48.1 50.5 50.7 52.2 54.1 55.8 57.7 61. 62.9 65.1 65.3 68.2 70.6 72.9 73. 77.6 80.3 81.3 84.1 90.1 92.1 96.4 99.4 102. 106. 109. 112. 118. 119. 125. 130. 131. 137. 141. 145. 150. 152. 157. 164. 177. 190. 203.

CAPACITY, CFH @ 1 W.C. PRESSURE DROP AND COEFFICIENT OF DISCHARGE OF 1.0Drill Size 31/64 1/2 33/64 17/32 35/64 9/16 37/64 19/32 39/64 5/8 41/64 21/32 43/64 11/16 45/64 23/32 47/64 3/4 49/64 25/32 51/64 13/16 53/64 27/32 55/64 7/8 29/32 15/16 31/32 1 1-1/16 1-1/8 1-3/16 1-1/4 1-5/16 1-3/8 1-1/2 1-9/16 1-5/8 1-11/16 1-3/4 1-13/16 1-7/8 1-15/16 2 2-1/8 2-1/4 2-3/8 2-1/2 2-5/8 2-3/4 2-7/8 Dia. In. .4843 .50 .5156 .5312 .5468 .5625 .5781 .5937 .6093 .625 .6406 .6562 .6718 .6875 .7031 .7187 .7343 .750 .7656 .7813 .7969 .8125 .8281 .8438 .8594 .8750 .9062 .9375 .9688 1.0 1.063 1.125 1.188 1.250 1.313 1.375 1.5 1.563 1.625 1.688 1.75 1.813 1.875 1.938 2.0 2.125 2.250 2.375 2.50 2.625 2.75 2.875 Area .1843 .1963 .2088 .2217 .2349 .2485 .2625 .2769 .2916 .3068 .3223 .3382 .3545 .3712 .3883 .4057 .4236 .44179 .46040 .47937 .49873 .51849 .53862 .55914 .5800 .60132 .64504 .69029 .73708 .7854 .88664 .99402 1.1075 1.2272 1.3530 1.4849 1.7671 1.9174 2.0739 2.2365 2.4053 2.5802 2.7612 2.9498 3.1416 3.5466 3.9761 4.4301 4.9087 5.4119 5.9396 6.4918 Natural Gas 0.60 Sp. Gr. 395. 421. 448. 476. 504. 533. 563. 594. 626. 658. 691. 725. 760. 796. 833. 870. 909. 948. 988. 1029. 1070. 1112. 1156. 1200. 1244. 1290. 1384. 1481. 1581. 1685. 1902. 2133. 2376. 2633. 2903. 3186. 3791. 4114. 4450. 4799. 5161. 5536. 5924. 6329. 6741. 7610. 8531. 9505. 10532. 11612. 12744. 13929. Air 1.0 Sp. Gr. 306. 326. 347. 368. 390. 413. 436. 460. 485. 510. 536. 562. 589. 617. 645. 674. 704. 734. 765. 796. 829. 862. 895. 929. 964. 999. 1072. 1147. 1225. 1305. 1474. 1652. 1841. 2040. 2249. 2468. 2937. 3187. 3447. 3717. 3998. 4288. 4589. 4903. 5221. 5894. 6608. 7363. 8158. 8995. 9872. 10789. Propane/ Air 1.29 Sp. Gr. 270. 287. 306. 324. 344. 364. 384. 405. 427. 449. 472. 495. 519. 543. 568. 594. 620. 646. 674. 701. 730. 759. 788. 818. 849. 880. 944. 1010. 1079. 1149. 1297. 1455. 1621. 1796. 1980. 2173. 2586. 2806. 3035. 3273. 3520. 3776. 4040. 4316. 4597. 5190. 5818. 6483. 7183. 7919. 8691. 9499. Propane 1.5 Sp. Gr. 250. 266. 283. 301. 319. 337. 356. 376. 396. 416. 437. 459. 481. 504. 527. 551. 575. 599. 625. 651. 677. 704. 731. 759. 787. 816. 875. 937. 1000. 1066. 1203. 1349. 1503. 1665. 1836. 2015. 2398. 2602. 2814. 3035. 3264. 3501. 3747. 4003. 4263. 4813. 5396. 6012. 6661. 7344. 8060. 8809. Butane 2.0 Sp. Gr. 217. 231. 245. 261. 276. 292. 308. 325. 343. 361. 379. 397. 417. 436. 456. 477. 498. 519. 541. 563. 586. 609. 633. 657. 682. 707. 758. 811. 866. 923. 1042. 1168. 1302. 1442. 1590. 1745. 2077. 2253. 2437. 2628. 2827. 3032. 3245. 3467. 3692. 4168. 4673. 5206. 5769. 6360. 6980. 7629.

8

ORIFICE CAPACITY TABLES FOR HIGH PRESSURE GASESThese tables list compressible flows of high pressure gases through orifices and spuds. They are based on an orifice pressure drop of 10 psi and a coefficient of discharge (Cd) of 1.0. They also assume the gas is discharging to a region of atmospheric pressure. To determine flow through an orifice of a known diameter: 1. Locate the orifice diameter in the left-hand column of the table. 2. Read across to the column corresponding to the gas being measured. This is the uncorrected flow. 3. Multiply this flow by the coefficient of discharge of the orifice. (see page 4) 4. Correct this flow to the pressure actually measured ahead of the orifice (P) using the following relationship: Qp = Q 10 P + 14.7 24.7 To determine the orifice size to handle a known flow at a specified pressure drop, reverse the process: 1. Correct the known flow to a pressure drop of 10 psig, using the equation above. 2. Divide the flow by the orifice coefficient. 3. In the orifice table, locate the column for the gas under consideration. In this column, locate the flow closest to the corrected value found in step 2. 4. Read to the left to find the corrected orifice size. Example: Size an airjet with a convergent inlet of 15. Required flow is 450 scfh at 20 psig inlet pressure. Per the equation above, Qp = Q 10 P + 14.7, or Q 10 = Qp 24.7 24.7 P + 14.7 Substituting the numbers for this case: Q10 = 450 24.7 = 320 scfh 20 + 14.7 From page 4, C d for a 15 convergent nozzle is 0.94, so corrected flow is 320 0.94 = 340 scfh. Locate 340 scfh in the air column of the orifice table. Closest value is 341 scfh, which requires a 1/8" diameter jet.

Where Qp is the unknown flow Q10 is the flow at 10 psig from the table Example: What is the flow of propane air mixture through a 3/64" diameter jet with a 15 angle of convergence at 35 psig? From the table, uncorrected propane air flow through a 3/64" orifice is 41 scfh at 10 psig. Cd for 15 convergent jet is 0.94 (page 4), so corrected flow is 41 x 0.94 = 38.5 scfh at 10 psig. Corrected flow for 35 psig pressure, per the equation above, is 35 + 14.7 Qp = 38.5 = 77.5 scfh 24.7

CAPACITY, SCFH @ 10 PSI PRESSURE DROP, DISCHARGING TO ATMOSPHERE, WITH COEFFICIENT OF DISCHARGE OF 1.0 Drill Size 80 79 1/64 78 77 76 75 74 73 72 71 70 69 68 1/32 67 66 65 64 63 62 61 60 Area Sq. In. .000143 .000165 .00019 .00020 .00025 .00031 .00035 .00040 .00045 .00049 .00053 .00062 .00067 .00075 .00076 .00080 .00086 .00096 .00102 .00108 .00113 .00119 .00126 Natural Gas 0.60 Sp. Gr. 4.9 5.6 6.6 7.0 9.2 10.8 11.9 13.6 15.6 17.0 18.5 21 23 26 27 28 30 34 35 37 40 41 44 Air 1.0 Sp. Gr. 3.8 4.3 5.1 5.4 7.1 8.4 9.2 10.5 12.1 13.2 14.3 16.4 18.1 20 21 22 23 26 27 29 31 32 349

Propane/Air 1.29 Sp. Gr. 3.3 3.8 4.5 4.8 6.3 7.4 8.1 9.2 10.7 11.6 12.6 14.4 15.9 17.6 18.5 19.4 20 23 24 26 27 28 30

Propane 1.5 Sp. Gr. 3.1 3.5 4.2 4.4 5.8 6.9 7.5 8.6 9.9 10.8 11.7 13.4 14.8 16.3 17.1 18.0 18.8 21 22 24 25 26 28

Butane 2.0 Sp. Gr. 2.7 3.0 3.6 3.8 5.0 5.9 6.53 7.4 8.6 9.3 10.1 11.6 12.8 14.1 14.8 15.6 16.3 18.4 19.1 20 22 23 24

CAPACITY, SCFH @ 10 PSI PRESSURE DROP, DISCHARGING TO ATMOSPHERE, WITH COEFFICIENT OF DISCHARGE OF 1.0 (Contd)Drill Size 59 58 57 56 3/64 55 54 53 1/16 52 51 50 49 48 5/64 47 46 45 44 43 3/32 (42) 41 40 39 38 37 36 7/64 35 34 33 32 31 1/8 30 29 28 9/64 27 26 25 24 23 5/32 22 21 20 19 18 11/64 17 16 15 14 13 3/16 12 Area Sq. In. .00132 .00138 .00145 .00170 .00173 .00210 .00230 .00280 .00310 .00320 .00350 .00380 .00420 .00430 .00480 .00490 .00510 .00530 .00580 .00620 .00690 .00720 .00750 .00780 .00810 .00850 .00900 .00940 .00950 .00970 .01000 .01060 .01130 .01230 .01300 .01450 .01550 .01560 .01630 .01740 .01750 .01810 .01860 .01920 .01930 .01980 .02030 .02160 .02260 .02320 .02350 .02460 .02540 .02600 .02690 .02760 .02805 Natural Gas 0.60 Sp. Gr. 45 48 52 59 61 75 84 98 108 112 124 136 147 160 169 172 182 187 205 219 243 244 266 275 285 300 315 332 336 342 354 374 400 440 458 514 550 553 572 599 621 642 660 678 684 702 728 766 800 822 830 871 904 920 951 976 993 Air 1.0 Sp. Gr. 35 37 40 46 47 58 65 76 84 87 96 105 114 124 131 133 141 145 159 170 188 189 206 213 221 232 244 257 260 265 274 290 310 341 355 398 426 428 443 464 481 497 511 525 530 544 564 593 620 637 643 675 700 713 737 756 76910

Propane/Air 1.29 Sp. Gr. 31 33 35 41 41 51 57 67 74 77 85 92 100 109 115 117 124 128 140 150 166 166 181 188 195 204 215 226 229 233 241 255 273 300 313 350 375 377 390 409 423 437 450 462 467 479 497 522 546 561 566 594 616 628 649 666 677

Propane 1.5 Sp. Gr. 29 30 33 38 38 47 53 62 69 71 78 86 93 101 107 109 115 118 130 139 154 154 168 174 180 189 199 210 212 216 224 237 253 278 290 325 348 349 362 379 393 406 417 429 433 444 461 484 506 520 525 551 572 582 602 617 628

Butane 2.0 Sp. Gr. 25 26 28 33 33 41 46 54 59 62 68 74 81 88 93 94 100 103 112 120 133 134 146 151 156 164 173 182 184 187 194 205 219 241 251 281 301 303 313 328 340 351 361 371 375 385 399 419 438 450 455 477 495 503 521 534 544

CAPACITY, SCFH @ 10 PSI PRESSURE DROP, DISCHARGING TO ATMOSPHERE, WITH COEFFICIENT OF DISCHARGE OF 1.0 (Contd)Drill Size 11 10 9 8 7 13/64 6 5 4 3 7/32 2 1 A 15/64 B C D 1/4 E F G 17/64 H I J K 9/32 L M 19/64 N 5/16 O P 21/64 Q R 11/32 S T 23/64 U 3/8 V W 25/64 X Y 13/32 Z 27/64 7/16 29/64 15/32 31/64 1/2 Area Sq. In. .02865 .02940 .03020 .03110 .03160 .03240 .03270 .03320 .03430 .03560 .03760 .03840 .04090 .04300 .04310 .04440 .04600 .04750 .04910 .05190 .05350 .05540 .05560 .05800 .06010 .06200 .06210 .06600 .06830 .06920 .07160 .07670 .07840 .08200 .08460 .08660 .09010 .09280 .09500 .10050 .10140 .10630 .11040 .11160 .11700 .11980 .12360 .12780 .12960 .13400 .13980 .15030 .16130 .17260 .18430 .19630 Natural Gas 0.60 Sp. Gr. 1015 1041 1066 1100 1122 1148 1155 1172 1216 1263 1327 1361 1447 1523 1529 1571 1627 1686 1738 1836 1891 1960 1969 2054 2128 2192 2200 2337 2418 2448 2534 2714 2782 2893 2996 3065 3193 3283 3373 3553 3595 3775 3912 3959 4135 4237 4374 4537 4580 4751 4943 5307 5714 6121 6527 6977 Air 1.0 Sp. Gr. 786 806 826 852 869 889 895 908 942 978 1028 1054 1121 1180 1184 1217 1260 1306 1346 1422 1465 1518 1525 1591 1648 1698 1704 1810 1873 1896 1963 2102 2155 2241 2321 2374 2473 2543 2613 2752 2785 2924 3030 3067 3203 3282 3388 3514 3548 3680 3829 4111 4426 4741 5056 520411

Propane/Air 1.29 Sp. Gr. 692 710 727 750 765 783 788 799 829 861 905 928 987 1039 1042 1072 1109 1150 1185 1252 1290 1336 1343 1401 1451 1495 1500 1594 1649 1669 1728 1851 1897 1973 2044 2090 2177 2239 2301 2423 2452 2574 2668 2700 2820 2890 2983 3094 3124 3240 3371 3620 3897 4452 4448 4758

Propane 1.5 Sp. Gr. 642 658 674 696 710 726 731 741 769 799 839 861 915 963 967 994 1029 1066 1099 1161 1196 1239 1245 1299 1346 1386 1391 1478 1529 1548 1603 1716 1760 1830 1895 1938 2019 2076 2134 2247 2274 2387 2474 2504 2615 2680 2766 2869 2897 3005 3126 3357 3614 3871 4128 4412

Butane 2.0 Sp. Gr. 556 570 584 602 614 629 633 642 666 692 727 745 793 834 837 861 891 923 952 1006 1036 1073 1078 1125 1165 1201 1205 1280 1324 1341 1388 1486 1524 1585 1641 1679 1749 1798 1848 1946 1969 2068 2143 2169 2265 2321 2396 2485 2509 2602 2708 2907 3130 3352 3575 3821

PIPING PRESSURE LOSSES FOR LOW PRESSURE AIRInches w.c. per 100 ft. of Schedule 40 pipeScfh Air 40 50 100 200 300 400 500 600 700 800 900 1,000 1,500 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 12,000 14,000 16,000 18,000 20,000 Scfh Air 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 25,000 30,000 35,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 120,000 140,000 160,000 180,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000 600,000 650,000 700,000 800,000 900,000 1,000,000 1,100,000 1,200,000 1,300,000 1,400,000 1,600,000 1,800,000 2,000,000

1/2" 0.3 0.5 2.1 8.4 18.9 4" 0.4 0.7 1.1 1.6 2.2 2.8 3.6 4.4 6.9 9.9 13.5 17.6

3/4" 0.5 1.9 4.2 7.5 11.8 16.9 6" 0.3 0.3 0.4 0.5 0.8 1.2 1.6 2.1 3.3 4.7 6.4 8.3 10.5 13.0 18.7

1" 0.5 1.2 2.1 3.3 4.7 6.4 8.3 10.5 13.0 8" 0.3 0.4 0.5 0.7 1.0 1.4 1.9 2.4 2.9 4.2 5.7 7.4 9.4 11.6 18.2

1-1/4" 0.3 0.5 0.8 1.1 1.5 2.0 2.5 3.1 7.0 12.4 10" 0.3 0.5 0.6 0.8 0.9 1.3 1.8 2.4 3.0 3.7 5.8 8.4 11.4 14.9 18.8

1-1/2 0.4 0.5 0.7 0.9 1.1 1.4 3.2 5.6 12.6 12 0.3 0.4 0.5 0.7 0.9 1.2 1.4 2.2 3.2 4.4 5.7 7.2 9.0 10.8 12.9 15.1 17.5

2" 0.3 0.4 0.8 1.4 3.2 5.8 9.0 13.0 17.6 14" 0.3 0.4 0.5 0.7 0.8 1.3 1.9 2.5 3.3 4.2 5.2 6.2 7.4 8.7 10.1 13.2 16.7 20.6

2-1/2" 0.3 0.6 1.3 2.2 3.5 5.0 6.9 9.0 11.3 14.0 20.2 16" 0.3 0.3 0.4 0.6 0.9 1.3 1.6 2.1 2.6 3.1 3.7 4.4 5.0 6.6 8.3 10.3 12.5 14.8 17.4 20.2

3 0.4 0.8 1.2 1.7 2.3 3.0 3.8 4.7 6.8 9.2 12.0 15.2 18.8 18 0.3 0.5 0.6 0.8 1.1 1.3 1.6 1.9 2.2 2.5 3.3 4.2 5.2 6.3 7.5 8.8 10.2 13.3 16.8 20.8

12

PIPING PRESSURE LOSSES FOR LOW PRESSURE NATURAL GASInches w.c. per 100 ft. of Schedule 40 pipe Scfh Nat. Gas 25 50 75 100 125 150 175 200 300 400 500 600 700 800 900 1,000 1,500 2,000 2,500 3,000 4,000 5,000 6,000 7,000 8,000 9,000 3/8" 0.3 1.1 2.5 4.4 6.9 9.9 13.5 17.6 1/2" 0.3 0.7 1.2 1.9 2.8 3.8 5.0 11.2 19.8 3/4" 0.3 0.4 0.6 0.9 1.1 2.5 4.5 7.0 10.1 13.8 18.0 1" 0.3 0.7 1.2 1.9 2.8 3.8 4.9 6.3 7.7 17.4 1-1/4" 0.3 0.5 0.7 0.9 1.2 1.5 1.9 4.2 7.5 11.8 16.9 1-1/2" 0.3 0.4 0.5 0.7 0.8 1.9 3.3 5.2 7.5 13.2 20.7 2" 0.5 0.9 1.3 1.9 3.4 5.4 7.7 10.5 13.8 17.4

PIPING PRESSURE LOSSES FOR LOW PRESSURE NATURAL GAS Inches w.c. per 100 ft. of Schedule 40 pipe Scfh Nat. Gas 2,000 2,500 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 28,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 70,000 2-1/2" 0.3 0.5 0.8 1.3 2.1 3.0 4.1 5.4 6.8 8.4 12.1 16.4 3" 0.3 0.4 0.7 1.0 1.4 1.8 2.3 2.8 4.0 5.5 7.2 9.1 11.2 13.6 16.1 18.9 4" 0.3 0.4 0.6 0.7 1.0 1.4 1.8 2.2 2.8 3.3 4.0 4.7 5.4 6.2 8.5 11.0 14.0 17.3 20.9 6" 0.3 0.3 0.4 0.4 0.5 0.6 0.7 1.0 1.2 1.6 2.0 2.4 2.8 3.8 8" 0.3 0.3 0.4 0.5 0.6 0.813

Scfh Nat. Gas 80,000 90,000 100,000 110,000 120,000 130,000 140,000 150,000 200,000 250,000 300,000

Inches w.c. per 100 ft of Schedule 40 pipe 6" 8" 5.0 1.1 6.3 1.4 7.8 1.7 9.4 2.1 11.2 2.4 13.2 2.9 15.3 3.3 17.6 3.8 6.8 10.6 15.3

HIGH PRESSURE (COMPRESSIBLE) FLOW OF NATURAL GAS IN PIPESFlows in table are scfh of 0.6 sp. gr. natural gasPipe Inlet Pressure Drop Per 100 Equivalent Feet of Size, Pressure, Pipe as a Percentage of Inlet Pressure Inches PSIG 2% 4% 6% 8% 10%2 5 10 20 50 2 5 10 20 50 2 5 10 20 50 2 5 10 20 50 2 5 10 20 50 2 5 10 20 50 2 5 10 20 50 2 5 10 20 50 340 590 930 1570 3380 710 1230 1950 3260 7040 1080 1860 2940 4930 10,640 2100 3630 5740 9610 20,720 3390 5850 9240 15,480 33,400 6060 10,450 16,510 27,650 59,640 12,480 21,520 34,000 56,960 122,850 37,250 64,240 101,520 170,060 366,770 480 840 1320 2210 4770 1010 1740 2760 4600 9910 1530 2630 4160 6960 15,000 2980 5120 8090 13,550 29,190 4810 8260 13,040 21,840 47,050 8590 14,760 23,290 38,990 84,010 17,690 30,400 47,980 80,320 173,070 52,800 90,760 143,260 239,810 516,680 590 1030 1610 2700 5820 1230 2130 3370 5620 12,090 1870 3220 5080 8490 18,290 3640 6270 9890 16,540 35,610 5880 10,100 15,940 26,660 57,400 10,500 18,050 28,480 47,620 102,500 21,620 37,180 58,650 98,090 211,140 64,560 111,010 175,120 292,840 630,360 680 1180 1850 3110 6690 1420 2450 3880 6470 13,910 2160 3710 5850 9780 21,040 4200 7230 11,400 19,050 40,960 6780 11,650 18,370 30,700 66,010 12,120 20,820 32,810 54,820 117,880 24,960 42,890 67,580 112,930 242,840 74,510 128,040 201,780 337,150 724,970 760 1320 2070 3470 7450 1590 2740 4330 7210 15,490 2410 4140 6530 10,900 23,430 4700 8070 12,720 21,230 45,610 7580 13,010 20,500 34,220 73,510 13,540 23,240 36,610 61,110 131,270 27,890 47,880 75,410 125,880 270,420 83,270 142,950 225,150 375,820 807,320

1

1-1/4

1-1/2

2

2-1/2

3

4

6

EQUIVALENT LENGTHS OF STANDARD PIPE FITTINGS & VALVES VALVES FULLY OPEN I.D. Swing 90 45 90 Tee, Flow 90 Tee, Flow Inches Gate Globe Angle Check Elbow Elbow Through Run Through Branch0.622 0.824 1.049 1.380 1.610 2.067 2.469 3.068 4.026 6.065 0.35 0.44 0.56 0.74 0.86 1.10 1.32 1.60 2.1 2.6 18.6 23.1 29.4 38.6 45.2 58 69 86 112 140 9.3 11.5 14.7 19.3 22.6 29 35 43 56 70 4.3 5.3 6.8 8.9 10.4 13.4 15.9 19.8 26.8 40.4 1.6 2.1 2.6 3.5 4.0 5.2 6.2 7.7 10.1 15.2 0.78 0.97 1.23 1.6 1.9 2.4 2.9 3.6 5.4 8.1 1.0 1.4 1.8 2.3 2.7 3.5 4.1 5.1 6.7 10.1 3.1 4.1 5.3 6.9 8.0 10.4 12.4 15.3 20.1 30.3

Pipe Size1/2" 3/4" 1" 1-1/4" 1-1/2" 2" 2-1/2" 3" 4" 6"

Equivalent lengths are for standard screwed fittings and for screwed, flanged, or welded valves relative to schedule 40 steel pipe.14

SIMPLIFIED SELECTION OF AIR, GAS AND MIXTURE PIPING SIZEAir, gas and mixture piping systems should be sized to deliver flow at a uniform pressure distribution and without excessive pressure losses in transit. Two factors cause air pressure loss and consequent pressure variations: 1) Friction in piping and bends, and 2) Velocity pressure losses due to changes in direction. In combustion work, piping runs are usually short (under 50 ft.), but often have many bends. By assuming that all velocity pressure is lost or dissipated at each change of direction and by using a pipe size to give a very low velocity pressure, other losses can be disregarded. In general, a velocity pressure of 0.3 to 0.5 w.c. satisfies this need. This is equivalent to air velocities of about 2200 to 2800 ft/minute. For other gases, this velocity is inversely proportional to their gravities; consequently, higher velocities can be tolerated with natural gas, but propane and butane piping should be sized for lower velocities than air. The accuracy of orifice meters is also sensitive to pipe velocity, so every effort should be made to keep velocity pressure below 0.3 w.c. in metering runs. The graph below shows the relationship between velocity, velocity pressure and flow for various pipe sizes handling air, natural gas, propane, and butane. Because the specific gravity of most air-gas mixtures is close to that of air, mixture piping can be sized the same as air piping. The error will be insignificant. Example: A burner requires 10,000 cfh air at a static pressure of 13 w.c. The blower supplying this burner develops 15 w.c. static pressure. Piping between the two will run 15 feet, including four 90 bends. What size piping is required? Solution: Total pressure available for piping losses is 15 w.c. - 13 w.c. = 2 w.c. This allows a velocity pressure loss of: 2 4 = 0.5 w.c. for each of the four elbows. Under the Air column on the left-hand side of the Pv graph, locate 0.5 w.c. velocity pressure. This is equivalent to about 2800 ft/minute air velocity. Locate the intersection of the 2800 ft/minute line and the 10,000 cfh line, then drop down to the first curve below this point, in this case, 4 pipe. This is the pipe size that should be used. Pipe Size1-1/2" 1/4" 3/8" 1/2" 3/4" 1" 1-1/4" 2" 2-1/2" 3" 4" 6" 8" 10" 12" 14"16" 18"

Pv, "wc Velocity Nat. Pro- Bu- Ft/Min Gas Air pane tane x10003.0 2.0 1.5 1.0 5.0 4.0 3.0 2.0 1.5 1.0 0.5 0.4 0.3 0.2 0.15 0.1 0.05 0.5 0.4 0.3 0.2 5.0 4.0 3.0 2.0 1.5 1.0 5.0 4.0 3.0 2.0 1.5 1.0 3 2.5 0.5 0.4 0.3 2 1.5 10 9 8 7 6 5 4

10 9 8 7 6 5 4 3 2.5 2 1.5

0.5 0.4 0.3 0.2 0.15 0.1

0.15 0.2 0.1 0.15

Shaded Areas Indicate Recommended Velocity Pressure Range

1 100

2

3 4

6

8 1000

2

3 4

6 8 10,000

2

3 4

6

8

2 100,000

3 4

6

8

1

Flow, cfh

QUICK METHOD FOR SIZING AIR PIPING If pipe sizing charts or tables arent available, you can quickly estimate the maximum air flow capacity of a pipe with these simple equations: Maximum cfh air = (Nominal pipe size)2 x 1000 The result will correspond to a velocity pressure of about 0.5 w.c., the maximum recommended for low pressure air systems. Optimum cfh air = (Nominal pipe size)2 x 750 This will produce a flow rate equivalent to about 0.3 w.c. velocity pressure. Example: What is the maximum air flow rate for 212" pipe? (212)2 = 6.25 6.25 x 1000 = 6,250 cfh air.

15

SIZING BRANCH PIPING BY THE EQUAL AREA METHODThe equal area method of sizing pipe manifolds is based on maintaining constant total cross-sectional area in all portions of a piping train, regardless of the number of branches in each portion. In the sketch below, the equal area method requires that: Area of X = 2 times area of Y = 6 times area of Z. To use the table below, read across from the pipe size of the smallest branch in the manifold (Z in the sketch at left) and down from the number of these branches. At the intersection, find the recommended size pipe to feed these branches. For example, if Z is 3/4", Y should be 114" and X should be 2" pipe.Size of Branch Connection 1/4 3/8 Number of Branch Connections 1 1/4 3/8 1/2 3/4 2 3/8 3/4 3 1/2 3/4 4 3/4 1 5 6 7 8

X Y Z Z Z Z

3/4 1 1-1/4 1-1/4 1 2 1-1/4 2

1 1 1-1/4 1-1/4 1-1/2 2 2 2-1/2 3 4 4 6 6 8 10 18 3 4 6 6 6 8 12 18

Y Z Z

1/2 3/4 1 1-1/4 1-1/2 2

3/4 1 1 1-1/4 1-1/4 1-1/2 2 3 3 4 6 6 8 12 16 20

1 1-1/4 2 1-1/4 2 2-1/2 1-1/2 2-1/2 2 3 2-1/2 3 4 6 8 10 4 4 6 8 12 14 3 4 4 6 8 10 14 18

2-1/2 2-1/2 3 4 4 6 6 8 10 14 18 24 4 6 6 8 10 16 20 24

The advantage of this method is that once the size of the smallest branch has been determined, via velocity pressures or any other valid method, the remainder of the piping system can be correctly sized without any additional calculations. Remember, however, that if the calculation of the smallest branches is in error, the entire system will be incorrectly sized.

2-1/2 3 4 6 8 10

20 or 24 24 30 30

Cv FLOW FACTOR CONVERSIONS Cv, flow factor, is defined as the full flow capacity of a valve expressed in gpm of 60F water at 1 psi pressure drop. This rating is determined by actual flow test. To convert Cv to actual flow capacity for gases, use the graph below. Locate Cv at the left, read across to the appropriate curve and then down to obtain flow capacity at 1 w.c. pressure drop. For drops other than 1 w.c., multiply the flow by the square root of the pressure drop. For conditions other than 14.7 psia and 60F, use this formula: Q = 1360Cv (P1-P2) P2, GT where Q = SCFH P1 = Inlet pressure, psia P2 = Outlet pressure, psia T = Absolute flowing temperature (F + 460) G = Specific gravity of gas

1000 8 6 4 3 2 PROPANE 1.5 SP GR 100 8 6 4 3 2 PROPANE - AIR 1.29 SP GR AIR 1.0 SP GR 10 8 6 4 3 2 BUTANE 2.0 SP GR

Cv Flow Factor

NATURAL GAS 0.6 SP GR

1

10

20

30 40 60 80 100

2

3

4

6

8 1000

2

3

4

6

8 10,000 2

3

4

6

Flow, SCH @ 1" W.C. P @ 14.7 PSIA & 60 F

16

DUCT VELOCITY & FLOW MEASUREMENTSThe total pressure of an air stream flowing in a duct is the sum of the static or bursting pressure exerted upon the sidewalls of the duct and the impact or velocity pressure of the moving air. Through the use of a pitot tube connected differentially to a manometer, the velocity pressure alone is indicated and the corresponding air velocity determined. For accuracy of plus or minus 2%, as in laboratory applications, extreme care is required and the following precautions should be observed: 1. Duct diameter 4" or greater. 2. Make an accurate traverse per sketch below and average the readings. 3. Provided smooth, straight duct sections 10 diameters in length both upstream and downstream from the pitot tube. 4. Provide an egg crate type straightener upstream from the pitot tube.D

In making an air velocity check select a location as suggested above, connect tubing leads from both pitot tube connections to the manometer and insert in the duct with the tip directed into the air stream. If the manometer shows a minus indication reverse the tubes. With a direct reading manometer, air velocities will now be shown in feet per minute. In other types, the manometer will read velocity pressure in inches of water and the corresponding velocity will be found from the curves below. If circumstances do not permit an accurate traverse, center the pitot tube in the duct, determine the center velocity and multiply by a factor of .9 for the approximate average velocity. Field tests run in this manner should be accurate within plus or minus 5%. The velocity indicated is for dry air at 70F., 29.9" Barometric Pressure and a resulting density of .075#/ cu. ft. For air at a temperature other than 70F. refer to the curves below. For other variations from these conditions, corrections may be based upon the following data: Air Velocity = 1096.2 Pv D where Pv = velocity pressure in inches of water D = Air density in #/cu. ft. Air Density = 1.325 x PB T where PB= Barometric Pressure in inches of mercury T = Absolute Temperature (indicated temperature plus 460) Flow in cu. ft. per min. = Duct area in square feet x air velocity in ft. per min.

.35D .60D .80D .92D

13000 12000 11000 10000

140

0

120

0800

1000 600

Air Velocity in Feet Per Minute

400

9000 8000 7000 6000 5000 4000 3000 2000 1000 0 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

300 100

200

40 70

3.0

3.2

3.4

3.6

3.8

4.0

Gage Reading with Pilot Tube (Velocity Pressure) in Inches of WaterREPRINTED WITH PERMISSION OF F.W. DWYER MANUFACTURING CO., MICHIGAN CITY, INDIANA

17

CHAPTER 2 FAN LAWS & BLOWERAPPLICATION ENGINEERING

RPM "R"

Volume "V"

For blower wheel with eight segments, Theoretical Flow = 8 x V x R Combustion air blowers are normally rated in terms of standard cubic feet (scf) of air; that is, 70F air at Sea Level (29.92" Hg) barometric pressure. Density of this air is 0.075 lb/cu ft, and its specific gravity is 1.0. Although fuel/air ratios are usually stated in cubic feet of air per cubic foot or gallon of fuel, its the weight of air per weight of fuel thats important. As long as air temperature and pressure are close to standard conditions, blower and burner sizing charts can be used without correction. However, if air temperature, gauge pressure or altitude change the density of air by any significant amount, blower ratings have to be corrected from actual cubic feet (acf) to standard cubic feet to insure the proper weight flow of air reaches the burner. Centrifugal fans are basically constant volume devices; at a given rotational speed, they will deliver the same volume of air regardless of its density. If, for example, a blower has a wheel made up of eight segments, each with a volume V, and the wheel is rotating at R rpm, the theoretical flow rating of the blower will be 8 x V x R, because each fan wheel segment fills with air and empties itself once each revolution. The actual volume delivered is strictly a function of the carrying capacity of the wheel and its speed. Cfm, whether it is standard (scfm) or actual (acfm) is the same. Consequently, if the density of air is reduced by temperature, pressure, or both, the blower will deliver a lower weight flow of air, even though the measured volume hasnt changed. Air density also affects the pressure developed by the blower and its power consumption. Because air density is related to temperature, pressure, and altitude (barometric pressure) see pages 20 and 21 it is possible to relate blower performance to these factors with a set of realtionships known as fan laws.

18

FAN LAWS1. Effect of Blower Speed on Flow, Pressure and Power Consumption a. Flow vs. Speed: The flow rate (V) changes in direct ratio to the speed (S) V2 = S2 V1 S1 Example: A blower operating at 1750 rpm (S1) delivers 1000 cfm (V1). How many cfm (V2) will it deliver if speed is increased to 3500 rpm (S2)? V2 = V1 x S2 = 1000 x 3500 = 2000 cfm S1 1750 b. Pressure vs. Speed: The pressure (P) changes as the square of the speed ratio (S) P2 = S2 2 P1 S1 Example: A blower operating at 1750 rpm (S1) develops 1 psig (P1) pressure. If speed is doubled to 3500 rpm (S2), what is the new pressure (P2)? 2 2 P2 = P1 x S2 = 1 x 3500 S1 1750 2. Effect of Air Density on Flow, Pressure, and Power Consumption. a. Volume Flow vs. Density Volume flow (cfm) remains constant regardless of density. b. Weight Flow vs. Density: Weight flow (W) changes in direct ratio to the density (D) or specific gravity (G) W2 D G = 2 = 2 W1 D1 G1 Example: A blower delivers 1500 lb/hr (20,000 cu ft/hr) (W1) of air at standard conditions (density D1 = 0.075 lb/cu ft). What will be the weight flow delivered if the air temperature is 250F? From page 21, air density (D 2) at 250F is .056 lb/cu ft. W2 = W1 x D2 = 1500 x .056 = 1120 lb/hr. D1 .075 c. Pressure vs. Density: Pressure (P) changes in direct proportion to density (D) or specific gravity (G). P2 = D2 = G2 P1 D1 G1 Example: At sea level conditions (G1 = 1.0), a blower develops 28" w.c. pressure (P1). What pressure (P2) will it develop at 4000 ft. altitude? From page 20, air gravity (G 2) at 4000 ft is 0.86. P2 = P1 x G2 = 28 x .86 = 24.1" w.c. G1 1.0 d. Horsepower vs. Density: Horsepower (HP) consumed changes in direct proportion to density (D) or specific gravity (G). HP2 = D2 = G2 HP1 D1 G1 Example: A standard air (G1) blower requires a 10 hp (HP1) motor. What horsepower (HP2) is required if this blower is to handle a gas of 0.5 specific gravity (G2)? The gravity of standard air is 1.0, so HP2 = HP1 x G2 = 10 x 0.5 = 5 hp G1 1.0 V2 = V1 x G1 = 10,000 cfh x 1.00 = 12,500 cfh G2 0.80 In other words, 12,500 cfh air at 6000 feet has the same weight as 10,000 cfh at sea level. The pressure required now will be adjusted for the new air flow, taking into account the lower density of the air. 2 V2 2 = G1 P2 = P1 x V2 V1 V1 G2

( )

( )

(

)

= 1 x (2)2 = 1 x 4 = 4 psig c. Horsepower vs. Speed: The horsepower (HP) consumed changes as the cube of the speed ratio (S) HP2 S 3 = 2 HP1 S1 Example: A blower operating at 1750 rpm (S1) requires a 5 hp (HP1) motor. How many horsepower (HP2) will be required to handle a speed increase to 3500 rpm (S2)? S 3 3500 3 HP2 = HP1 2 = 5 x S1 1750

( )

( )

( )

= 5 x (2)3 = 5 x 8 = 40 hp Laws 1a, 1b and 1c are known as the 1-2-3 rule of centrifugal blowers. Volume increases in direct ratio, pressure as the square, and horsepower as the cube, of the speed ratio. Re-rating blowers for nonstandard conditions As fan laws 2b, 2c, and 2d show, blower weight flow, pressure, and horsepower all change in direct proportion to air density or gravity. While these relationships are important to know, its usually more important to know how to select a blower to compensate for nonstandard conditions. The following example shows how it is done. Example: A burner is rated a 1 million Btu/hr. at an air pressure of 20"w.c., including piping and control valve drops. If the burner is to be installed at 6000 feet altitude, select a blower that will permit the burners input rating to be maintained. Solution: Use the rule-of-thumb of 100 Btu per standard cubic foot of air to estimate blower flow requirements: 1,000,000 Btu/hr 100 Btu/scf air = 10,000 scfh air. This is the blowers standard (sea level) rating. At 6,000 feet, the specific gravity of air is 0.80 (see page 20). To maintain a weight flow of air through the burner equivalent to 10,000 scfh, the volume flow through the burner has to be increased to offset the airs lower density.

( )

( )

P2 = P1 x

G1 = 20"w.c. x 1.00 = 25"w.c. G2 0.80 Because the pressure generated by the blower decreases with air density, the sea level pressure rating has to be higher to compensate for the loss of outlet pressure at higher altitudes. P1 = P2 x G1 = 25"w.c. x 1.00 = 31.25"w.c. G2 0.80 Therefore, the blower must be capable of delivery at least 12,500 cfh at 31.25"w.c. at sea level to satisfy the needs of the burner at 6000 feet altitude.19

Blower horsepower requirements Blower horsepower increases with the air flow delivered and the pressure developed. The four equations below can be used to predict blower horsepower consumption. They differ only in the flow and pressure units used. The term efficiency is the overall blower efficiency a composite of fan, motor and drive train efficiencies expressed as a decimal. scfm hp = 6356 x "w.c. hp = scfm x osi x efficiency 3670 x efficiency scfh x osi hp = scfh x "w.c. 381,360 x efficiency hp = 220,200 x efficiency

Blowers used as suction fans When a blower is used as a suction device discharging to atmosphere, the amount of suction or vacuum developed can be calculated from this relationship: V= P P2 x 27.7, where B+P V = suction or vacuum, " w.c. P = Absolute atmospheric pressure, psia, at the location where the blower is operated B = Rated blower discharge pressure, psig (psig = " w.c. 27.7) Example: A blower with a catalog pressure rating of 21" w.c. is used as a suction fan on an installation at 1500 ft altitude. How much suction will it develop? P at 1500 ft = 13.9 psia (from table below) B = 21 27.7 = .76 psig 2 V = 13.9 - (13.9) x 27.7 = 20 "w.c. .76 + 13.9

(

)

(

)

THE EFFECT OF PRESSURE ON AIR Basis: 70F dry air at sea level (29.92" Hg) barometric pressureGauge Pressure, PSIG0 1 2 3 4 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100 125 150 175 200 250 300 400 500

THE EFFECT OF ALTITUDE ON AIR Basis: 70F dry air at sea level (29.92" Hg) barometric pressure

Absolute Pressure, PSIA14.7 15.7 16.7 17.7 18.7 19.7 24.7 29.7 34.7 39.7 44.7 49.7 54.7 59.7 64.7 74.7 84.7 94.7 104.7 114.7 139.7 164.7 189.7 214.7 264.7 314.7 414.7 514.7

Density Lb./Cu. Ft.0.07500 0.08010 0.08520 0.09031 0.09541 0.10051 0.12602 0.15153 0.17704 0.20255 0.22806 0.25357 0.27908 0.30459 0.33010 0.38112 0.43214 0.48316 0.53418 0.58520 0.71276 0.84031 0.96786 1.09541 1.35051 1.60561 2.11582 2.62602

Specific Gravity1.000 1.068 1.136 1.204 1.272 1.340 1.680 2.020 2.361 2.701 3.041 3.381 3.721 4.061 4.401 5.082 5.762 6.442 7.122 7.802 9.503 11.204 12.905 14.605 18.007 21.408 28.211 35.014

Specific Volume Cu. Ft./Lb.13.33 12.48 11.74 11.07 10.48 9.95 7.94 6.60 5.65 4.94 4.38 3.94 3.58 3.28 3.03 2.62 2.31 2.07 1.87 1.71 1.40 1.19 1.03 0.91 0.74 0.62 0.47 0.38

Altitude Ft.0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 15000 20000

Barometric "Hg29.92 29.38 28.86 28.33 27.82 27.31 26.81 26.32 25.84 25.36 24.89 24.43 23.98 23.53 23.09 22.65 22.22 21.80 21.38 20.98 20.58 16.88 13.75

Pressure, PSIA14.7 14.4 14.2 13.9 13.7 13.4 13.2 12.9 12.7 12.5 12.2 12.0 11.8 11.6 11.3 11.1 10.9 10.7 10.5 10.3 10.1 8.29 6.76

Density Lb./Cu. Ft..07500 .07365 .07234 .07101 .06974 .06846` .06720 .06598 .06477 .06357 .06239 .06124 .06011 .05898 .05788 .05678 .05570 .05465 .05359 .05259 .05159 .04231 .03447

Specific Specific Volume Gravity Cu. Ft./Lb.1.00 .98 .96 .95 .93 .91 .90 .88 .86 .85 .83 .82 .80 .79 .77 .76 .74 .73 .71 .70 .69 .56 .46 13.33 13.58 13.82 14.08 14.34 14.61 14.88 15.16 15.44 15.73 16.03 16.33 16.64 16.95 17.28 17.61 17.95 18.30 18.66 19.01 19.38 23.63 29.01

Helpful conversions: Altitude in meters x 3.28 = Altitutde in feet Barometric pressure in "Hg 2.036 = Barometric pressure in psia.

20

THE EFFECT OF TEMPERATURE ON AIRBasis: 70F dry air at sea level (29.92" Hg) barometric pressure Explanation of terms: Absolute Temperature Ratio: Temperature, F + 460 530 Specific Gravity: Density at stated temperature .07500 Specific Volume:Absolute Temp. Ratio.7547 .7925 .8113 .8302 .8491 .8679 .9057 1.019 .9811 1.000 .9434 1.038 1.057 1.075 1.094 1.113 1.132 1.151 1.170 1.189 1.208 1.226 1.245 1.264 1.283 1.302 1.321 1.340 1.358 1.377 1.396 1.415 1.434 1.453 1.472 1.491 1.509 1.528 1.547 1.566 1.585 1.604 1.623 1.642 1.660 1.679 1.698 1.717 1.736 1.755 1.774 1.792 1.811 1.830

1 Density, lb/cu. ft.Specific Volume Cu. Ft./Lb.10.06 10.57 10.82 11.07 11.32 11.57 12.08 13.58 13.08 13.33 12.58 13.84 14.09 14.34 14.59 14.84 15.09 15.35 15.60 15.85 16.10 16.35 16.60 16.86 17.11 17.36 17.61 17.86 18.11 18.36 18.62 18.87 19.12 19.37 19.62 19.87 20.13 20.38 20.63 20.88 21.13 21.38 21.64 21.89 22.14 22.39 22.64 22.89 23.14 23.40 23.65 23.90 24.15 24.40

Temp. F-60 -40 -30 -20 -10 0 20 40 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510

Density Lb./Cu. Ft..09938 .09464 .09244 .09034 .08833 .08641 .08281 .07361 .07644 .07500 .07361 .07227 .07098 .06974 .06853 .06737 .06624 .06516 .06411 .06310 .06211 .06115 .06023 .05933 .05846 .05761 .05679 .05599 .05521 .05445 .05372 .05300 .05230 .05162 .05096 .05032 .04969 .04907 .04848 .04789 .04732 .04676 .04622 .04569 .04517 .04466 .04417 .04368 .04321 .04274 .04229 .04184 .04141 .04098

Specific Gravity1.325 1.262 1.233 1.205 1.178 1.152 1.104 .981 1.019 1.000 1.060 .964 .946 .930 .914 .898 .883 .869 .855 .841 .828 .815 .803 .791 .779 .768 .757 .747 .736 .726 .716 .707 .697 .688 .679 .671 .663 .654 .646 .639 .631 .623 .616 .609 .602 .595 .589 .582 .576 .570 .564 .558 .552 .546

Temp. F520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 825 850 875 900 925 950 975 1000 1025 1050 1100 1150 1200 1250 1300 1350 1400 1500 1600 1700 1800 1900 2000 2100 2200

Absolute Temp. Ratio1.849 1.868 1.887 1.906 1.925 1.943 1.962 1.981 2.000 2.019 2.038 2.057 2.075 2.094 2.113 2.132 2.151 2.170 2.189 2.208 2.226 2.245 2.264 2.283 2.302 2.321 2.340 2.358 2.377 2.425 2.472 2.519 2.566 2.613 2.660 2.708 2.755 2.802 2.849 2.943 3.033 3.132 3.226 3.321 3.415 3.509 3.698 3.887 4.075 4.264 4.453 4.642 4.830 5.019

Density Lb./Cu. Ft..04056 .04015 .03975 .03936 .03897 .03859 .03822 .03786 .03750 .03715 .03681 .03647 .03614 .03581 .03549 .03518 .03487 .03457 .03427 .03397 .03369 .03340 .03313 .03285 .03258 .03232 .03206 .03180 .03155 .03093 .03034 .02978 .02923 .02870 .02819 .02770 .02723 .02677 .02623 .02548 .02469 .02395 .02325 .02259 .02196 .02137 .02028 .01930 .01840 .01759 .01684 .01616 .01553 .01494

Specific Gravity.541 .535 .530 .525 .520 .515 .510 .505 .500 .495 .491 .486 .482 .477 .473 .469 .465 .461 .457 .453 .449 .445 .442 .438 .434 .431 .427 .424 .421 .412 .405 .397 .390 .383 .376 .369 .363 .357 .350 .340 .329 .319 .310 .301 .293 .285 .270 .257 .245 .235 .225 .215 .207 .199

Specific Volume Cu. Ft./Lb.24.65 24.91 25.16 25.41 25.66 25.91 26.16 26.42 26.67 26.92 27.17 27.42 27.67 27.92 28.18 28.43 28.68 28.93 29.18 29.43 29.69 29.94 30.19 30.44 30.69 30.94 31.19 31.45 31.70 32.33 32.96 33.58 34.21 34.84 35.47 36.10 36.73 37.36 37.99 39.25 40.50 41.76 43.02 44.28 45.53 46.79 49.31 51.81 54.35 56.85 59.38 61.88 64.39 66.93

21

CHAPTER 3 GASPHYSICAL PROPERTIES OF COMMERCIAL FUEL GASESConstituents % by Volume No. Gas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Acetylene Blast Furnace Gas Butane (natural gas) Butylene (Butene) Carbon Monoxide Carburetted Water Gas Coke Oven Gas Digester (Sewage) Gas Ethane Hydrogen Methane Natural (Birmingham, AL) Natural (Pittsburgh, PA) Natural (Los Angeles, CA) Natural (Kansas City, MO) Natural (Groningen, Netherlands) CH4 10.2 32.1 67 100 90 83.4 77.5 84.1 81.3 C2H6 C3H8 7 C4H10 CO H2 1 40.5 46.5 100 14.5 48 32.5 CO2 11.5 3 2.2 25 6.5 0.8 0.9 0.4 4.7 5.5 O2 0.5 0.8 0.5 0.9 N2 60 2.9 8.1 5 0.8 8.4 14.4 2.8 52.7 1 27.6 Specific Gravity 0.91 1.02 1.95 1.94 0.97 0.63 0.44 0.80 1.05 0.07 0.55 0.60 0.61 0.70 0.63 0.64 0.61 0.84 1.52 1.45 0.42 0.71 Density, Lb per Cu Ft .07 .078 .149 .148 .074 .048 .034 .062 .080 .0054 .042 .046 .047 .054 .048 .048 .046 .065 .116 .111 .032 .054 Specific Volume Cu Ft/Lb 14.4 12.8 6.71 6.74 13.5 20.8 29.7 16.3 12.5 186.9 23.8 21.8 21.4 18.7 20.8 20.7 21.8 15.4 8.61 9.02 31.3 18.7

(100% C2H2) 27.5 93 (100% C4H8)

100 (6.1% C2H4, 2.8% C6H6) 34 (3.5% C2H4, 0.5% C6H6) 6.3 (8% H2O) 100 5 15.8 16.0 6.7 2.9 3.5 0.4 0.8 0.1 0.3 25

17 Natural (Midlands Grid, U.K.) 91.8 18 Producer (Wellman-Galusha) 2.3 19 20 21 22 Propane (natural gas) Propylene (Propene) Sasol (South Africa) Water Gas (bituminous) 26 4.6

100 (100% C3H6) 22 (0.4% C2H4, 0.3% C6H6) 28.2

COMBUSTION PROPERTIES OF COMMERCIAL FUEL GASESAir/Gas Ratio, Flammability Limits, Ignition Temperature & Flame VelocityLimits of Flammability % Gas in Air/Gas Mixture Lean Rich 2.5 45 1.86 1.7 12 4.2 4.5 8 3.15 4 5 7.03 4.6 4.9 5.4 6.1 5 16.4 2.37 2 5.3 8.9 80 72 8.41 9 74 42.9 31.5 17 12.8 74.2 15 15.77 14.7 15.6 16.3 15 15 69.4 9.50 11.1 37.4 61

No. Gas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Acetylene Blast Furnace Gas Butane (natural gas) Butylene (Butene) Carbon Monoxide Carburetted Water Gas Coke Oven Gas Digester (Sewage) Gas Ethane Hydrogen Methane Natural (Birmingham, AL) Natural (Pittsburgh, PA) Natural (Los Angeles, CA) Natural (Kansas City, MO) Natural (Groningen, Netherlands)

Stoichiometric Air/Gas Ratio Cu Ft Air/ Lb Air/ Cu Ft Gas Lb Gas 11.91 0.68 30.47 28.59 2.38 4.60 4.99 6.41 16.68 2.38 9.53 9.41 10.58 10.05 9.13 8.41 13.26 0.67 15.63 14.77 2.46 7.36 11.27 7.97 15.98 33.79 17.23 15.68 17.31 14.26 14.59 13.45 16.13 1.56 15.73 14.77 9.84 2.86

Minimum Maximum Ignition Flame Velocity Temperature in Air, in Air, F Ft/Sec* 581 826 829 1128 882 1065 1170 1238 1300 898 856 9.4 2.8 3.2 2.0 2.8 16.0 2.2 1.18 0.98 2.7 3.3

17 Natural (Midlands Grid, U.K.) 9.8 18 Producer (Wellman-Galusha) 1.30 19 20 21 22 Propane (natural gas) Propylene (Propene) Sasol (South Africa) Water Gas (bituminous) 23.82 21.44 4.13 2.01

*Uniform flame speed in a 1" diameter tube. Flame speeds increase in larger diameter tubes.

22

COMBUSTION PROPERTIES OF COMMERCIAL FUEL GASESHeating Value, Heat Release & Flame TemperatureHeating Value Heat release, Btu No. Gas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Acetylene Blast Furnace Gas Butane (natural gas) Butylene (Butene) Carbon Monoxide Carburetted Water Gas Coke Oven Gas Digester (Sewage) Gas Ethane Hydrogen Methane Natural (Birmingham, AL) Natural (Pittsburgh, PA) Natural (Los Angeles, CA) Natural (Kansas City, MO) Natural (Groningen, Netherlands) Btu/cu ft Gross Net 1498 92 3225 3077 323 550 574 690 1783 325 1011 1002 1129 1073 974 941 1035 167 2572 2322 500 261 1447 92 2977 2876 323 508 514 621 1630 275 910 904 1021 971 879 849 902 156 2365 2181 443 239 Gross 21,569 1178 21,640 20,780 4368 11,440 17,048 11,316 22,198 61,084 23,811 21,844 24,161 20,065 20,259 19,599 22,500 2650 21,500 20,990 14,550 4881 Btu/lb Net 20,837 1178 19,976 19,420 4368 10,566 15,266 10,184 20,295 51,628 21,433 19,707 21,849 18,158 18,283 17,678 19,609 2476 19,770 19,630 13,016 4469 Per Cu Ft Air 125.8 135.3 105.8 107.6 135.7 119.6 115.0 107.6 106.9 136.6 106.1 106.5 106.7 106.8 106.7 111.9 105.6 128.5 108 108.8 116.3 129.9 Per Lb Air 1677 1804 1411 1435 1809 1595 1533 1407 1425 1821 1415 1420 1423 1424 1423 1492 1408 1713 1440 1451 1551 1732 Theoretical Flame Temperature F 4250 2650 3640 3810 3960 3725 3610 3550 3710 3960 3640 3565 3562 3550 3535 3380 3450 3200 3660 3830 3452 3510

17 Natural (Midlands Grid, U.K.) 18 Producer (Wellman-Galusha) 19 20 21 22 Propane (natural gas) Propylene (Propene) Sasol (South Africa) Water Gas (bituminous)

COMBUSTION PROPERTIES OF COMMERCIAL FUEL GASESCombustion Products & %CO2Combustion Products, Cu Ft/Cu Ft Gas No. Gas 1 Acetylene 2 Blast Furnace Gas 3 Butane (natural gas) 4 Butylene (Butene) 5 Carbon Monoxide 6 7 8 9 10 Carburetted Water Gas Coke Oven Gas Digester (Sewage) Gas Ethane Hydrogen CO2 2.00 0.39 3.93 4.00 1.00 0.76 0.51 0.92 2.00 1.00 1.00 1.15 1.16 0.98 0.89 H2O 1.00 0.02 4.93 4.00 0.87 1.25 1.42 3.00 1.00 2.00 2.02 2.22 2.10 1.95 1.73 2.19 0.17 4.17 3.00 1.00 0.47 N2 9.41 1.14 24.07 22.59 1.88 3.66 4.02 5.44 13.18 1.88 7.53 7.48 8.37 7.94 7.30 6.74 7.94 1.59 18.82 16.94 3.28 1.86 Total 12.41 1.54 32.93 30.59 2.88 5.29 5.78 7.78 18.18 2.88 10.53 10.50 11.73 11.20 10.23 9.36 11.78 2.11 25.99 22.94 4.76 2.74 Combustion Products, Lb/Lb Gas CO2 3.38 .59 3.09 3.14 1.57 1.85 1.76 1.74 2.93 2.75 2.54 2.86 2.51 2.39 2.17 2.67 0.61 3.00 3.14 1.76 0.89 H2O 0.69 1.59 1.29 0.87 1.76 1.10 1.8 8.89 2.25 2.11 2.27 1.87 1.95 1.73 2.29 0.13 1.70 1.29 1.50 0.42 N2 10.19 1.08 11.95 11.34 1.89 5.64 8.75 6.53 12.25 25.90 13.23 12.03 13.18 10.88 11.25 10.45 12.84 1.82 12.03 11.34 7.63 2.55 Total 14.26 1.67 16.63 15.77 3.46 8.36 12.27 9.37 16.98 34.79 18.23 16.68 18.31 15.26 15.59 14.35 17.80 2.56 16.73 15.77 10.89 3.86 Ultimate CO2 %* 17.5 25.5 14.0 15.0 34.7 17.2 11.2 14.5 13.2| 0 11.7 11.8 12.1 12.7 11.9 11.7 11.7 17.6 13.7 15.0 12.8 18.0

11 Methane 12 Natural (Birmingham, AL) 13 14 15 16 Natural (Pittsburgh, PA) Natural (Los Angeles, CA) Natural (Kansas City, MO) Natural (Groningen, Netherlands)

17 Natural (Midlands Grid, U.K.) 1.05 18 Producer (Wellman-Galusha) 0.34 19 20 21 22 Propane (natural gas) Propylene (Propene) Sasol (South Africa) Water Gas (bituminous) 3.00 3.00 0.48 0.41

*In dry flue gas sample

23

PROPANE/AIR & BUTANE/AIR MIXTURESEQUIVALENT BTU TABLESPROPANE/AIR MIXTUREEquivalent PropaneAir Mixture B.t.u. 690 855 1000 1100 1400 1560

BUTANE/AIR MIXTUREEquivalent ButaneAir Mixture B.t.u. 708 870 1058 1380 1550 1680

Kind of Gas

B.t.u. Content

Specific Gravity .65 .46 .42 .56 .60 .65

Specific Gravity 1.14 1.17 1.20 1.23 1.28 1.32

Kind of Gas

B.t.u. Content

Specific Gravity .65 .46 .42 .56 .60 .65

Specific Gravity 1.20 1.25 1.31 1.41 1.46 1.50

Carbureted Water Gas . . . . . . . . . .517 Mixed Water and Coke Oven . . . . . .530 Coke Oven . . . . . . . . . . . . . . . . . . .590 Natural . . . . . . . . . . . . . . . . . . . . . .900 Natural . . . . . . . . . . . . . . . . . . . . .1050 Natural . . . . . . . . . . . . . . . . . . . . .1140

Carbureted Water Gas . . . . . . . . . .517 Mixed Water and Coke Oven . . . . . .530 Coke Oven . . . . . . . . . . . . . . . . . . .590 Natural . . . . . . . . . . . . . . . . . . . . . .900 Natural . . . . . . . . . . . . . . . . . . . . .1050 Natural . . . . . . . . . . . . . . . . . . . . .1140

NOTE: The B.t.u. content and specific gravity figures are representative figures and will vary according to area. Therefore, these tables should be used as a guide only.

MIXTURE SPECIFICATIONSPROPANE/AIR MIXTURESB.t.u. per Cubic Foot of MIxture3200 3150 3100 3050 3000 2950 2900 2850 2800 2750 2700 2650 2600 2550 2500 2450 2400 2350 2300 2250 2200 2150 2100 2050 2000 1950 1900 1850 1800 1750 1700 1650 1600 1550 1500 1450 1400 1350 1300 1250 1200 1150 1100 1050 1000 950 900 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100

BUTANE/AIR MIXTURESSpecific Gravity of the MIxture 1.523 1.513 1.502 1.492 1.482 1.472 1.461 1.451 1.441 1.431 1.420 1.410 1.400 1.390 1.379 1.369 1.359 1349 1.338 1.328 1.318 1.308 1.297 1.287 1.277 1.267 1.256 1246 1.236 1.226 1.215 1.205 1.195 1.185 1.174 1.164 1.154 1.114 1.133 1.123 1.113 1.103 1.092 1.082 1.072 1.062 1.051 1.041 1.031 1.021

Percentage of Propane by Volume 100.00 98.04 96.08 94.12 92.16 90.19 88.24 86.27 84.31 82.35 80.39 78.43 76.47 74.51 72.55 70.58 68.62 66.67 64.70 62.74 60.78 58.82 56.86 54.90 52.94 50.98 49.02 47.06 45.09 43.13 41.17 39.21 37.25 35.29 33.33 31.37 29.41 27.45 25.49 23.53 21.56 19.61 17.65 15.69 13.73 11.76 9.80 7.84 5.88 3.92

Percentage of Air by Volume 0.00 1.96 3.92 5.88 7.84 9.81 11.76 13.73 15.69 17.65 19.61 21.56 23.53 25.49 27.45 29.42 31.38 33.33 35.30 37.26 39.22 41.18 43.14 45.10 47.06 49.02 50.98 52.94 54.91 56.87 58.83 60.79 62.75 64.71 66.67 68.63 70.59 72.55 74.51 76.47 78.44 80.39 82.35 84.31 86.27 88.24 90.20 92.16 94.12 96.08

Percentage of Oxygen by Volume (Orsat) 0.000 0.409 0.819 1.288 1.639 2.050 2.458 2.869 3.279 3.688 4.098 4.506 4.918 5.317 5.737 6.149 6.558 6.964 7.378 7.787 8.197 8.606 9.016 9.246 9.835 10.245 10.654 11.064 11.476 11.886 12.295 12.705 13.115 13.524 13.934 14.344 14.753 15.163 15.573 15.982 16.394 16.892 17.211 17.621 18.031 18.442 18.852 19.261 19.670 20.081

Percentage of Butane by Volume100.00 98.44 96.88 95.32 93.75 92.20 90.62 89.08 87.51 85.95 84.38 82.82 81.25 79.70 78.18 76.58 75.00 73.44 71.86 70.30 68.79 67.20 65.63 64.09 62.52 60.96 59.38 57.87 56.25 54.69 53.17 51.60 50.00 48.50 46.92 45.35 43.75 42.22 40.60 39.09 37.50 35.92 34.38 32.80 31.25 29.75 28.20 26.55 25.00 23.50 21.88 20.38 18.75 17.25 15.63 14.13 12.50 11.00 9.38 7.75 6.25 4.75 3.13

Percentage of Air by Volume0.00 1.56 3.12 4.68 6.25 7.80 9.38 10.92 12.49 14.05 15.62 17.18 18.75 20.30 21.82 23.42 25.00 26.56 28.14 29.70 31.21 32.80 34.37 35.91 37.48 39.04 40.62 42.13 43.75 45.31 46.83 48.40 50.00 51.50 53.08 54.65 56.25 57.78 59.40 60.91 62.50 64.08 65.62 67.21 68.75 70.25 71.80 73.45 75.00 76.50 78.12 79.62 81.25 82.75 84.37 85.87 87.50 89.00 90.62 92.25 93.75 95.25 96.87

Percentage of Oxygen by Volume (Orsat)0.000 0.328 0.656 0.984 1.312 1.643 1.967 2.297 2.625 2.953 3.280 3.612 3.935 4.268 4.590 4.921 5.249 5.576 5.899 6.238 6.561 6.889 7.219 7.548 7.869 8.200 8.542 8.868 9.162 9.500 9.850 10.180 10.488 10.817 11.130 11.490 11.810 12.130 12.481 12.795 13.137 13.462 13.787 14.100 14.412 14.775 15.100 15.425 15.712 16.081 16.400 16.750 17.081 17.412 17.712 18.081 18.375 18.687 19.031 19.313 19.687 20.000 20.342

Specific Gravity of the Mixture1.950 1.935 1.920 1.905 1.891 1.875 1.861 1.846 1.831 1.817 1.802 1.786 1.771 1.755 1.744 1.728 1.712 1.698 1.683 1.668 1.653 1.638 1.623 1.608 1.593 1.579 1.564 1.550 1.535 1.520 1.505 1.490 1.475 1.461 1.446 1.431 1.416 1.401 1.386 1.371 1.356 1.340 1.326 1.312 1.296 1.282 1.266 1.252 1.237 1.223 1.206 1.194 1.178 1.163 1.148 1.135 1.120 1.105 1.089 1.074 1.059 1.045 1.029

24

CHAPTER 4 OILFUEL OIL SPECIFICATIONS PER ANSI/ASTM D 396-79ACarbon Residue Water on Flash Pour and 10% Point, Point, Sedi- Bot- Ash, C C ment, toms, weight (F) (F) vol % % % Min Max Max Max Max -18C (0) 0.05 0.15

Grade of Fuel Oil

Distillation Temperatures, C(F) 10% Point 90% Point Max Min Max 215 (420) 288 (550)

Saybolt Viscosity, sD

Kinematic Viscosity, cStD At 40C (104F) Min Max 1.3 2.1

Universal at Furol at 50C At 38C 38C(100F) 122F) (100F) Min Max Min Max Min Max 1.4 2.2

Specific CopGravity per 60/60F Strip SulAt 50C (deg Corro- fur, (122F) API) sion % Min Max Max Max Max 0.8499 No. 3 0.5 (35 min)

No. 1 38 A distillate oil (100) intended for vaporizing pottype burners and other burners requiring this grade of fuel No. 2 38

-6C

0.05

0.35

282C

338

(32.6) (37.9)

2.0C

3.6

1.9C

3.4

0.8762 No. 3 0.5B (30 min)

A distillate oil for(100) (20) general purpose heating for use in burners not requiring No. 1 fuel oil No. 4 55 -6C Preheating not(130) (20) usually required for handling or burning No. 5 (Light) 55 Preheating may(130) be required depending on climate and equipment No. 5 (Heavy) 55 Preheating may(130) be required for burning and, in cold climates, may be required for handling No. 6 60 Preheating (140) required for burning and handlingG

(540) (640)

0.50

0.10

(45)

(125)

5.8

26.4F

5.5

24.0F

1.00

0.10

(>125) (300)

>26.4 65F

>24.0

58F

1.00

0.10

(>300) (900) (23)

(40)

>65

194F

>58

168F

(42)

(81)

2.00E

(>900) (9000) (>45) (300)

>92 638F

A It is the intent of these classifications that failure to meet any requirement of a given grade does not automatically place an oil in the next lower grade unless in fact it meets all requirements of the lower grade. B In countries outside the United States other sulfur limits may apply. C Lower or higher pour points may be specified whenever required by conditions of storage or use. When pour point less than -18C (0F) is specified, the minimum viscosity for grade No. 2 shall be 1.7 cSt (31.5 SUS) and the minimum 90% point shall be waived. D Viscosity values in parentheses are for information only and not necessarily limiting. E The amount of water by distillation plus the sediment by extraction shall not exceed 2.00%. The amount of sediment by extraction shall not exceed 0.50%. A deduction in quanity shall be made for all water and sediment in excess of 1.0%. F Where low sulfur fuel oil is required, fuel oil failing in the viscosity range of a lower numbered grade down to and including No. 4 may be supplied by agreement between purchaser and supplier. The viscosity range of the initial shipment shall be identified and advance notice shall be required when changing from one viscosity range to another. This notice shall be in sufficient time to permit the user to make the necessary adjustments. G Where low sulfur fuel oil is required. Grade 6 fuel oil will be classified as low pour + 15C (60F) max or high pour (no max). Low pour fuel oil should be used unless all tanks and lines are heated.

COPYRIGHT ASTM REPRINTED WITH PERMISSION

25

TYPICAL PROPERTIES OF COMMERCIAL FUEL OILS IN THE U.S.Grade of Fuel Oil 1 2 4* 5 (Light)* 5 (Heavy)* 6 Grade of Fuel Oil 1 2 4* 5 (Light)* 5 (Heavy)* 6 Flash Point, F 106 to 174 120 to 250 150 to 276 154 to 250 136 to 300+ 140 to 250 Viscosity, SSU @ 100F 37 max. 42 max. 35 to 160 80 to 700 240 to 1300 240 to 6100 Pour Point, F -85 to -10 -60 to +35 -40 to +80 -15 to +55 -17 to +90 0 to +110 Specific Gravity 60/60F 0.79 to 0.85 0.80 to 0.92 0.85 to 0.99 0.89 to 1.01 0.91 to 1.02 0.92 to 1.09 Water, Vol. % 0.050 max. 0.060 max. 0.3 max. 0.08 to 0.6 0.4 max. 0.300 max. Gravity, API 47.9 to 34.8 45.3 to 21.9 34.6 to 12.1 28.2 to 8.5 23.4 to 7.5 22.0 to -1.5 Carbon Residue, Wt. % 0.200 max. 0.820 max. 0.19 to 7.6 2.10 to 13.6 1.55 to 9.6 1.02 to 15.80 Sulfur, Wt % 0 to 0.47 0.04 to 0.5 0.18 to 1.81 0.58 to 3.48 0.6 to 2.54 0.17 to 3.52 Ash, Wt. % 0.07 max. 0.001 to 0.08 0.001 to 0.16 0.001 to 0.630 Gross Heating Value, Btu/gallon 131,100 to 138,700 132,600 to 147,400 140,400 to 151,700 142,700 to 156,400 144,800 to 153,600 146,700 to 162,000

The above data are summarized from Heating Oils, 1984, published by the American Petroleum Institute and U.S. Dept. of Energy. The ranges in the tables represent the extreme maximums and minimums for the oil samples included in the survey. *1975-1976 data. No data available for these grades in 1983-1984. FUEL OIL VISCOSITY CONVERSIONS This chart converts four commonly-used fuel oil viscosity scales to a common base of centistokes ABBREVIATIONS: SSU = Saybolt Seconds Universal SSF = Saybolt Seconds Furol SRI = Seconds Redwood #1 E = Degrees Engler10,000 8 6 4 3

Kinematic Viscosity, SSU @ 100F, SSF @ 122F, SR1 @ 140F, or E

0

1000 8 6 4 3

10

@

SS

U

SR

1 SS F @ 12 26 8 1000 2

@ F E

2 100 8 6 4 3 2 10 8 6 4 3 2 1

14

F

0

2

F

1

2

3 4

6 8 10

2

3 4

6 8 100

2

3 4

3

Kinematic Viscosity, Centistokes (CS)

26

API VS. OIL SPECIFIC GRAVITY & GROSS HEATING VALUE1.1 -160

-155 1.0

-150

0.9

-145

-140 0.8 -135

- 130 0.7 0 10 20 30 40 50 60

API To determine specific gravity of an oil, find API at the bottom of the graph, read up to the curve, and left to the specific gravity. To find gross heating value of an oil, find API at the bottom of the graph, read up to the curve, and right to the heating value. For greater accuracy or for gravities not on this chart, use these equations: Specific gravity @ 60/60F = 141.5 API + 131.5 Gross Heating Value, Btu/lb = 17,887 + (57.5 x API) - (102.2 x %S) where %S is weight % sulfur in the oil. Gross Heating Value, Btu/gal = g.h.v., Btu/lb x 8.335 x specific gravity

OIL PIPING PRESSURE LOSSESThese charts show oil pressure drop per 100 equivalent feet of horizontal schedule 40 steel pipe. To determine total equivalent length, add equivalent lengths of fittings and valves (Page 16) to the actual linear feet of pipe. The charts for 1000 SSU and 10,000 SSU oils are accompanied by correction factors for oils of other viscosities. To find the pressure drop for an oil not on either of these charts, simply multiply the drop from the chart by the appropriate correction factor. If the entrance and exit ends of the oil line are at different elevations, the static head of the oil must be added to or subtracted from the calculated piping drop. Static head, psi = 0.433 x specific gravity of oil x elevation difference, ft.10 Pressure Drop, psi per 100 feet of equivalent pipe length 1/2"

35 SSU Distillate Oil3/4" 1"

5 1-1/4"

0

0

5

10 Oil Flow, gpm

15

Gr0ss Heating Value, Btu/Gallon x 100020

Specific Gravity @ 60F

27

OIL PIPING PRESSURE LOSSES (Contd)100 SSU Intermediate Oil10 Pressure Drop, psi per 100 feet of equivalent pipe length 1/2" 3/4" 1"

1-1/4" 5

1-1/2" 0

0

5

10 Oil Flow, gpm

15

20

1000 SSU Heavy Oil20 1" 1-1/4" 1-1/2"

Pressure Drop Correction Factors for Other Viscosities Viscosity, SSU 200 300 400 500 600 700 Correction Factor 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.2 1.5 2.0 2.5

Pressure Drop, psi per 100 feet of equivalent pipe length

15

10

2" 5 2-1/2"

800 900 1200 1500 2000 2500

0

0

5

10 Oil Flow, gpm

15

20

10,000 SSU Heavy Oil20 2" 2-1/2"

Pressure Drop Correction Factors for Other ViscositiesPressure Drop, psi per 100 feet of equivalent pipe length 15 3"

Viscosity, SSU 2000 3000 4000 5000 6000 7000

Correction Factor 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.2 1.5

10

5

4"

8000 9000 12000 15000

0

0

5

10 Oil Flow, gpm

15

20

28

OIL PIPING TEMPERATURE LOSSESThis table lists the temperature drop of 220F oil flowing through steel pipe insulated with 1" thick 85% magnesia pipe insulation. Ambient temperature is assumed to be 60F. For oil temperatures other than 220F, multiply the temperature loss by the appropriate correction factor.

OIL TEMPERATURE DROP IN F PER FOOT OF PIPEOil Flow GPH .5 1 2 3 4 5 10 15 20 30 40 60 80 100 200 300 1/4 10.92 5.46 2.73 1.82 1.365 1.09 .546 .364 .273 .182 .136 .091 .068 .055 .027 .018 3/8 12.18 6.09 3.04 2.03 1.52 1.218 .609 .405 .304 .203 .152 .101 .076 .061 .030 .020 1/2 13.68 6.84 3.42 2.28 1.71 1.368 .684 .455 .342 .228 .171 .114 .086 .068 .034 .023 3/4 15.48 7.74 3.87 2.58 1.933 1.548 .774 .515 .387 .258 .193 .129 .097 .077 .039 .026 Nominal Pipe Size 1 1-1/4 17.64 8.82 4.41 2.94 2.205 1.764 .882 .588 .441 .294 .220 .147 .110 .088 .044 .029 20.6 10.3 5.15 3.43 2.58 2.06 1.03 .686 .515 .343 .258 .172 .129 .103 .052 .034 1-1/2 22.50 11.25 5.63 3.75 2.82 2.25 1.125 .750 .563 .375 .282 .187 .141 .113 .056 .038 2 26.30 13.15 6.57 4.38 3.28 2.63 1.315 .876 .657 .438 .328 .219 .164 .132 .066 .044 2-1/2 3 30.00 34.8 15.00 17.4 7.50 8.70 5.00 5.75 3.75 4.35 3.00 3.48 1.50 1.74 1.00 1.16 .750 .870 .500 .575 .375 .435 .250 .290 .188 .218 .150 .174 .075 .087 .050 .058

OIL TEMPERATURE CORRECTION FACTORS Oil Temperature, F 130 140 150 160 170 180 Oil Factor Temperature, F Factor 0.44 190 0.81 0.5 200 0.88 0.56 210 0.94 0.63 230 1.06 0.69 240 1.13 0.75 250 1.19

Temperature losses from uninsulated pipe will vary with the pipe size. For 1/4" pipe, the losses are about 8 times the figures in the table. For 3" pipe, they are about 6 times the table values.

29

CHAPTER 5 STEAM & WATERBOILER TERMINOLOGY AND CONVERSION FACTORSBoiler horsepower One boiler horsepower = 33,479 Btu/hr heat to steam = 34.5 lb/hr of water evaporated from and at 212F = 9.8 Kilowatts Dry Steam Steam which contains no liquid water. Enthalpy Heat content, Btu/lb, of a liquid or vapor. Latent heat of vaporization The heat required to convert a material from its liquid to its vapor phase without raising its temperature. The latent heat of vaporization of water at 1 atmosphere pressure and 212F is 970.3 Btu/lb. Quality In a mixture of steam and water, the weight percentage which is present as steam; in other words, the percent of complete vaporization which has taken place. The quality of saturated steam is 100%. Saturated Steam Steam which is at the same temperature as the water from which it was evaporated. Wet Steam Steam which contains liquid water. Its quality is less than 100%.

PROPERTIES OF SATURATED STEAMVg, Specific hf, hfg, hg, Volume of Heat Content Latent Heat, Heat Content Vapor of Liquid, of Vaporization, of Vapor cu ft/lb Btu/lb Btu/lb Btu/lb 3304.7 -0.018 1075.5 1075.5 2445.8 8.03 1071.0 1079.0 1704.8 18.05 1065.3 1083.4 1207.6 28.06 1059.7 1087.7 868.4 38.05 1054.0 1092.1 633.3 48.04 1048.4 1096.4 468.1 58.02 1042.7 1100.8 350.4 68.00 1037.1 1105.1 265.4 77.98 1031.4 1109.3 203.3 87.97 1025.6 1113.6 157.3 97.96 1019.8 1117.8 123.0 107.95 1014.0 1122.0 97.07 117.95 1008.2 1126.1 77.29 127.96 1002.2 1130.2 62.06 137.97 996.2 1134.2 50.22 148.00 990.2 1138.2 40.96 158.04 984.1 1142.1 33.64 168.09 977.9 1146.0 26.80 180.17 970.3 1150.5 23.15 188.23 965.2 1153.4 16.32 208.45 952.1 1160.6 11.76 228.76 938.6 1167.4 8.64 294.17 924.6 1173.8 6.47 269.7 910.0 1179.7 4.91 290.4 894.8 1185.2 3.79 311.3 878.8 1190.1 2.96 332.3 862.1 1194.4 2.34 353.6 844.5 1198.0 1.86 375.1 825.9 1201.0 0.67 487.9 714.3 1202.2 0.27 617.1 550.6 1167.7 0.075 822.4 172.7 995.2 0.051 906.0 0 906.0

Temperature, Pressure, psi F Absolute Gauge 32 .089 40 .121 50 .178 60 .256 70 .363 80 .507 90 .698 100 .949 110 1.28 120 1.69 130 2.22 140 2.89 _ 150 3.72 160 4.74 170 5.99 180 7.51 190 9.34 200 11.53 212 14.696 0 220 17.19 2.49 240 24.97 10.27 260 35.43 20.73 280 49.20 34.50 300 67.01 52.31 320 89.64 74.94 340 117.99 103.29 360 153.01 138.31 380 195.73 181.03 400 247.26 232.56 500 680.86 666.16 600 1543.2 1528.5 700 3094.3 3079.6 705.47* 3208.2 3193.5 *Critical Temperature

30

BTU/HR REQUIRED TO GENERATE ONE BOILER H.P.50

1000's of Btu/hr Burner Input Required to Generate One Boiler Horsepower

45

40

35

70

75

80

85

90

% Boiler Efficiency

SIZING WATER PIPING10 8 6 4 3 6" 1/2" 3/4" 1" 1-1/4"1-1/2" 2" 2-1/2" 3" 4"

Pressuer Drop, psi per 100 ft of pipe

2

1 .8 .6 .4 .3 .2

8"

.1 .08 .06 .04 .03 .02

.01

1

2

3 4

6 8 10

20 30 40

60 80 100

200 300

500

1000

Water Flow, Gallons Per Minute

Pressure drops are for 60F water flowing in horizontal Schedule 40 steel pipe.

31

SIZING STEAM PIPINGPipe Size, Inches (Schedule 40) 3/4 1 1-1/4 1-1/2 2 2-1/2 3 4 6 8 Lb/hr steam for piping pressure drop of 1 psi/100ft Steam Pressure, psig 5 10 25 50 100 150 31 34 43 53 70 84 61 68 86 110 140 170 135 150 190 235 310 370 210 230 290 370 485 570 425 470 590 750 980 1,150 700 780 980 1,250 1,600 1,900 1,280 1,450 1,800 2,250 2,950 3,500 2,700 3,000 3,800 4,750 6,200 7,400 8,200 9,200 11,500 14,500 19,000 22,500 17,000 19,000 24,000 30,000 39,500 47,000 Lb/hr steam for piping drop of 5 psi/100 ft Steam Pressure, psig 10 25 50 100 150 73 93 120 155 185 145 185 235 315 375 320 410 520 690 820 500 640 810 1,050 1,300 1,000 1,300 1,650 2,150 2,600 1,650 2,150 2,700 3,600 4,250 3,050 3,900 4,300 6,600 7,800 6,500 8,200 10,500 14,000 16,500 19,500 25,000 31,500 42,000 50,000 41,000 52,000 66,000 88,000 105,000

These flows were calculated from Babcocks Equation, Pd D5 (1 + 3.6 ) L D where W = steam flow, lb/minute P = pressure drop, psi D = inside diameter of pipe, inches d = density of steam, lb/cu ft L = length of pipe run, feet

W = 87

32

CHAPTER 6 ELECRICAL DATAELECTRICAL FORMULASOhms Law Amperes = Volts/Ohms Ohms = Volts/Amperes Volts = Amperes x Ohms Motor Formulas Torque (lb-ft) = 5250 x Horsepower rpm D.C. Circuit Power Formulas

Watts Amperes

Watts = Volts x Amperes Amperes = Watts/Volts Synchronous rpm = Hertz x 120 Volts = Watts/Amperes Poles Horsepower = Volts x Amperes x Efficiency* 746 A.C. Circuit Power Formulas Single-Phase Three-Phase = Volts x Amps x Power Factor* = 1.73 x Volts x Amps x Power Factor* = WattsVolts x Power Factor* = kVA x 1000/Volts = Horsepower x 746 Volts x Efficiency* x Power Factor* = Watts/1.73 x Volts x Power Factor* = kVA x 1000/1.73 x Volts = Horsepower x 746 1.73 x Volts x Effic.* x Power Factor*

Kilowatts kVA Horsepower

= Amps x Volts x Power Factor* = 1.73 x Amps x Volts x Power Factor* 1000 1000 = Amps x Volts = 1.73 x Amps x Volts 1000 1000 = Volts x Amps x Effic.* x Pwr. Factor* = 1.73 x Volts x Amps x Effic.* x Pwr. Fact.* 746 746

*Expressed as a decimal

ELECTRICAL WIRE DIMENSIONS & RATINGS All data for solid copper wireA.W.G. Resistance, Maximum Allowable Wire Diameter, Ohms per 1000 Ft Current Capacity per Gauge Inches @ 77F NFPA 70-1984*, Amps 0 .3249 .100 125-170 1 .2893 .126 110-150 2 .2576 .159 95-130 3 .2294 .201 85-110 4 .2043 .253 70-95 6 .1620 .403 55-75 8 .1285 .641 40-55 10 .1019 1.02 30-40 12 .0808 1.62 20-30 14 .0641 2.58 15-25 16 .0508 4.09 18 18 .0403 6.51 14 *Maximum current capacity permitted by National Electrical Code, NFPA 70-1984, varies with type of insulation, ambient temperature, voltage carried, and other factors. Consult NFPA 70-1984 for specific information.

NEMA SIZE STARTERS FOR MOTORSStarter size for 460/3/60 Horsepower 115/1/60 230/1/60 230/3/60 380/3/60 575/3/60 Up to 1/3 1/2 to 1 1-1/2 2 3 5 7-1/2 10 15 20-25 30 40-50 60-75 100 125-150 200 00 0 1 1 2 3 3 00 00 1 1 2 2 2 3 00 00 00 0 0 1 1 2 2 3 3 4 5 5 6 6 00 00 00 0 0 0 1 1 2 2 3 3 4 5 5 6 00 00 00 00 0 0 1 1 2 2 3 3 4 4 5 5

All sizes listed apply only to magnetic starters with fusible alloy overload relays.

33

NEMA ENCLOSURESNEMA 1. General Purpose Indoor Sheet metal enclosures intended for indoor use. Primary purpose is to prevent accidental personnel contact with enclosed equipment, although they will also provide some protection against falling dirt. NEMA 2. Drip Proof Indoor Indoor enclosure that protects contents against falling noncorrosive liquids and dirt. Must be equipped with a drain. NEMA 3. Dust Tight, Raintight & Sleet-Resistant (IceResistant), NEMA 3R. Rainproof & Sleet-Resistant (Ice-Resistant). NEMA 3S. Dust Tight, Raintight & Sleet-Proof (Ice-Proof) Outdoor enclosures for protection against windblown dust, rain and sleet. All have provision for locking. NEMA 4. Water Tight & Dust Tight Indoor & Outdoor Protect contents against splashing, seeping, falling, or hosedirected water and severe external condensation. Commonly used in food-processing plants where equipment hosedown is required. NEMA 6. Submersible, Watertight, Dust Tight and Sleet (Ice)ResistantIndoor & Outdoor Capable of being submerged up to 30 minutes in up to 6 feet of water without harm to the contents. NEMA 7. Hazardous Locations Indoor Air Break Equipment Enclosures for use in atmospheres containing explosive gases and vapors as defined in Class 1, Division I, Groups A, B, C or D of the National Electrical Code. Enclosure must contain an internal explosion without causing an external hazard. Construction details vary with the nature of the explosive gas or vapor. NEMA 8. Hazardous Locations Indoor Oil-Immersed Equipment Enclosures for oil-immersed circuit breakers in Class I, Division I, Group A, B, C or D hazardous atmospheres. NEMA 9. Hazardous Locations Indoor Air-Break Equipment Used in Class II, Division I, Group E, F, or G hazardous locations as defined by the National Electrical Code. Enclosures are designed to exclude combustible or explosive dusts. NEMA 10. Mine Atmospheres For use in mines containing methane or natural gas. NEMA 11. Corrosion-Resistant and Drip Proof Indoor Indoor enclosures that protect contents from dripping, seepage and external condensation of corrosive liquids, as well as corrosive fumes. NEMA 12. Industrial Use Dust Tight & Drip Tight Indoor Protect enclosed equipment from lint, fibers, flyings, dust, dirt and light splashing, seepage, dripping and external condensation of noncorrosive liquids. NEMA 13. Oil Tight & Dust Tight Indoor Protect enclosed equipment from lint, dust and seepage, external condensation and spraying of water, oil, or coolant. They have oil-resistant gaskets and must have provision for oiltight conduit entry. For more complete details on application and construction specifications for NEMA Enclosures, refer to NEMA Standards Publication No. ICS 6.

ELECTRIC MOTORS FULL LOAD CURRENT, AMPERESSingle Phase AC Motors 115V 230V 4.4 5.8 7.2 9.8 13.8 16 20 24 34 56 80 100 2.2 2.9 3.6 4.9 6.9 8 10 12 17 28 40 50 Three-Phase AC Motors Induction Type Squirrel Cage & Wound-Rotor 115V 230V 460V 575V 4 5.6 7.2 10.4 13.6 2 2.8 3.6 5.2 6.8 9.6 15.2 22 28 42 54 68 80 104 130 154 192 248 312 360 480 1 1.4 1.8 2.6 3.4 4.8 .8 1.1 1.4 2.1 2.7 3.9

Horse Power 1/6 1/4 1/3 1/2 3/4 1 1-1/2 2 3 5 7-1/2 10 15 20 25 30 40 50 60 75 100 125 150 200

7.6 6.1 11 9 14 11 21 27 34 40 52 65 77 96 124 156 180 240 17 22 27 32 41 52 62 77 99 125 144 192

34

CHAPTER 7 PROCESS HEATINGHEAT BALANCESDETERMINIING THE HEAT NEEDS OF FURNACES AND OVENSAlthough rules of thumb are frequently used to size furnace and oven burners, they have to be used with care. All rules of thumb are based on certain assumptions about production rates, furnace dimensions, and insulation. If the system under consideration differs from these assumed conditions, using a rule of thumb can result in a significant error. Flue Gas Loss For out-of-the ordinary conditions, or where more accurate results are required, heat balance calculations are preferred. A heat balance consists of calculating load heat requirements and adding losses to them to determine the heat input. Below is a schematic representation of the heat balance in a fuel-fired heat processing device.

Wall Loss

Radiation Loss Gross Input (Purchased Fuel)

Available Heat Stored Heat

Net Output (Heat To Load)

Conveyor LossGeneral heat balance in a fuel-fired heat processing device.

The terms used in heat balance calculations, and their definitions, are: Gross heat input the total amount of heat used by the furnace. It equals the amount of fuel burned multiplied by its heating value. Available heat heat that is available to the furnace and its workload. It equals gross input minus flue gas losses. Flue gas losse