26
Energy Use of Subway Networks in the Sustainability era 1 Sybil Derrible, Ph.D. Candidate, [email protected] Department of Civil Engineering, University of Toronto CORS-INFORMS International Conference – Toronto, ON June 15, 2009

Energy Use of Subway Networks in the Sustainability era 1 Sybil Derrible, Ph.D. Candidate, [email protected]@utoronto.ca Department

Embed Size (px)

Citation preview

Energy Use of Subway Networks in the Sustainability era

1

Sybil Derrible, Ph.D. Candidate, [email protected] of Civil Engineering, University of Toronto

CORS-INFORMS International Conference – Toronto, ON June 15, 2009

2

Rationale

Current Work: Networks Effects – Coverage, Directness, Connectivity

y = 59.613Ln(x) + 258.27

R2 = 0.4672

0.00

50.00

100.00

150.00

200.00

250.00

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000

Coverage Area / Total Area

Bo

ard

ing

s p

er c

apit

a

3

Rationale

Networks Effects - Applied

Getting to Carbon Neutral:

- Best Practices

- Rules of thumb

TTC Network in 25 years?

4

Context

- In the battle towards reducing GHG emissions, cities are of paramount importance (Copenhagen climate conference, December 2009)

- Transportation is one of the core issues

- Due to their environmental benefits, public transit systems are likely to grow

- It is clear that public transit is most often more environmentally sustainable than private automobiles, but:

What is the impact of network growth on energy use of

subway networks?

5

Framework

What does energy use mean?

- A larger network will emit more because it carries more riders, is it more sustainable or less?

- If we account for passengers: should we use energy per ride (boarding) or per passenger kilometres travelled (PKT)?

- Note: talk about energy use, not emissions of tCO2e because the energy grid is not known, and does not add information about the sustainability of subway networks

→ prefer to use energy use per ride (total boardings or boardings per capita)

Energy-use per PKT (MJ/PKT) Streetcar LRT Subway Commuter Rail Toronto 0.31 0.69 0.96 Montreal 0.41 2.25 Ottawa Calgary 0.25 Vancouver 0.38 0.73 European Avg 0.58 0.69 0.48 0.87 North-American Avg 0.65 0.60 0.60 1.37

6

Framework

What directly influences energy use?

- Size of the network (route length)

Tokyo (292km) vs. Toronto (69km)

- Number of operating subway/metro units (wagons)

London (3900) vs. Athens (216)

- Vehicle Technology

7

Framework

How to use network characteristics- Absolute Values (as collected)

- Relative Values (route length by population, metro units by population)

→ prefer absolute although consider differences during the analysis

PKT per track-km Streetcar LRT Subway Commuter Rail Toronto 13,309,671 15,364,738 1,969,227 Montreal 42,702,148 966,966 Ottawa 3,369,765 Calgary 10,007,934 Vancouver 19,130,976 800,175 European Avg 3,383,406 26,339,997 5,875,131 North-American Avg 7,935,681 16,166,881 1,817,752

City Route length (km) Metro UnitsToronto 68.747 641.98Montreal 60.858 758.99….. ….. …..

Subway

8

Dataset and Sources

Dataset:

- Originally planned to study 19 subway networks in the workd

- Narrowed down to 15 cities due to data availability

Sources:

- Route length: from each individual transit authorities (2008 data)

- Energy Use and Metro Units: Millennium Cities Database (1995 data)

Note: consider systems that have undergone few changes only

9

Results - partial

CityBoardings (million)

Route length (km)

Metro Units

Total Energy Use in TJ

Energy per unit (MJ/km)

Toronto 265.3 68.747 641.98 893.43 13.22

Montreal 278.2 60.858 758.99 573.90 9.57

Chicago 186.8 173.075 1133.99 1102.99 15.13

Washington DC 259.4 171.143 763.98 1246.98 18.63

San Francisco 99.3 182.252 610.99 773.54 10.96

Mexico City 1417 177.1 2540.95 3009.24 9.69

London 1078 438.725 3901.06 2212.03 6.32

Paris 1860.9 256.8 3419.90 1705.23 9.11

Lyon 96.5 29.3 184.00 117.02 9.43

Berlin 475 216.967 1513.99 995.07 7.65

Athens 92 52.003 216.00 103.97 6.93

Stockholm 297 109.48 873.01 843.27 10.10

Tokyo 2974 292.376 3241.06 2529.49 7.94

Osaka 912 125.419 1414.96 1179.41 9.64

Seoul 2264 287 2119.97 2397.30 10.22

10

Vehicle Technology

13.22

15.13

18.63

10.96

6.32

9.119.43

7.656.93

7.94

10.22

9.57 9.69

10.1

9.64

0

2

4

6

8

10

12

14

16

18

20

En

erg

y u

se

pe

r w

ag

on

km

Average = 10.30

Should we take it in account?

We will see that network characteristics are more relevant

11

Boardings and Network Characteristics

0.00

50.00

100.00

150.00

200.00

250.00

0 50 100 150 200 250 300 350 400 450 500

Route Length (km)

Bo

ard

ing

s p

er c

apit

a

Impact of Route Length

12

Boardings and Network Characteristics

y = 124.28e0.0074x

R2 = 0.4759

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450 500

Route Length (km)

To

tal B

oar

din

gs

(mill

ion

)

Impact of Route Length

13

Boardings and Network Characteristics

Impact of Number of Metro Units

0.00

50.00

100.00

150.00

200.00

250.00

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00

Metro Units (wagon)

Bo

ard

ing

s p

er c

apit

a

14

Boardings and Network Characteristics

Impact of Number of Metro Units

y = 0.149x1.1455

R2 = 0.8098

0

500

1000

1500

2000

2500

3000

3500

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00

Number of Metro Units (wagons)

To

tal B

oar

din

gs

(mill

ion

)

15

Network Characteristics

Route Length vs. Number of Metro Units

Seoul

Osaka

Tokyo

Stockholm

Athens

Berlin

Lyon

Paris

London

Mexico City

San Francisco

Washington DC

Chicago

Montreal

Toronto

y = 9.5091x - 118.73

R2 = 0.7602

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

0 50 100 150 200 250 300 350 400 450 500

Route length (km)

Nu

mb

er o

f m

etro

un

its

(wag

on

)

Seoul

Osaka

Tokyo

Stockholm

Athens

Berlin

Lyon

Paris

London

Mexico City

San Francisco

Washington DC

Chicago

Montreal

Toronto

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

0 50 100 150 200 250 300 350 400 450 500

Route Length (km)

To

tal E

ner

gy

Use

(T

J)

16

Energy Use and Network Characteristics

Energy and Route Length

Seoul

Osaka

Tokyo

Stockholm

Athens

Berlin

Lyon

Paris

London

Mexico City

San Francisco

Washington DC

Chicago

Montreal

Toronto

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00

Metro Units (wagons)

To

tal E

ner

gy

Use

(T

J)

17

Energy Use and Network Characteristics

Energy and Number of Metro Units

Seoul

Osaka

Tokyo

Stockholm

Athens

Berlin

Lyon

Paris

London

Mexico City

San Francisco

Washington DC

Chicago

Montreal

Toronto

0

500

1000

1500

2000

2500

3000

3500

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00

Total Energy Use in TJ

To

tal B

oar

din

gs

(mill

ion

)

18

Energy Use and Boardings

Energy and Boardings

Is there a Relationship?

19

Energy Use and Boardings

3.37

2.06

5.90

4.81

7.79

2.12 2.05

0.921.21

2.09

1.13

2.84

0.85

1.291.06

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Toron

to

Mon

treal

Chica

go

Wash

ingt

on D

C

San F

ranc

isco

Mex

ico C

ity

Lond

onPar

isLy

onBer

lin

Athen

s

Stock

holm

Tokyo

Osa

ka

Seoul

En

erg

y U

se p

er r

ide

(MJ)

3.37

2.06

5.90

4.81

7.79

2.12 2.05

0.921.21

2.09

1.13

2.84

0.85

1.291.06

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Toron

to

Mon

treal

Chica

go

Wash

ingt

on D

C

San F

ranc

isco

Mex

ico C

ity

Lond

onPar

isLy

onBer

lin

Athen

s

Stock

holm

Tokyo

Osa

ka

Seoul

En

erg

y U

se p

er r

ide

(MJ)

20

Energy Use and Boardings

Perhaps the San Francisco BART is too long or network design could be optimized

3.37

2.06

5.90

4.81

7.79

2.12 2.05

0.921.21

2.09

1.13

2.84

0.85

1.291.06

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Toron

to

Mon

treal

Chica

go

Wash

ingt

on D

C

San F

ranc

isco

Mex

ico C

ity

Lond

onPar

isLy

onBer

lin

Athen

s

Stock

holm

Tokyo

Osa

ka

Seoul

En

erg

y U

se p

er r

ide

(MJ)

21

Energy Use and Boardings

Perhaps Chicago is too “long”, similar to San Francisco

But still, it is has long as Mexico city, are there any other reasons

3.37

2.06

5.90

4.81

7.79

2.12 2.05

0.921.21

2.09

1.13

2.84

0.85

1.291.06

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Toron

to

Mon

treal

Chica

go

Wash

ingt

on D

C

San F

ranc

isco

Mex

ico C

ity

Lond

onPar

isLy

onBer

lin

Athen

s

Stock

holm

Tokyo

Osa

ka

Seoul

En

erg

y U

se p

er r

ide

(MJ)

22

Energy Use and Boardings

Are these networks “under-utilized”?

(Characterized as Regional Coverage and Directness)

What about Network Design?

3.37

2.06

5.90

4.81

7.79

2.12 2.05

0.921.21

2.09

1.13

2.84

0.85

1.291.06

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Toron

to

Mon

treal

Chica

go

Wash

ingt

on D

C

San F

ranc

isco

Mex

ico C

ity

Lond

onPar

isLy

onBer

lin

Athen

s

Stock

holm

Tokyo

Osa

ka

Seoul

En

erg

y U

se p

er r

ide

(MJ)

23

Energy Use and Boardings

Could these networks be “over-utilized”?

The smallest systems (Athens and Lyon are along with the largest (Tokyo, Paris).

What about their design?

3.37

2.06

5.90

4.81

7.79

2.12 2.05

0.921.21

2.09

1.13

2.84

0.85

1.291.06

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Toron

to

Mon

treal

Chica

go

Wash

ingt

on D

C

San F

ranc

isco

Mex

ico C

ity

Lond

onPar

isLy

onBer

lin

Athen

s

Stock

holm

Tokyo

Osa

ka

Seoul

En

erg

y U

se p

er r

ide

(MJ)

24

Energy Use and Boardings

What about these networks?

25

Conclusion

- We looked at 15 subway networks in the world to investigate the impact of network size on energy use

- Evidently, Total Energy Use of Subway systems is highly correlated with network size

- However Energy Use per Ride seems to be relatively independent of network size

- Emphasis is put on NETWORK DESIGN since it is correlated with Ridership

- New projects should therefore focus on network design in order to favour ridership, which will in turn minimize energy use per ride

Questions

26

Questions?

Sybil Derrible

[email protected]

Thank You