20
9/19/2012 1 Energy Link Integration of Alternative Energy Systems to the Power Grid Prof. Osama Mohammed b Lecture given by Ahmed Mohamed Energy Systems Research Laboratory, FIU Lectures 8&9 For EEL6273: Computer Modeling of Power Systems Friday Sept 21, 2012, 5:007:15 PM (with no break) See References Handout Presentation Objectives Part I is to give a general introduction and Part I is to give a general introduction and knowledge about the topic. Part II is to help the audience learn about issues being considered by researchers all around the Energy Systems Research Laboratory, FIU globe, and do brainstorming about possible future researches.

Energy Systems Research Laboratory, FIU

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Energy Systems Research Laboratory, FIU

9/19/2012

1

EnergyLinkIntegrationofAlternativeEnergySystemstothePowerGrid

Prof.OsamaMohammedbLecturegivenby

AhmedMohamed

Energy Systems Research Laboratory, FIU

Lectures8&9ForEEL‐6273:ComputerModelingofPowerSystems

FridaySept21,2012,5:00‐7:15PM(withnobreak)SeeReferencesHandout

PresentationObjectives

Part I is to give a general introduction andPartIistogiveageneralintroductionandknowledgeaboutthetopic.

PartIIistohelptheaudiencelearnaboutissuesbeingconsideredbyresearchersallaroundthe

Energy Systems Research Laboratory, FIU

globe,anddobrainstormingaboutpossiblefutureresearches.

Page 2: Energy Systems Research Laboratory, FIU

9/19/2012

2

PARTI:Introduction,DistributedGeneration,Microgrids,ArchitecturesandControl.

Energy Systems Research Laboratory, FIU

Alternative sources of energy

Fossil fuel based Renewable based

Alternative Energy Sources

Fossil fuel-based Renewable-based Diesel Gas hydrogen from reforming

hydrocarbons

Solar Wind Hydro Tidal geothermal energy hydrogen produced

f bl

Energy Systems Research Laboratory, FIU

Note: For an energy source to be considered renewable, the recovery cycle of the source must be considered. For example, a sugarcane plantation used for the production of alcohol has a recovery cycle of one year. In comparison, fossil fuels can take millions of years to recover.

from renewable sources

Page 3: Energy Systems Research Laboratory, FIU

9/19/2012

3

DistributedGenerationDefinition Distributedgeneration(DG)istheapplicationofsmallgeneratorsfrom10to10,000

kWscatteredthroughoutapowersystemandeitherinteractingwiththegridorprovidingpowertoisolatedsites.

Dispersedgenerationissometimesusedasaninterchangeableterm,butitshouldbeused for very small generation units in the range 1 to 100kW sized to serveusedforverysmallgenerationunits,intherange1to100kW,sizedtoserveindividualhouseholdsorsmallbusinesses.

HouseholdandruralusersareconcernedwiththedeploymentofDGbecauseoftheoverwhelminginvestmentsrequiredtoconnecttoadistantgrid.

Fortheseusers,DGismoreeconomicalthanthecentralstationsystemplusassociatedtransmissionanddistributionexpansion.

Because of cost and reliability industrial and commercial institutions may decide to

Energy Systems Research Laboratory, FIU

Becauseofcostandreliability,industrialandcommercialinstitutionsmaydecidetoinstallDGasamatchwiththeelectricutilitysystem.

Thiscanhappenwhentheparticularapplicationisofveryhighreliabilityandhighcostorverylowreliabilityandlowcost.

Thebenefits ofDGinclude:Modularity,efficiency,lowornoemissions,securityandloadmanagement.

DistributedGenerationImplementation Themovetowardon‐sitedistributedpowergenerationhasbeenaccelerated

becauseofderegulationandrestructuringoftheutilityindustryandthefeasibilityofalternativeenergysources.

DGtechnologiescanimprovepowerquality,boostsystemreliability,reduceenergycosts, and defray utility capital investment.costs,anddefrayutilitycapitalinvestment.

Fourmajorissues aretypicallyrelatedtoDG:

hardwareandcontrol

effectonthegrid

interconnectionstandards

economicevaluation

Theintegrationofrenewablesourcesofenergyposesachallenge becausetheiroutput is intermittent and variable and must be stored for use when there is

Energy Systems Research Laboratory, FIU

outputisintermittentandvariable andmustbestoredforusewhenthereisdemand.

Ifonlyonerenewableenergysourceisconsidered,theelectricpowersystemissimple.Thesourcecanbeconnectedtoastoragesystemtodeliverelectricityforstand‐aloneuseorinterconnectedwiththegrid.However,ifmultiplerenewableenergysourcesareused,theelectricpowersystemcanberathercomplex,andamicrogridwillbeformed.

Page 4: Energy Systems Research Laboratory, FIU

9/19/2012

4

DistributedGenerationEconomics TheoverallU.S.electricitysystemisonlyabout30%efficient[i.e.,thereisanaverage

inputoffourunitsofenergy(coal,nuclear,naturalgas,oroil)todeliveroneunitofelectricity].

DGhasthepotentialofbeinglesscostly,moreefficient,andmorereliable.Mostexistingpowerplants,centralordistributed,deliverelectricitytousersitesatanoverallfuel‐to‐electricityefficiencyintherange28to32%.Thisrepresentsalossofaround70%oftheprimaryenergyprovidedtothegenerator.

Toreduceenergyloss,itisnecessarytoincreasethefuel‐to‐electricityefficiencyofthegenerationplantortousethewasteheat.TheuseofwasteheatinDGclose totheuserincreasesfurthertheoverallefficiencyforspaceheatingorindustrialprocesses.

Theabilitytoavoidtransmissionlossesandmakeeffectiveuseofwasteheatmakeson‐sitecogenerationorcombinedheatandpower(CHP)systems70to80%efficient.

Industrial,commercial,andresidentialDGsystemscanbetailoredforefficiencyi t b i f l h t h b ti hill d i t

Energy Systems Research Laboratory, FIU

improvementbyusing,forexample,heatexchangers,absorptionchillers,ordesiccantdehumidificationtoreachoverallfuel‐to‐usefulenergyefficienciesofmorethan80%.

Forexample,Capstonemanufacturesa60‐kWmicroturbine thatuseswasteheattoheatwater.Thissystemhasanenergyefficiencyoffueltousefulenergythatapproaches90%.

Theuseofwasteheatthroughcogenerationorcombinedcooling,heating,andpowerimpliesanintegratedenergysystemthatdeliversbothelectricityandusefulheatfromanenergysource.

Microgrid

• Amicrogrid canbedefinedasaclusterofloadsandDGunitsthatoperatesoastoimprovethereliabilityandqualityofthepowersysteminacontrolledmanner.

• Forconsumers,microgrids canprovidepowerandheatinareliable way.

• Forthedistributionnetwork,microgrids aredispatchablecellsthatcanrespondautonomouslyorfromsignalsfromthepowersystemoperator.

Energy Systems Research Laboratory, FIU

• Informationtechnologyachievements,alongwithnewDGsystemswithintelligentcontrollers,willallowsystemoperatorsandmicrogrid operatorstointeractinanoptimalmanner.

Page 5: Energy Systems Research Laboratory, FIU

9/19/2012

5

YourTurn!

ShareyourknowledgeaboutDGs and Microgridswith the rest of the class

Energy Systems Research Laboratory, FIU

DGsandMicrogridswiththerestoftheclassin3minutes!

PRINCIPLESOFPOWERGENERATIONFORINJECTIONINTOTHEGRID

• Whenapplyingelectricalenergyconversiontechnologytorenewableenergysystems,twoclassesofelectricalsystemsmustbeconsidered:stationaryandrotatory.

• Thestationarytypeusuallyprovidesdirectcurrent.Photovoltaicarraysandfuelcellsarethemainrenewableenergysourcesinthisgroup.

• Therotatorytypeusuallyprovidesalternatingcurrent.Induction,synchronous,andpermanent‐magnetgeneratorsarethemaindriversforhydropower,wind,and

Energy Systems Research Laboratory, FIU

g y p , ,gasturbineenergysources.

• Dcmachinesaretherotatorytypebutarenotusuallyemployedbecauseoftheirhighcost,bulkysize,andmaintenanceneeds.

Page 6: Energy Systems Research Laboratory, FIU

9/19/2012

6

PowerConversionTechnologies

• Powerelectronicsistheenablingtechnologythatallowstheconversionofenergyandinjectionofpowerfromrenewableenergysourcestothegrid.

• Ifonlyphotovoltaicandfuelcellsystemsareused,adc‐linkbusmightbeusedtoaggregatethem.Acpowercanbeintegratedthroughdc–acconversion

Energy Systems Research Laboratory, FIU

• Ifonlyhydroorwindpowerisused,avariable‐frequencyacvoltagecontrolmustbeaggregatedintoanaclinkthroughanac–acconversionsystem.

(inverter)systems.

FossilFuel‐BasedEnergyIntegration

• Alternativeenergysourcessuchasdieselandgascanalsobeintegratedwithrenewables.

• They have a consistent and constant fuel supply and the• Theyhaveaconsistentandconstantfuelsupply,andthedecisiontoscheduletheiroperationisbasedmoreonstraightforwardeconomicreasonsthananyothers.

• Dieselgenerators,whicharecommerciallyavailablewithsynchronousgeneratorsthatsupply60Hz,anddirectinterconnectionwiththegrid,aretypicallyeasiertoimplement.

G i t bi t f tl i l t d ith

Energy Systems Research Laboratory, FIU

• Gasmicroturbines aremostfrequentlyimplementedwithapowerelectronicinverter–basedtechnology.

• Whenintegratingandmixingallthosesources,amicrogridhastobebasedonadc,aclinkorahigh‐frequencyaclink(HFAC).

Page 7: Energy Systems Research Laboratory, FIU

9/19/2012

7

PowerFlowDirections• Thestationarygroupofrenewableenergysourcesdoesnotabsorb

power;theenergyflowsuniquelyoutwardtotheload.• Ontheotherhand,therotatorygroupofrenewableenergysources

requirebidirectionalpowerflow,eithertorotateinmotoringmode(fori b ki t t ) t b b ti (fpumping,braking,orstartup)ortoabsorbreactivepower(for

inductiongeneratorsandtransformers).• Thestoragesystemscanalsobestationary(e.g.,batteries,super‐

capacitors,andmagneticcoils)orrotatory(generators,flywheels,andpumpinghydro).Therefore,ageneralizedconceptofpowerelectronicsisbroadlyneededforrenewableenergysystemstoembracesuchcategories.

• Static systems appear as a dc input converted to a dc or ac output and

Energy Systems Research Laboratory, FIU

• Staticsystemsappearasadcinputconvertedtoadcoracoutputandunidirectionalpowerflow(nomovingparts,lowtimeconstant,silent,novibrations,minimallypolluting,andlowpoweruptonow).

• Therotatingsystemsappearasanacinputconvertedtoadcoracoutputandbidirectionalpowerflow(angularspeed,noise,mechanicalinertia,weightandvolume,andinrush).

ACandDCConversionNeeds

• Storagesystemsarenecessarilybidirectionalsystemswithrequirements of ac and dcrequirementsofacanddcconversion(dependingontheapplication).Thevoltagegeneratedbyvariable‐speedwindpowergenerators,PVgenerators,andfuelcellscannotbedirectlyconnectedwiththegrid.

Energy Systems Research Laboratory, FIU

• Therefore,powerelectronicstechnologyplaysavitalroleinmatchingthecharacteristicsofthedispersedgenerationunitsandtherequirementsofgridconnection,includingfrequency,voltage,activeandreactivepowercontrols,andharmonicminimization.

Page 8: Energy Systems Research Laboratory, FIU

9/19/2012

8

PowerConvertersforPowerInjectionintotheGrid• Apowerelectronicconverterusesamatrixofpowersemiconductorswitchestoenableittoconvertsourcesofstationaryelectricpowerintorotatingelectricalpower,andviceversa,athighefficiency.

• Avoltagesourceisdriventomaintainaprescribedvoltageacrossitsterminals,irrespectiveofthemagnitudeorpolarityofthecurrentflowingthroughthesource.Theprescribedvoltagemaybeconstantdc,sinusoidalac,orapulsetrain.

• Acurrentsourcemaintainsaprescribedcurrentflowingthroughitsterminals,irrespectiveofthemagnitudeorpolarityofthevoltageappliedacrosstheseterminals.Again,theprescribedcurrentmaybeconstantdc,sinusoidalac,orapulsetrain.Currentsourceinverters(CSIs)haveseveraladvantagesovervariable‐voltageinvertersbecausetheycanoperateunderawideinputvoltagerangeandaboostconverterstagemaynotberequired.

• Theyprovideprotectionagainstshortcircuitsintheoutputstageandcaneasilyhandletemporaryoverratingsituationssuchaswindgustsorfaultyturbines.Inaddition,CSIshaverelativelysimplecontrolcircuitsandgoodefficiency.

• As disadvantages CSIs produce torque pulsations at low speed cannot handle undersized

Energy Systems Research Laboratory, FIU

• Asdisadvantages,CSIsproducetorquepulsationsatlowspeed,cannothandleundersizedmotors,andarelargeandheavy.Thephase‐controlledbridgerectifierCSIislessnoisythanitschopper‐controlledcounterpart,lossesaresmaller,anditdoesnotneedhigh‐speedswitchingdevices,butitcannotoperateefficientlyfromdirectdcvoltage.Thechopper‐controlledCSIcanoperatefrombatteriesandproducesmorenoiseasaresultofitsneedforhighspeedswitchingdevices.Withtheadventoffast,high‐powercontrolleddevices,VSinvertershavebecomepopular,butmuchR&Disneededbeforetheyareappliedtoveryhighpowersystems.

Z‐sourceconvertersystem

• Theimpedance‐source(Z‐source)powerconverter,isdesignedtoovercomethecharacteristicsassociatedwiththeconventionalV‐sourceandI‐sourceconverters.AZ‐sourceinvertercanproduceanydesiredvoltageregardlessofitsinputvoltage,whichgreatlyreducessystemcomplexity,cost,size,andpowerloss.

• AuniqueLCnetworkinthedclink,makingitpossibleforbuckandboostoperation.

Energy Systems Research Laboratory, FIU

Eventhoughsuchtopologyhasgainedattentioninthepastfewyears(withsomeinterestingfeaturessuchasapplicationtoalmostalltheconversioncircuits:dc‐to‐acinversion,ac‐to‐acconversion,anddc‐to‐dcconversion).

• AZ‐sourceconverterhasmorepassivecomponentsinthelink,andaneconomicalbreakthroughanalysismustbecarriedoutforhigh‐powerapplications.

Page 9: Energy Systems Research Laboratory, FIU

9/19/2012

9

YourTurnAgain!

ShareyourknowledgeaboutPower Electronic Converter Applicationswith

Energy Systems Research Laboratory, FIU

PowerElectronicConverterApplicationswiththerestoftheclassin3minutes!

PowerFlow• Decouplingactiveandreactivepowerflowisacommonpracticeinloadflow

studies.Thevariationofactivepowerisstronglycoupledwithpowerangleandfrequencyvariation,whereasreactivepowerisstronglycoupledwithvoltageamplitude.

• ThesetwoequationsshowthatforagivengridvoltageVs andinductanceLs,therealpowerisPs andthatthereactivepowerQs canberegulatedbythemagnitudeof V and power angle δ

Energy Systems Research Laboratory, FIU

ofVi andpowerangleδ.• ThereferenceforrealpowerP* andreactivepowerQ* canbeobtainedbysetting

thefollowingreferencepowerangledandinverteracterminalvoltageVi*

Page 10: Energy Systems Research Laboratory, FIU

9/19/2012

10

INTEGRATIONOFMULTIPLERENEWABLEENERGYSOURCES

• The figure shows multiple renewable energy sources forming a microgrid,

Energy Systems Research Laboratory, FIU

TypesofEnergyLinkIntegration—DCLink

Advantages:

1.Synchronismisnotrequired.2.Therearelowerdistributionandtransmissionlossesthanwithac‐link.3.Ithashighreliabilitybecauseofparallelsources.4.Althoughtheterminalneedsofadclinkaremorecomplex,thedctransmissioninfrastructureperkilometerissimplerandcheaperthaninaclinks.5.Long‐distancetransmission(forhigh‐voltagelinks)ispossible,whichenablesintegrationofoffshorewindturbinesandother energies with inland networks

Disadvantages:

1.Theneedforcarefulcompatibilityofvoltagelevelstoavoidcurrentrecirculationbetweentheinputsources.2.Theneedforrobustforcedcommutationcapabilitiesincircuitsathighpowerlevels.3 C i ith th l t d

Energy Systems Research Laboratory, FIU

otherenergieswithinlandnetworks.6.Theconvertersrequiredareeasilyavailable.7.Single‐wiredconnectionsallowbalancedterminalacsystems.

3.Corrosionconcernswiththeelectrodes.4.Alargenumberofcomponentsandcontrols.5.Morecomplexgalvanicisolation.6.Highercostsofterminalequipment.7.Difficultieswithmultiterminalormulti‐voltage‐leveloperationfortransmissionanddistribution.

Page 11: Energy Systems Research Laboratory, FIU

9/19/2012

11

ACLink Integration

Advantages:

1.Utilityregulationandmaintenanceoftheoperationalvoltage,whichmakesiteasiertoinjectpowerintothegrid.2.Thepossibility,insomecases,ofeliminatingtheelectronicconverters(e.g.,byusingsynchronousgeneratorsorinductiongeneratorsthatestablishtheirownoperatingpoint).3.Easymulti‐voltageandmulti‐terminalmatching.4.Easygalvanicisolation.5.Well‐establishedscaleeconomyforconsumers and existing utilities

Disadvantages:

1.Theneedforrigoroussynchronism,voltage‐levelmatching,andcorrectphasesequencebetweensourcesduringinterconnectionaswellasduringoperation.2.Leakageinductancesandcapacitancesinaddition to the skin and proximity effects that

Energy Systems Research Laboratory, FIU

consumersandexistingutilities. additiontotheskinandproximityeffectsthatcauselossesinlongdistributions.3.Electromagneticcompatibilityconcerns.4.Thepossibilityofcurrentrecirculationbetweensources.5.Theneedforpowerfactorandharmonicdistortioncorrection.6.Reducedlimitsfortransmissionanddistribution.

HFACLink IntegrationAdvantages:

1.Theharmonicsareofhigherordersandareeasilyfilteredout.2.Fluorescentlightingwillexperienceimprovementbecause,withhigherfrequency,theluminousefficiencyisimproved,flickerisreduced,anddimmingisaccomplisheddirectly.Theballastinductanceisreduced

i ll h f i h diproportionallytothefrequency,withacorrespondingreductioninsizeandweight.3.High‐frequencyinductionmotorscanbeusedforcompressors,high‐pressurepumps,high‐speedapplications,andturbines.Acfrequencychangersbasedonmatrixconverterscanbeusedtosoftstarthigh‐frequencyinductionmotors.Asafeoperatingareaisnotarestrictionforsoftswitching,andthereforemodernpowerelectronicdeviceswillbeadvantageous.4.Harmonicripplecurrentinelectricmachineswill

Disadvantages:

1.Thehighcostoftransformers.2.Thelargenumberofdevices(becauseoftheuseofbipolaracswitches).3.Verycomplexcontrol.4. The dependence on future advances of power

Energy Systems Research Laboratory, FIU

decrease,improvingefficiency.5.High‐frequencypowertransformers,harmonicfiltersforbatteries,andotherpassivecircuitcomponentsbecomesmaller.6.Auxiliarypowersupplyunitsareeasilyavailablebytappingtheaclink.Theywouldbesmallerwithhigherefficiencies.7.Batterieshavebeenthetraditionalenergystoragesource,butinHFACmicrogrids,dynamicstorageisanalternative.

4.Thedependenceonfutureadvancesofpowerelectroniccomponents.5.Concernsaboutelectromagneticcompatibility.6.Extremelyreducedlimitsandtechnologicalproblemsfortransmissionanddistributionathighfrequencies.

Page 12: Energy Systems Research Laboratory, FIU

9/19/2012

12

MicrogridArchitecture

• Inmicrogrids,thereisasinglepointofconnectiontotheutilitycalledthepointofcommoncoupling.p g

• Somefeederscanhavesensitiveloadsthatrequirelocalgeneration.Intentionalislandingfromthegridisprovidedbystaticswitchesthatcanseparatetheminlessthanacycle.

• Whenthemicrogridisconnected,powerfromlocalgenerationcanbedirectedtothe feeder with noncritical loads or be sold to the utility if agreed or allowed by net

Energy Systems Research Laboratory, FIU

thefeederwithnoncriticalloadsorbesoldtotheutilityifagreedorallowedbynetmetering.Inadditiontoallowingbetterefficiency,wasterecovery,andtailoredreliability,amicrogridisdesignedfortherequirementsofendusers,astarkdifferencefromthecentralgenerationparadigm.

• Keytothischaracteristicistherelianceontheflexibilityofadvancedpowerelectronicsthatcontroltheinterfacebetweendistributedresourcesandtheirsurroundingacsystem.

HierarchicalcontrolofDGsystems• Inadditiontothepowerelectronicscontrol,amicrogrid

requiresoperationalcontroltoensureeconomiccommitmentanddispatchwithinenvironmentalandotherconstraints.

• InaDGpowersystem,thereareneedsofcoordinationofcontrollayers.

• Ahierarchicalsystemconsistsofseveraldecision‐makingcomponentsandhasanoverallgoal,whichisdistributedamongitsindividualcomponents.

• Thelevelsofthehierarchyexchangeinformation(usuallyvertically)amongthemselvesinaniterativemode,andasthelevelincreases,thetimehorizonincreases(i.e.,lower‐levelcomponentsormodulesareusuallyfasterthantheir

Hierarchicalconfiguration

Energy Systems Research Laboratory, FIU

higher‐levelcounterparts).

• Inamultilayerhierarchicalstructure,thefirstlayeractsastheregulationordirectcontrollayer.Itisfollowedbyoptimization,adaptation,andselforganizationfunctions.

• Amulti‐echelonstructureconsistsofanumberofsubsystemssituatedinlevelssuchthateachonecancoordinatelower‐levelunitswhileitisitselfcoordinatedbyahigher‐levelunit.

Page 13: Energy Systems Research Laboratory, FIU

9/19/2012

13

FirstControlLayer‐‐Actuator

• Themosttime‐demandinglevelofcontrol,thefirstlayer(actuator),isrelatedtotheswitchingofhigh‐power transistors in the power electronicpowertransistorsinthepowerelectronicconverters.

• Thistaskrequireshigh‐speed,real‐timecontrolwithsamplingratesontheorderofmicroseconds.

• Vectorcontrol,spacevector,pulse‐width

Energy Systems Research Laboratory, FIU

modulation,currentregulation,suppressionofharmonics,andpowerelectronicdeviceprotectionarewithinthislayer.

SecondControlLayer‐‐Supervisor

• Asecondlevelofcontrol(supervisor)isrequiredtomanagethesystem;togeneratepowersetpoints to control the power flow among the energypointstocontrolthepowerflowamongtheenergysource,energystorage,andload;tocontroldcoracbusvoltage;andtomonitorfaultysignals.

• TheparticularsignalstobecontrolleddependonthespecificDGtechnology,butsamplingratesonthe order ofmilliseconds are typically required

Energy Systems Research Laboratory, FIU

theorderofmilliseconds aretypicallyrequired.

Page 14: Energy Systems Research Laboratory, FIU

9/19/2012

14

ThirdControlLayer‐‐Excecuter

• Thethirdlevelofcontrol(executor)isrelatedtocommunicationstoexternalequipmentandtheoutsideworld,whichprovidesavarietyofremotemonitoringand, p y gcontrol.

• Theexecutorlevelisresponsibleforimplementationofcontrolschemestoproduceasmuchenergyfromthesystemaspossibletorecovertheinstallationcost.

• Policiesrelatedtothecostsoffuel,maintenance,andnegotiation with neighbor sites are implemented in this

Energy Systems Research Laboratory, FIU

negotiation withneighborsitesareimplementedinthislevel.

• Typically,samplingtimesareontheorderofminutes,andhours arerequiredtoimplementsuchpolicies.

GotSomethingtoshare?

ShareyourknowledgeaboutDG controlwith the rest of the class in 3

Energy Systems Research Laboratory, FIU

DGcontrolwiththerestoftheclassin3minutes!

Page 15: Energy Systems Research Laboratory, FIU

9/19/2012

15

PARTII:RelatedHotResearchTopics,ExistingState‐of‐the‐ArtSolutions

(PublishedAlreadyintheLiterature),NewResearchIdeas

Energy Systems Research Laboratory, FIU

ControlofPowerConditioningUnitsIntegratingRenewableEnergy—Anexampleproblem

AC‐DCandDC‐DCboostconvertershavetransferfunctionswithhighnon‐linearity. ThetransferfunctionislinearizedaroundanoperatingpointandthePIcontrolleris

basedonthislinearizedversionofthetransferfunction. This limits the stable operating range of the controller a band around a certain value of Thislimitsthestableoperatingrangeofthecontrollerabandaroundacertainvalueof

loadcurrent.

13

2

V is the output voltageVg is the input voltageD is the duty cycle (control parameter)R is the output resistanceRL is the inductor internal resistance

Energy Systems Research Laboratory, FIU

The duty cycle to output voltage boost converter’s transfer function is highly nonlinear. It has to be linearized around a limited operating range such as 1, 2 and 3.

Page 16: Energy Systems Research Laboratory, FIU

9/19/2012

16

More Need for a Smart Controller

186

190

194

198

202

Vol

tag

e (V

olts

)

186

190

194

198

202

Vol

tage

(V

olts

)

Conventional PI Controller—Less ripple at steady state, BUTpoor transient response

0 0.25 0.5 0.75 1

182

Time (sec)

202

0 0.25 0.5 0.75 1

182

Time (sec)

Conventional PID Controller—More ripple at steady state, BUTgood transient response

Energy Systems Research Laboratory, FIU

0 0.25 0.5 0.75 1

182

186

190

194

198

Time (sec)

Vol

tage (V

olts

) Smart Controller—Lessripple at steady state, and good transient response

ProposedSolutionfromtheLiterature[1] Inordertomaximizetheoperatingrangeofthecontrol

systemandmakethecontrollercapableofhandlingwiderangeofoutputcurrents,theparametersofthePIDcontrollerweretunedatdifferentoperatingranges

Afuzzyagentisthenusedtoautonomouslysettheparametersbasedonthecurrentoperatingpoint.

Ablockdiagramoftheproposedsmartcontroller

ToenhancethetransientresponseoftheconverterbycontrollingthederivativegainofthePIDcontroller

Thetuningprocessaimsatminimizingtherisetime,settlingtime,rippleandsteadystateerroroftheoutputvoltage oftheboostconvertercorrespondingtostepchangesininputvoltageandload.

ts

Energy Systems Research Laboratory, FIU• Conventional PI controller Load step change response (220W-1kW) • Smart PID controller Load step change response (220W-1kW)

Res

ult

Page 17: Energy Systems Research Laboratory, FIU

9/19/2012

17

MoreControlIssuesandProposedSolutionsforDiscussion Controllingahybridsourcesystem isnotaneasycontroltask.In[2],Jiangetaldeveloped

adigitallycontrolledfuelcell/batteryhybridsource.Digitaltechnologywasappliedinthe control of power electronics due to many advantages over analog technology such asthecontrolofpowerelectronicsduetomanyadvantagesoveranalogtechnologysuchasprogrammability,lesssusceptibilitytoenvironmentalvariations,andlowpartscount.TheusercansettheFCcurrentlimit,batterycurrentlimit,andbatteryvoltagelimitinthedigitalcontroller.

In[3],theauthorsdevelopedamodifieddroopcontrollertoovercometheproblemsattachedtoparallelingDC‐DCconvertersinstandaloneDCsystems.Circulatingcurrentbetweenconverterswasusedtomodifynominalvoltagessuchthaterrorbetweenthemisreduced.Thisimprovescurrentsharingamongconverters.Theadvantageofthedevelopedalgorithmasclaimedbytheauthorsisthat,equalcurrentsharingisachievedl h l l l

Energy Systems Research Laboratory, FIU

alongwithlow‐voltageregulation. Athighswitchingfrequenciesandpower,theswitchinglossesbecomesignificant.In[4],

theauthorsdescribedanonisolated highstep‐upDC‐DCconvertersusingzerovoltageswitching (ZVS)boostintegrationtechnique(BIT)andtheirlight‐loadfrequencymodulation(LLFM)control.

GotAnyNewIdeas?

DEMAND‐SIDEMANAGEMENT Loadmanagementimpliesmodifyingtheloadprofilebypeak‐loadclipping,valleyfilling,

loadshifting,reducingvoltage(brownout),reducingload,andloadbuilding. Demand‐sidemanagement(DSM)meansmodifyingenergyusetomaximizeenergy

efficiency.Incontrasttosupply‐sidestrategies,whichincreaseorredistributesupplies(bybuildingnewpowerplantsorchangingsystemreconfigurations),thegoalofDSMistosmoothoutthepeaksandvalleysinelectric(orgas)demand.

Itmakesthemostefficientuseofenergyresourcesanddeferstheneedtodevelopnewpowerplants.Thismayentailshiftingenergyusetooff‐peakhours,reducingoverallenergyrequirements,orincreasingdemandforenergyduringoff‐peakhours.

DSMstrategiescanbeclassifiedaspeak‐clippingorvalley‐fillingstrategies. Inpeak‐clippingstrategy,acontrollerseekstoreduceenergyconsumptionatthetimeof

peakload.Inprogramstoreducepeakload,theutilityorconsumergenerallyexertscontroloverappliancessuchasairconditionersorwaterheaters.DGsystemssuchasphotovoltaicandsolar–thermalpowersuppliescanplayaroleinclippingpeakdemandifitcoincideswiththeiroutput.

Energy Systems Research Laboratory, FIU

p Invalley‐fillingstrategies,thegoalistobuildupoff‐peakloadstosmoothouttheloadand

improvetheeconomicefficiencyoftheutility. Anexampleofvalleyfillingischargingelectricvehiclesorelectrolyzingwatertoproduce

hydrogenandoxygenatnight,whentheutilityisnotrequiredtogenerateasmuchpowerasduringtheday.Largebatterystoragecanalsobeoperatedatnight,andtheenergystoredcanbeusedforpeakclippingduringtheday.

Economicassessment,includingcharginganddischarginglosses,mustbeaccountedfortovalidatethefeasibilityofthisoption.

Page 18: Energy Systems Research Laboratory, FIU

9/19/2012

18

ImplementationofDSM Themostobviousexampleisalow‐priceelectricitytarifftomaintainloadfornuclear

powerandlargecoal‐burningstationsatnight.Thereareseveraloptionsforimplementingnighttimetariffmeasures: Consumermetersareswitchedtodifferentenergy‐flowregistersbyalocalclockora

radiosignal(suchasintheUnitedKingdom,oftennamed‘‘Economy7’’),whichallowsg ( g y )allloadtochangetariff.Consumers’billsshowenergyconsumedateachtariff,andtheyarechargedaccordingly.

Specificloads(e.g.,storageheatersandwater‐tankheaters)areenabledbytimeclocksorripplecontrol(asignal‘‘downthewire’’),asiscommoninAustraliaforwaterheatersandintheUnitedKingdomforspaceheaters.Theseloadsarewiredonaseparatecircuitwithaseparatemeterregister.

Thetechnologyforremoteswitching(ripplecontrol)iswidelyavailable(e.g.,fromLandis+Gyr andSiemens).Therearemanywaystocommunicatesuchcontrol,includingthrough long wave radios mobile telephone networks and signals sent on power lines

Energy Systems Research Laboratory, FIU

throughlong‐waveradios,mobiletelephonenetworks,andsignalssentonpowerlines. Moderndigitalelectronicsofferaccurate,low‐costcommunicationfortariffinformation

ordirectcontrol.Also,moderncommunicationmethodsallowremotemeteringtomeasureandmonitorelectricityconsumptionatshortintervals(e.g.,minutes).AnalysisofsuchinformationallowsrecommendationsforDSMandreducedconsumption.Thecommunicationtechnologiesforremotemeteringaresimilartothoseneededforremoteswitching.

ResearchExamplefromtheLiterature In[5],Ahmedetaldevelopedanenergymanagement

algorithmthataimsmainlyatmanagingtheenergywithinahybridsystemsuchthattheeffectofpulsed(shortduration)loadsonthepowersystemstabilityisminimized.

Moreover,anaverageannualsavingofaround7%isachievedbyshiftingloadstooff‐peakhours.

Energy Systems Research Laboratory, FIU

Page 19: Energy Systems Research Laboratory, FIU

9/19/2012

19

MoreProposedDSMAlgorithmsforDiscussion—OptimizationandPHEVs

Solvinganoptimization managementproblemincomplexsmartgridsissubjectedtoresearch.In[6],Logenthiran etalpresentedademandsidemanagementstrategybasedon load shifting technique for demand side management of future smart grids with aonloadshiftingtechniquefordemandsidemanagementoffuturesmartgridswithalargenumberofdevicesofseveraltypes.Theday‐aheadloadshiftingtechniqueproposedinthatpaperwasmathematicallyformulatedasaminimizationproblem.Aheuristic‐basedEvolutionaryAlgorithm(EA)thateasilyadaptsheuristicsintheproblemwasdevelopedforsolvingthisminimizationproblem.

WithexpectedhighpenetrationofPHEVs,researchersinvestigatewaystooptimizetheutilizationoftheirV2Gcapability.In[7],theauthors.Thispaperaimsatinvestigatedthepotentialbenefitsofbatteryelectricvehicles(BEVs)andplug‐inhybridelectricvehicles(PHEVs)asdynamicallyconfigurabledispersedenergystorageactinginavehicle‐to‐b ld (V2B) d V2B h ll bl d b f

Energy Systems Research Laboratory, FIU

building (V2B)operatingmode.V2BisaconceptthatispracticallyviabletodaybeingfarsimplerthanV2G,anditmaybeimplementedona3–5yeartimehorizonwhileV2Gmaytake10–15yearstogainwideracceptance.Basedonthebatterycharacteristics,thebenefitsofusingBEVs/PHEVsasenergystoragefordemandsidemanagement(DSM)andoutagemanagement(OM)arediscussedindetail.

GotAnyNewIdeas?

IslandingandInterconnectionControl

• Unintentionalislandingisaconcernfortheutilitybecausesourcesconnectedtothesystembutnotcontrolledbytheutilityposeapossibilityofharmtoutilitypersonnel

• Furthermore,specialsynchronizationandvoltage‐levelmatchingmeasureswillhavetobetakenforreconnectionoftheutilitypower.

y yanddamagefromuncontrolledvoltageandfrequencyexcursions.

• Inaddition,utilityequipmentsuchassurgearrestersmaybedamagedbyovervoltages duringashift‐neutralreferenceorresonance.

island

Energy Systems Research Laboratory, FIU

• Islandingcanleadtoasynchronousreclosure,whichcandamageequipment.Itisthereforeimportantthatmicrogrid systemsincorporatemethodstopreventunintentionalislanding.

• However,intentionalislandingmayoccurwhenasecureaggregationofloadsandsourcescapableofoperatinginparallelwith,orto,endusersallowspowerflowonlywithinthemicrogrid orsafelyexportsittotheutilitygrid.

Page 20: Energy Systems Research Laboratory, FIU

9/19/2012

20

MoreResearchDirections

Energypricingwiththeexistenceofdistributedgeneration[8].

P i bili d fi i Powersystemprotection,stabilityandreconfigurationwiththeexistenceofdistributedgeneration.

Absenceofinertiainstationaryrenewableenergysources.Stabilityandcontrolproblem![9]

Loaddemand/renewableenergyforecasting.Linearandnon‐linearregression,ANN,Kernelmethods,greymodelsd l h d l d l d

Energy Systems Research Laboratory, FIU

andseveralothermodelsaredeveloped. Securityanalysisofpowersystemswithhighpenetrationofdistributedgeneration.

More…

References1. Ahmed Mohamed; Elshaer, M.; Mohammed, O. , ”Control enhancement of power conditioning units

for high quality PV systems,” Electric Power Systems Research, vol. 90, pp. 30-41, Sept. 2012.2. Zhenhua Jiang; Dougal, R.A.; , "A Compact Digitally Controlled Fuel Cell/Battery Hybrid Power

Source," IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1094-1104, June 2006.3 A d S F d B G "M difi d d t ll f ll li f d d t i3. Anand, S.; Fernandes, B.G.; , "Modified droop controller for paralleling of dc-dc converters in

standalone dc system," Power Electronics, IET , vol. 5, no. 6, pp. 782-789, July 2012.4. Hyun-Wook Seong; Hyoung-Suk Kim; Ki-Bum Park; Gun-Woo Moon; Myung-Joong Youn; , "High

Step-Up DC-DC Converters Using Zero-Voltage Switching Boost Integration Technique and Light-Load Frequency Modulation Control," IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1383-1400, March 2012.

5. Mohamed, A.; Salehi, V.; Mohammed, O.; , "Real-Time Energy Management Algorithm for Mitigation of Pulse Loads in Hybrid Microgrids," IEEE Transactions on Smart Grid, In Press.

6. Logenthiran, T.; Srinivasan, D.; Tan Zong Shun; , "Demand Side Management in Smart Grid Using Heuristic Optimization,“ IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1244-1252, Sept. 2012

7 P C D tt P K i M "BEV /PHEV Di d E St f V2B U i th

Energy Systems Research Laboratory, FIU

7. Pang, C.; Dutta, P.; Kezunovic, M.; , "BEVs/PHEVs as Dispersed Energy Storage for V2B Uses in the Smart Grid," Smart Grid, IEEE Transactions on , vol. 3, no. 1, pp. 473-482, March 2012.

8. Pantos, M.; , "Exploitation of Electric-Drive Vehicles in Electricity Markets," IEEE Transactions onPower Systems, vol. 27, no. 2, pp. 682-694, May 2012.

9. Ashabani, S.M.; Mohamed, Y.A.I.; , "A Flexible Control Strategy for Grid-Connected and Islanded Microgrids With Enhanced Stability Using Nonlinear Microgrid Stabilizer," IEEE Transactionson Smart Grid, vol. 3, no. 3, pp. 1291-1301, Sept. 2012.