24
NREL is a na*onal laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Energy Systems Integra.on Ben Kroposki, PhD, PE, FIEEE Director Power Systems Engineering Center Na.onal Renewable Energy Laboratory October 2015 NREL PSEC I

Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

NREL  is  a  na*onal  laboratory  of  the  U.S.  Department  of  Energy,  Office  of  Energy  Efficiency  and  Renewable  Energy,  operated  by  the  Alliance  for  Sustainable  Energy,  LLC.  

Energy  Systems  Integra.on  

 

Ben  Kroposki,  PhD,  PE,  FIEEE  Director  -­‐  Power  Systems  Engineering  Center  

Na.onal  Renewable  Energy  Laboratory  October  2015  

   

NREL PSEC

I

Page 2: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

2  

•  Energy  system  =  a  set  of  interac*ng  or  interdependent  resources,  infrastructures  and  individuals  organized  specifically  for  the  produc*on,  delivery  or  consump*on  of  energy  

•  Examples:  o  Buildings  o  Vehicles  o  Distribu*on  feeders  o  Fueling  sta*ons  o  Communi*es  o  T&D  grids  o  Pipeline  networks  

What  is  an  Energy  System?  

Future Energy System

Page 3: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

3  

Energy  System  of  the  USA  

Solar  

Hydro  

Biomass  

Geo  Wind  

Waste  Heat  

End-­‐Use  Services  

Electricity  

Thermal  

Fuels  

Page 4: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

4  

Electricity  

Thermal  

Fuel  

Data  

Energy  system  integra.on  (ESI)  =  the  process  of  op*mizing  energy  systems  across  mul*ple  pathways  and  scales    

What  is  Energy  System  Integra.on?  

Single  Building  

Community,  City  

Region,  Country  

Page 5: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

5  

ESI  at  all  Scales  Scale  

1MW  Buildings  

10MWs  Campus,  Circuits  

100MWs  Communi*es    

1-­‐10  GW  Ci*es  

10-­‐100GW  Regions    Reliable,  affordable  and  clean  

energy  systems  adopted  at  a  pace  and  scale  to  meet  global  energy  and  environmental  

objec.ves    

Electricity  

Fuel  

Thermal  

Data  

Page 6: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

6  

ESI  Value  Proposi.on  •  Improve  opera.onal  efficiency  –  reduce  overall  system  losses  by  coupling  

energy  systems  and  making  best  use  of  installed  genera*on,  storage,  and  load  resources.  Incorpora*ng  heat,  power,  and  highly  efficient  devices  can  increase  overall  efficiency  and  conserve  energy  when  compared  with  individual  technologies  

•  Improve  energy  security  -­‐  Increase  energy  sustainability,  reduce  carbon  intensity,  and  encourage  adop*on  of  clean  energy  technologies  by  allowing  for  seamless  integra*on  of  variable  renewable  genera*on  and  op*mizing  opera*ons  of  RE  and  non-­‐RE  sources  

•  Increase  asset  u.liza.on  -­‐  defer/avoid  capital  cost  investment  in  energy  system  infrastructure,  reduce  spinning  reserves,  increase  system  flexibility  

•  Enhance  energy  supply  quality  and  reliability  –  increase  diversity  of  supply,  monitor  and  reconfigure  energy  system  opera*ons  as  needed  

•  Enable  increased  customer  load  efficiency,  customer  empowerment  and  sa.sfac.on  –  allow  for  all  customers  to  par*cipate  and  choose  how  to  minimize  their  energy  bills  and  provide  posi*ve  environmental  impacts.  

ESI  allows  op*mizing  systems  to  simultaneously  meet  all  or  any  combina*on  of  these,  depending  on  system  owner  or  operator  requirements  

Page 7: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

7  

Informed  customers    as  ac*ve  par*cipants  

 within  energy  systems    

Taking  advantage  of  underu*lized  interfaces  and  adding  new    

interfaces  between    domains  

Switching  the  means    used  to  provide  energy  -­‐requiring  end-­‐use  services  

Restructure,  reorganize,  and  modernize  current  energy  system    

ESI  Opportunity  Areas  Streamline  –  Improvements  within  Todays  Energy  System  •  Integra*ng  renewables  into  the  grid  •  Transporta*on  infrastructure      

Synergize  –  Connec*ng  energy  domains  •  Hybrid  energy  systems  •  Natural  gas  to  provide  grid  

flexibility  

Empower  –  Allowing  consumers  to  par*cipate  •  Energy  management  such  as  

demand  response  •  Behind-­‐the-­‐meter  energy  storage  •  Conges*on  avoidance  and  pricing  •  Precision  irriga*on  

Mode-­‐Shi`    -­‐  Switching  Sources  •  Reducing  vehicle  trips  through  

commute  *ming,  telework,  ridesharing,  car  sharing  

•  City  design  to  increase  walking  and  use  of  public  transporta*on  

Page 8: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

8  

ESI  Element  #1  -­‐  Streamline  Improvements  to  Exis.ng  Energy  Infrastructures  -­‐  Restructure,  reorganize,  and  modernize  current  energy  system      

Electrical    •  Increased  grid  flexibility  •  Expansion  of  transmission  grid  •  Increased  use  of  large-­‐scale  electricity  storage  •  Simplified/Faster  Distributed  Genera.on  Interconnec.on  •  Flex-­‐fuel  and  fossil-­‐renewable  hybrid  energy  systems  producing  only  electricity  

Fuel:  Alterna.ve  transporta.on  fuel  infrastructure  •  Ability  to  increase  penetra.on  of  ethanol  and  other  biofuels  •  Pipeline  infrastructure  for  E85  

Thermal:  District  hea.ng  and  cooling  infrastructure  •  More  heat  networks  (reducing  capital  cost  and/or  adding  ground-­‐source  heat  pumps)  •  Increased  thermal  storage  for  thermal  uses  

Data  and  Informa.on  •  U.lity  use  of  smart  grid  informa.cs  for  opera.ons  •  Improved  weather  forecas.ng  

 

Page 9: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

9  

Streamline:  Renewable  Electricity  Futures  Study  

h_p://www.nrel.gov/analysis/re_futures/  

80%  RE  Scenario   New  Transmission  Needs  

•  Make  exis*ng  system  be_er:  add  transmission  •  Merge  balancing  areas  •  Increase  genera*on  fleet  flexibility  

Page 10: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

10  

Early  Efforts  with  Energy  Informa.cs  Show  Large  Poten.al  

Connec.ng  Big  Data  to  Opera.ons  -­‐  PJM  is  demonstra*ng  the  ability  to  use  informa*on  technology  to  double  the  capability  of  their  exis.ng  network  of  long-­‐distance  line  to  move  energy  through      data-­‐centric  command  center,  genera*ng  $2  billion  a  year  in  savings.    “Big  Data  Unleashes  the  Electric  Equivalent  of  a  Free  Keystone  Pipeline”,  h_p://www.forbes.com/sites/markpmills/2012/03/19/informa*on-­‐

technology-­‐unleashes-­‐the-­‐electric-­‐equivalent-­‐of-­‐a-­‐free-­‐keystone-­‐pipeline/      

Other  u*lity  examples:  •  Systems  operators  could  act  upon    metrics  that  are  early  

predictors  of  changes  in  network  quality  or  reliability.    •  Distribu*on  system  operators  could  deliver  reliable  power  

at  the  lowest  cost  using  output  forecasts  for  DER.  

Page 11: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

11  

ESI  Element  #2  –  Synergize  

Taking  advantage  of  underu.lized  interfaces  and  adding  new  interfaces    Mee.ng  consumer  needs  more  effec.vely  by  linking  energy  systems  that  are  not  o`en  (or  never)  linked  in  today’s  energy  system  

   

11    

Page 12: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

12  

ESI  Element  #2  –  Synergize  1.   Integrated  Energy  Systems    

o  CHP  and  trigenera*on  for  building  and  campus  use  (possibly  with  heat  pumps)  o  Cogenera*on  for  industrial  uses  

2.   Using  available  electricity  that  might  otherwise  be  curtailed  for  other  products  o  Produc*on  of  other  energy  or  energy-­‐intensive  products  like  methane  and  

hydrogen  in  large  facili*es  3.   Thermal  storage  for  electrical  demand  response  4.   Reducing  industrial  energy  use  through  direct  use  of  renewables  

o  Solar  furnaces  5.   Synthe.c  natural  gas  6.   Combined  transmission  opportuni.es  

o  Integrated  Electric  –  Hydrogen  Transmission  –  Pipelines  o  Combined  Transporta*on  -­‐  Transmission  Corridors  (ROW  integra*on)  

7.   Hybrid  energy  systems  (e.g.  polygenera.on  conversion  facili.es  (with  or  without  flex-­‐fuel  capabili.es)  with  dynamic  response  to  pricing)  

12    

Page 13: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

13  

ESI  Element  #2  -­‐  Synergize  Electrified  transporta.on  

o  Plug-­‐in  and  hydrogen  vehicles    o  With  and  without  V2G  capabili*es  o  On-­‐road  induc*ve  charging  

Using  what  is  tradi.onally  waste  energy  o  U*lizing  work  from  high-­‐temperature  heat  o  U*lizing  waste  heat  (e.g.,  waste  energy  from  a  power  plant  for  hea*ng  

industrial  processes  and  commercial  and  residen*al  buildings)    o  Bo_om  cycles  to  increase  overall  plant  efficiency  (binary,  organic,  or  

Kalina)  o  U*lizing  warm  water  in  heat  pumps  o  U*lize  the  thermoelectric  effect  to  convert  waste  heat  to  power  o  Aquiculture  and  agriculture  in  colder  climates/seasons  or  with  CO2  for  

algae  produc*on    

 13    

Page 14: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

14  

Synergize:  Electricity  and  Natural  Gas  

Energy  Comes  Together  in  Denmark,  P.  Meibom,  K.  Hilger,  H.  Madsen,  D.  Vinther,  IEEE  Power  and  Energy  Magazine,  2013    

Page 15: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

15  

Synergize:  Virtual  Storage  using  Thermal  Demand  Response    

Thermal  mass  in  refrigera*on  display  cases  facilitates  the  adjustment  of  power  consump*on  while  maintaining  acceptable  temperatures  for  food.    

6kW  of  DR  Recovery  period  

On  the  Inclusion  of  Energy  Shi:ing  Demand  Response  in  Produc?on  cost  Models:  Methodology  and  a  Case  Study,  N.  O’  connell,  e.  Hale,  I.  Doebber,  and  J.  Jorgenson,  NREL/TP-­‐6A20-­‐64465,    July  2015    

Page 16: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

16  

Synergize:  Using  Waste  Heat  from  Data  Centers  NREL  HPC  –  DC  Showcase  Facility  •  Use  evapora*ve  

rather  mechanical  cooling.  

•  Waste  heat  captured  and  used  to  heat  labs  &  offices.  

•  World’s  most  energy  efficient  HPC  -­‐  data  center,  PUE  1.06!  

   

PUE  =  Power  Usage  Effec*veness  

Page 17: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

17  

ESI  Element  #3  -­‐  Empower  Informed  customers  as  ac.ve  par.cipants  within  energy  systems    Genera.ng  and  providing  informa.on  so  the  customer  uses  energy  more  effec.vely.  Enables  customer  decisions  regarding  issues  involving  energy  use.    Examples  •  Educa.on  resul.ng  in  changed  behavior  •  Customer-­‐driven  electrical  demand  response  •  Customer-­‐side  distributed  energy  storage    •  Traffic  rerou.ng/changing  travel  .mes  due  to  

conges.on  •  Precision  irriga.on  •  Scheduling  manufacturing  around  energy  prices    

   17    

Page 18: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

18  

Empower:  ASU  –  Campus  Metabolism  

h_p://cm.asu.edu/#    

Page 19: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

19  

ESI  Element  #4  –  Mode-­‐Shi`  Switching  the  means  used  to  provide  energy-­‐requiring  end-­‐use  services  Focusing  on  energy  services  and  finding  different  modes  that  provide  end-­‐users  with  the  necessary  services  while  using  less  energy    

 Examples  •  High-­‐speed  electric  rail  for  medium  long-­‐distance  transport  •  Private  to  public  transporta.on  (i.e.,  cars  to  buses)  •  Urban  planning  for  alterna.ve  transporta.on  •  Telework  •  Using  renewables  to  provide  reac.on  heat  (e.g.,  solar  furnace)  

•  Dayligh.ng      

   19    

Page 20: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

20  

Mode-­‐Shi`:  Smart  Office  Areas  -­‐  Dayligh.ng  •  Integrated  Energy  Efficiency  into  Design  and  Opera*ons  •  High  use  of  daylight  •  Natural  use  of  ven*la*on  through  operable  windows  •  Uses  about  25%  na*onal  average  for  energy  in  office  space  •  Installed  Enmetric  plug  load  control  system  •  Collec*ng  circuit  level  load  informa*on  in  office  area   Enmetric  Plug  Load  Controller  

Page 21: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

21  

Smart  Power  Lab  Buildings  &  Loads  

Power  Systems  Integra.on  Lab  Grid  Simulators  Microgrids  

Energy  Systems  Integra.on  Lab  Fuel  Cells,  Electrolyzers  

Outdoor  Test  Areas  EVs,  Power  Transformers  

Roo`op  PV   Energy  Storage  Lab  Residen*al,  Community  &  Grid  Ba_ery  Storage,  Flywheels  &  Thermal  

HPC  &  Data  Center  

Auxiliary  Control  Room  

ADMS  Testbed  

NREL  Energy  Systems  Integra.on  Facility  (ESIF)  

h_p://www.nrel.gov/esif    

Page 22: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

22  

   

Vision  A  global  community  of  scholars  and  prac**oners  from  leading  ins*tutes  engaged  in  efforts  to  enable  highly  integrated,  flexible,  clean,  and  

efficient  energy  systems  

Objec.ves  •  Share  ESI  knowledge  and  Experience  •  Coordina*on  of  R&D  ac*vi*es  •  Educa*on  and  Training  Resources  Recent  Ac.vi.es  •  2013  –  IEEE  P&E  Issue  on  ESI  •  2014  –  Four  workshops  on  ESI  •  2015  –  ESI  101  and  102  Courses  

Foster  a  Global  Community   www.iiesi.org      

Page 23: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

23  

Ben  Kroposki,  PhD,  PE,  FIEEE  Director  –  Power  Systems  Engineering  Center  

Na*onal  Renewable  Energy  Laboratory  

Thank  You  

Page 24: Energy Systems Integrationnrel.github.io/iiESI.org/assets/pdfs/daejeon_kroposki.pdf · 3 Energy’System’of’the’USA Solar’ Hydro Biomass Geo’ Wind’ WasteHeat’ EndUse’

24  

For  Further  Reading  •  “Energy  Systems  Integra?on  -­‐  A  Convergence  of  Ideas”,  B.  Kroposki,  B.  Garre_,  S.  

Macmillan,  B.  Rice,  C.  Komomua,  M.  O’Malley,  D.  Zimmerle,    NREL/TP-­‐6A00-­‐55649,  July  2012,  h_p://www.nrel.gov/esi/pdfs/55649.pdf  

•  “Energy  Comes  Together  –  The  Integra?on  of  All  Systems”,  M.  O’Malley  and  B.  Kroposki,  IEEE  Power  &  Energy  Magazine,  Sept/Oct  2013,  pp.  18-­‐23,  Digital  Object  Iden*fier  10.1109/MPE.2013.2266594  

•  “Energy  Systems  Integra?on:  An  Evolving  Energy  Paradigm”,  M.  Ruth  and  B.  Kroposki,  The  Electricity  Journal,  2014  

•  “Energy  Comes  Together  in  Denmark”,  P.  Meibom,  K.  Hilger,  H.  Madsen,  D.  Vinther,  IEEE  Power  and  Energy  Magazine,  Sept/Oct  2013    

•  On  the  Inclusion  of  Energy  Shi:ing  Demand  Response  in  Produc?on  cost  Models:  Methodology  and  a  Case  Study,  N.  O’  connell,  e.  Hale,  I.  Doebber,  and  J.  Jorgenson,  NREL/TP-­‐6A20-­‐64465,    July  2015  h_p://www.nrel.gov/docs/fy15os*/64465.pdf  

•  Renewable  Electricity  Futures  Study  (En?re  Report)  Na?onal  Renewable  Energy  Laboratory.  (2012).  Renewable  Electricity  Futures  Study.  Hand,  M.M.;  Baldwin,  S.;  DeMeo,  E.;  Reilly,  J.M.;  Mai,  T.;  Arent,  D.;  Porro,  G.;  Meshek,  M.;  Sandor,  D.  eds.  4  vols.  NREL/TP-­‐6A20-­‐52409.  Golden,  CO:  Na?onal  Renewable  Energy  Laboratory.  h`p://www.nrel.gov/analysis/re_futures/  

•  “Blending  Hydrogen  into  Natural  Gas  Pipeline  Networks:  A  Review  of  Key  Issues”,  M.  Melaina,  O.  Antonia,  and  M.  Penev,  NREL/TP-­‐5600-­‐51995,  March  2013,  h_p://www.nrel.gov/docs/fy13os*/51995.pdf