28
Energy and metabolism http:// bcs.whfreeman.com/ lehninger (Ch 13) http:// bcs.whfreeman.com/ biochem5 (Ch14) http:// www.genome.ad.jp/ kegg S. 14.2.

Energy and metabolism lehninger (Ch 13) biochem5 (Ch14) kegg S. 14.2

Embed Size (px)

Citation preview

Page 1: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Energy andmetabolism

http://bcs.whfreeman.com/lehninger (Ch 13)

http://bcs.whfreeman.com/biochem5 (Ch14)

http://www.genome.ad.jp/kegg

S. 14.2.

Page 2: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Reminder in Thermodynamics

• First Law (conservation of energy)• Second Law (entropy of the Universe increases in spontaneous processes)

• concepts of open, closed and isolated systems• sign conventions for energy changes

• Free energy (G) (exergonic - endergonic)• Enthalpy (H) (exothermal - endothermal)• Entropy (S)

G = H - TS = - RT lnQ

See Living Graph 13-3

Page 3: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Entropy

1. Teakettle

2. Glucose oxidation

3. Entropy (randomness) and information

There is a tide in the affairs of men,Which, taken at the flood, leads on to fortune;Omitted, all the voyage of their lifeIs bound in shallows and in miseries. (Brutus) - Shakespeare: Julius Caesar, Act 4, Scene 3

Page 4: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

ENERGY CONTENT(fuels, sunlight)

WORK

chemical synthesis

mechanical work

osmotic and electricgradients

transmission of genetic information

light

HEAT ENTROPY CHANGE

increases in the surroundings:catabolic end products are small

decreases in the cell :anabolic end products are large

sophisticated molecules

Page 5: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

L. II-3. S. 14-12.

Page 6: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

L. 1-26. See also “Energetic Coupling” among “Conceptual Insights” on Stryer website

Free energy in coupled reactions

Page 7: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

L. 13-8,12

Page 8: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

L. 13.1.

L. 13.2.

ATP hydrolysis and phosphorylation potential

See also Living Figure “Box 13-1”

Page 9: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

L. 13-10,11

Page 10: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

L. T-13-6

Page 11: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

L. 13-9

Page 12: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

L. 13-3,4

Page 13: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

L. 13-5

Page 14: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Reperfusion in the presenceof cardioprotective agents

Ischaemia

Normoxia

CrP-ATP -ATP -ATP

In situ study of energy metabolism:Monitoring of high-energy phosphorus metabolite levels

in perfused rat hearts using 31P NMR spectroscopy

Reperfusion

PCr

Pi

ATP ATP ATP

Page 15: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Effect of PARP inhibitors on the recovery of creatine phosphate during ischemia-reperfusion

0

20

40

60

80

100

120

3 6 9 3 14 25 3 6 9 12 15

perfusion time (min)

CrP

( %

of n

orm

oxi

c va

lue)

Control

4-OHQ

HO-3089

normoxia ischemia reperfusion

*

*p<0.05

Page 16: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Effect of PARP inhibitors on the recovery of ATP during ischemia-reperfusion

0

20

40

60

80

100

120

3 6 9 3 14 25 3 6 9 12 15

perfusion time (min)

AT

P (

% o

f n

orm

oxi

c v

alu

e)

Control

4-OHQ

HO-3089

normoxia ischemia reperfusion

*

* p<0.05

Page 17: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Effect of PARP inhibitors on the utilization of inorganic phosphate

during ischemia-reperfusion

0

20

40

60

80

100

120

3 6 9 3 14 25 3 6 9 12 15

perfusion time (min)

Pi (

% o

f e

nd

-isc

he

mic

val

ue

)

Control

4-OHQ

HO-3089

normoxia ischemia reperfusion

*

* p<0.05

Page 18: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

L. 13-6,7

Page 19: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Electron transfer as a form of energy transfer

Electron affinity, oxidative/reductíve capacity electromotive force

E = E° +0.026V/n ln[ox]/[red]

G = -nF E

Page 20: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2
Page 21: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2
Page 22: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2
Page 23: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2
Page 24: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Deficiency: pellagra (dermatitis, diarrhea, dementia, death)

Page 25: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2
Page 26: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2
Page 27: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Regulation of metabolic pathways• controlling the amounts of enzymes• controlling the catalytic activities of enzymes• controlling the accessibility of substrates

Role of energy content in regulation

Page 28: Energy and metabolism  lehninger (Ch 13)  biochem5 (Ch14)  kegg S. 14.2

Online resources:

http://bcs.whfreeman.com/lehninger (Ch13)

http://bcs.whfreeman.com/biochem5 (Ch14)

For online quizzing give:[email protected] instructor’s e-mail address