80
ENE 104 Electric Circuit Theory Lecture 09: Sinusoidal Steady-State Analysis http://webstaff.kmutt.ac.th/~dejwoot.kha/ (ENE) Mon, 12 Mar 2012 / (EIE) Wed, 21 Mar 2012 Week #10 : Dejwoot KHAWPARISUTH

ENE 104 Electric Circuit Theory - KMUTTwebstaff.kmutt.ac.th/~dejwoot.kha/CalenderYear/Year2554/ene104/... · ENE 104 Electric Circuit Theory ... ( 5 90 10 ) cos( 5 10 ) 1 1 1 1 q

Embed Size (px)

Citation preview

ENE 104

Electric Circuit Theory

Lecture 09:

Sinusoidal Steady-State Analysis

http://webstaff.kmutt.ac.th/~dejwoot.kha/

(ENE) Mon, 12 Mar 2012 / (EIE) Wed, 21 Mar 2012

Week #10 : Dejwoot KHAWPARISUTH

Objectives : Ch10

Week #10

Page 2

ENE 104

• sinusoidal functions

• impedance and admittance

• use phasors to determine the forced response of

a circuit subjected to sinusoidal excitation

• Apply techniques using phasors

Sinusoidal Steady-State Analysis

Introduction: Page 3

The sinusoidal function v(t) = Vm sin wt is plotted

(a) versus wt and (b) versus t.

Characteristics of Sinusoids

tVtv m wsin)(

Tf

1 w 2T fw 2

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Lagging and leading: Page 4

The sine wave Vm sin (wt + q) leads Vm sin wt by q rad.

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Lagging and leading: Page 5

Converting Sines to Cosines

)1005sin(

)10905sin(

)105cos(

1

1

11

+

++

+

tV

tV

tVv

m

m

m

)305sin(22 tVv m

Week #10 ENE 104 Sinusoidal Steady-State Analysis

In electrical engineering, the phase angle is commonly given in degrees, rather than radian.

Lagging and leading: Page 6

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Two sinusoidal waves whose phase are to be

compared must:

1. Both be written as sine waves, or both as

cosine waves.

2. Both be written with positive amplitudes.

3. Each have the same frequency.

Normally, the difference in phase between two

sinusoids is expressed by that angle which is

less than or equal to 180 degree in magnitude

Practice: 10.1 Page 7

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Find the angle by which 𝑖1 lags 𝑣1 if

𝑣1 = 120cos(120𝜋𝑡 − 40𝑜) V and 𝑖1 equals

(a) 2.5 cos 120𝜋𝑡 + 20𝑜 A; (b) 1.4 𝑠𝑖𝑛 120𝜋𝑡 − 70𝑜 A;

(c) Acos 100𝑡 + 𝐵𝑠𝑖𝑛100𝑡 = 𝐶𝑐𝑜𝑠(100𝑡 +𝜙).

Practice: 10.2 Page 8

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Find A, B, C, and 𝜙 if 40 cos 100𝑡 − 40° −20 sin 100𝑡 + 170° = 𝐴𝑐𝑜𝑠100𝑡 + 𝐵𝑠𝑖𝑛100𝑡 =𝐶𝑐𝑜𝑠(100𝑡 + 𝜙).

Practice: 10.2 Page 9

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Forces Response: Page 10

Forces Response to sinusoidal Functions:

The Steady-State Response

tVRidt

diL m wcos+

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Forces Response: Page 11

tVRidt

diL m wcos+

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Forces Response: Page 12

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Forces Response: Page 13

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Example: Page 14

Find the current Li

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Example: Page 15

Find the current Li

) )

) .3.5610cos222

20

103010tan10cos

10301020

8

tancos)(

3

3313

2332

1

222

mAt

t

R

Lt

LR

Vti m

+

+

ww

w

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.3 Page 16

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Let 𝑣𝑠 = 40𝑐𝑜𝑠8000𝑡 V in the circuit. Use Thevenin’s

theorem where it will do the most good, and find the

value at t = 0 for (a) 𝑖𝐿; (b) 𝑣𝐿; (c) 𝑖𝑅; (d) 𝑖𝑠

Practice: 10.3 Page 17

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.3 Page 18

Week #10 ENE 104 Sinusoidal Steady-State Analysis

The Complex Forcing Fn: Page 19

Week #10 ENE 104 Sinusoidal Steady-State Analysis

The Complex Forcing Fn: Page 20

Week #10 ENE 104 Sinusoidal Steady-State Analysis

The Complex Forcing Fn: Page 21

Week #10 ENE 104 Sinusoidal Steady-State Analysis

The Complex Forcing Fn: Page 22

Week #10 ENE 104 Sinusoidal Steady-State Analysis

The Complex Forcing Fn: Page 23

Week #10 ENE 104 Sinusoidal Steady-State Analysis

The Complex Forcing Fn: Page 24

Week #10 ENE 104 Sinusoidal Steady-State Analysis

The Complex Forcing Fn: Page 25

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.4 Page 26

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Evaluate and express the result in rectangular form:

(a) 2∠30° 5∠ − 110° 1 + 2𝑗 ; (b) 5∠ − 200° +4∠20°. Evaluate and express the result in polar form: (c)

(2 − 𝑗7)/(3 − 𝑗); (d) 8 − 𝑗4 + 5∠80° / 2∠20° .

Practice: 10.4 Page 27

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.5 Page 28

Week #10 ENE 104 Sinusoidal Steady-State Analysis

If the use of the passive sign convention is

specified, find the (a) complex voltage that

results when the complex current 4𝑒𝑗800𝑡 A is

applied to the series combination of a 1-mF

capacitor and a 2-Ω resistor; (b) complex current

that results when the complex voltage100𝑒𝑗2000𝑡 V is applied to the parallel combination of a 1-mH

inductor and a 50-Ω resistor.

Practice: 10.5 Page 29

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.5 Page 30

Week #10 ENE 104 Sinusoidal Steady-State Analysis

The Phasor: Page 31

A phasor transformation:

0)cos()( mm VtVtv w

w + mm ItIti )cos()(

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.6 Page 32

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Transform each of the following functions of time

into phasor form: (a) −5sin(580𝑡 − 110°); (b)

3cos600t − 5sin(600𝑡 + 110°); (c)8𝑐𝑜 𝑠 4𝑡 − 30° +4sin(4𝑡 − 100°). Hint: First convert each into a single cosine function

with a positive magnitude

Practice: 10.6 Page 33

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.6 Page 34

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.7 Page 35

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Let 𝜔 = 2000 rad/s and t = 1 ms. Find the

instantaneous value of each of the currents given

here in phasor form: (a) 𝑗10 A; (b) 20 + 𝑗10 A; (c)

20 + 𝑗(10∠20°) A.

Practice: 10.7 Page 36

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Relationship: Page 37

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Relationship: Page 38

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Relationship: Page 39

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Relationship: Page 40

The Capacitor: dt

dvCti )(

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Relationship: Page 41

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Relationship: Page 42

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor: Page 43

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor: Page 44

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.8 Page 45

Week #10 ENE 104 Sinusoidal Steady-State Analysis

In the circuit, let 𝜔 = 1200 rad/s, 𝐈𝐶 = 1.2∠28° A,

and 𝐈𝐿 = 3∠53° A. Find (a) 𝐈𝒔; (b) 𝐕𝒔; (c) 𝑖𝑅(𝑡).

Practice: 10.8 Page 46

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Impedance: Z Page 47

A resistance

A reactance

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.9 Page 48

Week #10 ENE 104 Sinusoidal Steady-State Analysis

With reference to the network shown, find the input

impedance 𝐙𝑖𝑛 that would be measured between

terminals: (a) a and g; (b) b and g; (c) a and b

Practice: 10.9 Page 49

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Example: find i(t) Page 50

9040)903000cos(40)3000sin(40 tt

kj

jLj

13

13000w

kj

j

Cj

26

13000

1

w

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Example: Page 51

+

+

+

kj

jj

jjZtotal

87.365.25.12

21

)21()(5.1

.9.12616.87.365.2

9040mAmA

Z

VI

total

s

.)9.1263000cos(16 mAt

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.10 Page 52

Week #10 ENE 104 Sinusoidal Steady-State Analysis

In the frequency-domain circuit, find (a) 𝐈1; (b) 𝐈2;

(c) 𝐈3

Practice: 10.10 Page 53

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Admittance: Y Page 54

G = the conductance

B = the susceptance

R = the resistance

X = the reactance … immittance

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.11 Page 55

Determine the admittance (in rectangular form)

of (a) an impedance 𝐙 = 1000 + 𝑗400 ; (b) a

network consisting of the parallel combination of

an 800- resistor, a 1-mH inductor, and a 2-nF

capacitor, if 𝜔 = 1 Mrad/s; (c) a network

consisting of the series combination of an 800-

resistor, a 1-mH inductor, and a 2-nF capacitor, if

𝜔 = 1 Mrad/s

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.11 Page 56

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Nodal and Mesh Analysis: Page 57

Example: find v1(t) and v2(t)

0101105105

212111 jj

VV

j

VV

j

VV+

+

+

+

5.0)05.0(105105

221212 jV

j

V

j

VV

j

VV++

+

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.12 Page 58

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Use nodal analysis on the circuit to find 𝐕1 and 𝐕2.

Practice: 10.12 Page 59

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Nodal and Mesh Analysis: Page 60

Example: find I1 and I2

09015)(3)(5010 211 +++ IIIj

0020)(4)(39015 212 ++ IjII

Week #10 ENE 104 Sinusoidal Steady-State Analysis

'

1V '

2V

Superposition: Page 61

Example: find V1

''

1V''

2V

Week #10 ENE 104 Sinusoidal Steady-State Analysis

'

1V '

2V

Superposition: Page 62

Example: find V1

5561.01951.0

2540

)25()40(50

20'

1

j

j

jj

Y

IV

+

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Superposition: Page 63

Example: find V1

''

1V''

2V

I

mj

IV

50

''

1

)m

mjmjm

mjI 9050

25

1

50

1

40

1

25

1

+

+

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.15 Page 64

Week #10 ENE 104 Sinusoidal Steady-State Analysis

For the circuit, find the (a) open-circuit voltage 𝐕𝑎𝑏;

(b) downward current in a short circuit between a

and b; (c) Thevenin-equivalent impedance 𝐙𝑎𝑏 in

parallel with the current source.

Practice: 10.15 Page 65

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.16 Page 66

Determine the current 𝑖 through the 4- resistor

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.16 Page 67

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Diagram: Page 68

1.5310861 + jV

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Diagram: Page 69

(a) A phasor diagram showing the

sum of V1 = 6 + j8 V and V2 = 3

– j4 V, V1 + V2 = 9 + j4 V =

9.8524.0o V.

(b) (b) The phasor diagram shows

V1 and I1, where I1 = YV1 and Y

= 1 + j S = 1.445o S. The

current and voltage amplitude

scales are different.

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Diagram: Page 70

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Diagram: Page 71

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Phasor Diagram: Page 72

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Example: Page 73

Select V =

; IR =

IL = IC =

01

01)2.0(

901.001)1.0( j

903.001)3.0( j

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Example: Page 74

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Practice: 10.17 Page 75

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Select some convenient reference value for 𝐈𝐶 in

the circuit, draw a phasor diagram showing 𝐕𝑅,

𝐕2, 𝐕1, and 𝐕𝑠, and measure the ratio of the

lengths of (a) 𝐕𝑠 to 𝐕1; (b) 𝐕1 to 𝐕2; (c) 𝐕𝑠 to 𝐕R

Practice: 10.17 Page 76

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Ex: Page 77

31.25 nF

2 kΩVg

500 mHVO

+

-

The circuit is operating in the sinusoidal steady

state. Find the steady-state expression for vo(t) if vg(t) = 64 cos 8000t V.

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Ex: Page 78

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Hw: Page 79

Week #10 ENE 104 Sinusoidal Steady-State Analysis

Reference: Page 80

W.H. Hayt, Jr., J.E. Kemmerly, S.M. Durbin, Engineering Circuit Analysis, Sixth Edition.

Copyright ©2002 McGraw-Hill. All rights reserved.

Circuit Analysis and Electrical Engineering