31
Encapsulation with Alginates Berit L. Strand, Yrr Mørch and Gudmund Skjåk-Bræk Norwegian University of Science and Technology

Encapsulation with Alginates - nanoparticles.orgnanoparticles.org/pdf/P2009-Strand.pdf · • Alginate capsules without polycation can protect transplanted pancreatic islets in allo-

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Encapsulation with Alginates

    Berit L. Strand, Yrr Mørch and Gudmund Skjåk-BrækNorwegian University of Science and Technology

  • (Lanza et al. 1999)

    Microcapsules in cell therapy

    Endostatic producing cells for hindering re-growth of tumour tissue(gliomas)

    Chondrocytes for the formationof new cartilage

    Stem cells for the formationof new tissue

  • (Lanza et al. 1999)

    Cells(Islets) Capsule

    Nutrients and oxygen

    Cell products

    Immune cells

    Immunoisolation:

    Insulin

    Graft rejection +autoimmune disease

    Microcapsules in cell therapy

  • (chicagodiabetesproject.org)

  • Cell

    Insulin

    Oxygen and nutrients Waste products

    Capsulemembrane

    Cytokines, free radicalsreactive oxygen- and nitrogen-

    intermediates

    Antigen-presenting cells

    Secreted proteins

    LymfokinesCytotoxic cells

    T-cells

    B-cells Antibody-producing cells

    Macrophages

    Antibodies

    Autoimmuneantibodies

    Complementcomponents

    Y

    Naturaloccurringantibodies

    YY YYY

    cv YYv c

    Y cc

    Cellular response Humoral response

    Fibroblast

    (Adapted and modified from Colton 1996)

  • Important capsule parameters

    • Stability• Biocompatibility• Permeability• Size

    • Cell function after encapsulation

  • Biocompatibility

    • Host immune cells may be stimulated by capsule components to secrete elements that are harmful to the encapsulated cells

    • Host cells growing on the capsule surface reduces theamount of nutrients and oxygen that passes through thecapsule to the encapsulated cells

  • Biocompatibility - depending on exposureof poly-L-lysine (PLL)

    0.1% PLL exp.10minCapsules without fibrosis:

    0%, n=6 mice

    0.05% PLL exp.5minCapsules without fibrosis:

    91 ± 5%, n=3 mice

    without PLLCapsules without fibrosis:

    91 ± 6%, n=3 mice

    Empty capsules transplanted to Balb/c mice and explanted after 4 weeks

    (Strand et al. 2001)

  • Effects of PLL on tumor necrosis factor (TNF)production and necrosis in monocytes

    10

    100

    1000

    10000

    20

    40

    60

    80TNF

    Necrosis

    10 1000Concentration of PLL (g/ml)

    TNF

    (pg/

    ml)

    % n

    ecro

    sis

    (Strand et al. 2001)

  • Need of new solutions of controlling stabilityand permeability when omitting the polycation

    Strategies• Using gelling ions of higher affinity to

    alginate• Using high-G alginate with a high MW• Formation of inhomogeneous beads• Using enzymatically tailored alginates

    (epimerased alginates)• Using chemoenzymatic strategy to

    covalently crosslink the alginate

  • Alginate

    GM M M MGGGGGGGMGMGMGMGM M M M M MG

    M -

    block G -

    block MG -

    block M -

    block

    HH

    OH

    OH

    OH

    OH

    OHH

    COO-

    H

    -D-Mannuronic

    acid (M)

    HH

    OH

    H

    OHCOO-OH

    OH

    OHH

    -L-Guluronic

    acid (G)

    O

    OO O

    OO

    OO

    O

    O

    COO- COO-

    COO-

    OH

    OHOH

    OH

    HO

    OH HO

    COO-

    -OOC

    OH

    OH

    OH

    G G GM M

    G : 1C4

    M : 4C1

    (Fisher and Dörfel 1955; Atkins et al. 1970; Haug et al 1964-1967)

  • CaCl2 (or BaCl2 )

    AlginateCells

    Formation of Ca-alginate gel beads

    (Smidsrød and Skjåk-Bræk 1990)

  • Alginate sources and composition

    Alginate source FG FM FGG FMM FGMFMG FGGG FGGM FMGM NG>1

    Durvillea antarctica 0.32 0.68 0.16 0.51 0.17 0.11 0.05 0.12 4Macrocystis pyrifera 0.42 0.58 0.20 0.37 0.21 0.16 0.04 0.17 6

    Laminaria hyperborea, leaf 0.49 0.51 0.31 0.32 0.19 0.25 0.05 0.13 8

    L. hyperborea, stipe 0.63 0.37 0.52 0.26 0.11 0.48 0.05 0.07 15

    Pseudomonas aeruginosa 0 - 0,5 0

    Azotobacter vinelandii 0,10-0,85 0,02-0,85

    Algal alginates:

    Bacterial alginates: FG FGG

    (Smidsrød and Skjåk-Bræk 1990)

  • Alginate properties depend on alginate composition

    Ca2+

    Ca2+

    O

    O

    O

    OH

    OHO

    OH

    ¯OOC

    ¯OOC

    OH

    G G

    (Grant et al 1973; Smidsrød 1974)

  • Alginate properties depending on composition

    GG/GG junctions

    MG/MG junctions

    GG/MG junctions

    (Donati et al, 2005)

  • Alginate properties depending on alginate composition - stability

    Dia

    met

    er (µ

    m)

    50mM CaCl2 50mM CaCl2 +1mM BaCl2

    10mM BaCl2 50mM SrCl2

    Change of NaCl-solution

    High-G alginate (69% G)

    400

    500

    600

    700

    800

    900

    1000

    0 1 2 3 4 5 6 7

    High-M alginate (43% G)

    400

    500

    600

    700

    800

    900

    1000

    0 1 2 3 4 5 6 7

    (Mørch et al. 2006)

  • Epimerisation of alginate with mannuronan C-5 epimerases

    OOO

    OHO OHO

    -OOCHO

    HO-OOC

    O

    OO

    OOH

    HO

    OH

    -OOC

    -OOCOH O

    OO

    OOH

    HO

    OH

    -OOC

    -OOCHO O

    OO

    OOH

    HO

    OH

    -OOC

    -OOCHO

    M M MM M M M M

    -OOC

    OO

    -OOC

    OH

    OH

    AlgE4

    OO

    OHO OHO

    -OOCOH

    OHO

    -OOC

    OO

    OH

    OHO

    O

    OHO OHO

    -OOCOH

    OHO

    -OOCO

    O

    -OOC

    OH

    OH

    OO

    -OOC

    OH

    OH

    M M GG M M GG

    AlgE1/AlgE6

    O O

    OH

    O

    - OOC

    HOO

    -OOC

    OH

    OHOH

    OHO

    -OOC

    OO

    -OOC

    OH

    OH

    O

    OH

    O

    - OOC

    HOO

    -OOC

    OH

    OH

    OO

    OHO OHO

    -OOC

    OHO

    HO

    -OOC

    OO

    -OOC

    OH

    OH

    OO

    M M GG G G GG M

    (Adapted and modified from Ertesvåg, Valla and Skjåk-Bræk 1996)

  • Change of NaCl-solution

    Dia

    met

    er [

    µm

    ]

    Epimerised polyMG alginate (67% G)

    High G alginate (69% G)

    Epimerised polyMG alginate (56% G)

    Epimerised High M alg (56% G)

    Swelling of alginate beads- effect of epimerisation

    400

    500

    600

    700

    800

    900

    1000

    0 1 2 3 4 5 6 7 8

    (Mørch et al. 2007)

  • Inhomogeneous alginate distribution

    An inhomogeneous alginate core • (binds more PLL)• forms a more stable capsule• forms a less permeable capsule• (reduces the risk of protruding islets?)

    0

    50

    100

    150

    200

    250Intensity Profile

    0 100 200 300 400 500 600

    Microcapsule center

  • Permeability assay

    Dynabeadcoupled withmice antibody(with anti-TNF specificity)

    (Kulseng et.al.1997)

    125-I labelledanti-mice IgG(or TNF)

    Capsulemembrane

  • Radius of

    gyration

    (RG

    ) for a globular

    molecule

    is proportional to the

    cubic

    root

    of

    the

    molecular

    weight(a):

    RG

    Mw⅓

    Insulin

    5.8 kDa

    TNF-α

    51 kDa

    IgG

    150 kDa

    Transferrin

    80 kDa

    IL-1β

    17.5 kDa

    (a Tanford, C. Physical chemistry of macromolecules. New York, John Wiley & Sons 1961)

  • Permeability of IgG

    into beads of high-G alginate

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    Positive control Negative control Ca supplemented with Ba

    cpm

    Permeability (IgG, 150 kDa)

    (Mørch et al. 2006)

  • Alginate properties depending on alginate composition - permeability

    (Mørch et al. 2007)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Nega

    tive c

    ontro

    lPo

    sitive

    contr

    ol

    L.hyp

    , FG

    = 0.65

    M.py

    r, FG

    = 0.42

    FG=0

    .52FG

    =0.55

    FG=0

    .61FG

    =0.65

    Bin

    ding

    of I

    gG[%

    ]

    Epimerised alginates

    Native alginates

  • TNF55kDa

    IgG150kDa

    Capsules of different permeability

    Alg/PDL/pMG Alg/PLL/pMG Alg

    (Strand et al. 2003)

  • Human pancreatic isletsencapsulated in alginate microbeads

    Day 1:

    Day 16:

    Encapsulated humanIslet in culture for 141 days:

    (Strand 2006)

  • 50

    60

    70

    80

    90

    100

    50

    60

    70

    80

    90

    100

    Viab

    ility

    (%)

    Groups

    non-encapsulated islets

    encapsulated islets

    0

    1

    2

    3

    4

    5

    6

    7

    0

    1

    2

    3

    4

    5

    6

    7

    Stim

    ulat

    ion

    inde

    x (S

    I)

    Groups

    non-encapsulated islets

    encapsulated islets

    Human pancreatic islets from Chicago encapsulated in alginate beads - viability and function after 2x overseas shipments and encapsulation

    (Qi, Strand et al. 2008)

  • 0 5 16 27 35 52 69 95 109 130 173 2080

    100

    200

    300

    400

    500

    600

    non-

    fast

    ing

    bloo

    d gl

    ucos

    e (m

    g/dl

    )

    0 5 16 27 35 52 69 95 109 130 173 2080

    100

    200

    300

    400

    500

    600

    days (posttransplantation)

    0 5 16 27 35 52 69 95 109 130 173 2080

    100

    200

    300

    400

    500

    600

    0 5 16 27 35 52 69 95 109 130 173 2080

    100

    200

    300

    400

    500

    600

    Encapsulated human islets to nude mice

    10 000 IE 5000 IE

    3000 IE 1000 IE

    (Qi, Strand et al. 2008)

  • • Polycations provoke immune responses

    • Alginate capsules without polycation can protect transplanted pancreatic islets in allo- and xenomodels (mice)

    • Stable alginate capsules can be made by the right selection of alginate and gelling ions

    • By enzymatic modification, new alginates can be made tailored for their use in encapsulation

    Conclusions

  • “A group of highly qualified scientists and their teams who have committed themselves to achieving a functional cure for diabetesas soon as possible” (via transplantation of insulin producing cells)

    • Finding new sources for insulin producing cells• Transplantation wihtout immuno suppression (encapsulation)

    www.chicagodiabetesproject.org

  • Norwegian

    University of

    Science and TechnologyGudmund

    Skjåk-BrækTerje

    EspevikYrr

    A. MørchAnne Mari RokstadLiv

    RyanBjørg

    SteinkjerWenche

    Strand

    Acknowledgements

    The Chicago Diabetes Project, Encapsulation

    Team:Chicago, Illinois, USA: Jose Oberholzer, Meirigeng

    QiUrbana-Champagne, Illinois USA: Kevin Kim, Hyungsoo

    ChoiBratislava, Slovakia: Igor LacikGeneva, Switzerland: David HunkelerSydney, Australia: Bernie Tuch

    Financial Support:Norwegian

    Research CouncilThe Norwegian

    Diabetes Association via Extra

    Funds from the Norwegian

    Foundation for Health and RehabilitationThe Chicago Diabetes Project

    University of

    Trieste, Italy: Ivan DonatiUniversity of

    Alberta, Canada: Greg

    Korbutt

    Encapsulation with Alginates Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28ConclusionsSlide Number 30Slide Number 31