EMSD Ch 6

Embed Size (px)

Citation preview

  • 7/27/2019 EMSD Ch 6

    1/30

    Chapter VI

    Theory of isotropic linear elasticity

  • 7/27/2019 EMSD Ch 6

    2/30

    VI-2

    Theory of isotropic linear elasticity

    Elements oftensors calculus

    ijk q lmn q ijk lmnv a

    lmn q ijk v

    F G dv n F G da

    G F dv

  • 7/27/2019 EMSD Ch 6

    3/30

    VI-3

    Theory of isotropic linear elasticity

    Statics of

    deformable solids

  • 7/27/2019 EMSD Ch 6

    4/30

    VI-4

    Theory of isotropic linear elasticity

    Balance equations

    globally:

    locally:

    0

    0

    i iV A

    ijk j k ijk j k V A

    F dV T dA

    e x F dV e x T dA

    0j ji i

    ij ji

    j ji i

    F

    n T

  • 7/27/2019 EMSD Ch 6

    5/30

    VI-5

    Theory of isotropic linear elasticity

    Kinematics of deformable solids

  • 7/27/2019 EMSD Ch 6

    6/30

    VI-6

    Theory of isotropic linear elasticity

    Kinematics of deformable solids

    compatibility of displacements

    u e

    eu

    1

    2ij j i i j D u D ue

    0kk ij ij kk jk ik ik jk D D D De e e e

  • 7/27/2019 EMSD Ch 6

    7/30

    VI-7

    Theory of isotropic linear elasticity

    Kinematics of deformable solids

    equations of compatibility

    2 2 2

    11 22 12

    2 2

    1 22 1

    2 22

    33 2322

    2 2 2 33 2

    2 22

    33 1311

    2 2

    1 33 1

    X XX X

    X XX X

    X XX X

    e e

    e e

    e e

    2

    23 1311 12

    2 3 1 1 2 3

    2

    13 2322 12

    1 3 2 2 1 3

    2

    33 13 2312

    1 2 3 3 2 1

    2

    2

    2

    X X X X X X

    X X X X X X

    X X X X X X

    e

    e

    e

  • 7/27/2019 EMSD Ch 6

    8/30

    VI-8

    Theory of isotropic linear elasticity

    Virtual work principle

    1

    2

    E i i i i v a

    I ij ij v

    ij j i i j

    E I

    W F u dv T u da

    W dv

    u u

    W W

    e

    e

  • 7/27/2019 EMSD Ch 6

    9/30

    VI-9

    Theory of isotropic linear elasticity

    Constitutive law

    elasticity: general case

    ij ijkl kl

    ij ijkl kl

    C

    D

    e

    e

  • 7/27/2019 EMSD Ch 6

    10/30

    VI-10

    Theory of isotropic linear elasticity

    Constitutive law

    isotropic elasticity:

    1 21 1 2

    11

    ij ij ll ij

    ij ij ll ij

    E

    E

    e e

    e

  • 7/27/2019 EMSD Ch 6

    11/30

    VI-11

    Theory of isotropic linear elasticity

    Constitutive law

    isotropic elasticity:

    11 11

    22 22

    33 33

    12 12

    13 13

    23 23

    1 0 0 01 0 0 0

    1 0 0 0

    1 20 0 0 0 0

    21 1 21 2

    0 0 0 0 02

    1 20 0 0 0 0

    2

    E

    e

    e

    e

  • 7/27/2019 EMSD Ch 6

    12/30

    VI-12

    Theory of isotropic linear elasticity

    Constitutive law

    isotropic elasticity:

    11 11

    22 22

    33 33

    12 12

    13 13

    23 23

    1 0 0 0

    1 0 0 0

    1 0 0 01

    0 0 0 2 1 0 00 0 0 0 2 1 0

    0 0 0 0 0 2 1

    E

    e

    e

    e

  • 7/27/2019 EMSD Ch 6

    13/30

    VI-13

    Theory of isotropic linear elasticity

    Plane strain state (EPe):

    11 11

    22 22

    12 12

    1 0

    1 01 1 2

    1 20 0

    2

    E e

    e

    13 23 330 e

    13 23 33 11 220

    11 11

    22 22

    12 12

    1 01

    1 0

    0 0 2E

    e

    e

    2 2 2

    11 22 12

    2 2

    1 22 1 X XX X

    e e

    Compatibility:

  • 7/27/2019 EMSD Ch 6

    14/30

    VI-14

    Theory of isotropic linear elasticity

    Plane stress state (EP):

    11 11

    22 222

    12 12

    1 0

    1 0

    1 10 0

    2

    E e

    e

    13 23 330

    13 23

    33 11 22 11 22

    0

    1E

    e e e

    11 11

    22 22

    12 12

    1 0

    1 1 0

    0 0 2 1E

    e

    e

    2 2 2

    11 22 12

    2 2

    1 22 1X XX X

    e e

    Compatibility:

    2 2 2

    33 33 33

    2 2 2

    1 2 3

    0X X X

    e e e

  • 7/27/2019 EMSD Ch 6

    15/30

    VI-15

    Theory of isotropic linear elasticity

    3. St-Venants equations of compatibility:

    plane strain state (EPe):

    0 and 0z xz yz z

    e

    2 11 01

    z x y

    yxx y

    FF

    x y

    2 2

    2 2

    1

    1

    yxx y

    FF

    x y x y

    exact

    2 22

    2 2

    y xyx

    y x x y

    e e

  • 7/27/2019 EMSD Ch 6

    16/30

    VI-16

    Theory of isotropic linear elasticity

    4. Equation of Beltrami-Mitchell:

    3D case:

    plane state

    2

    2

    2

    11 1 01

    3 :

    11 2 1 0

    1

    kk ij ij kk i j j i k k ij

    yz x zz x y z

    F F F

    i j

    FF F F

    z z x y z

    2

    0

    11 0

    1

    yxz

    z

    FF

    x y

  • 7/27/2019 EMSD Ch 6

    17/30

    VI-17

    end

  • 7/27/2019 EMSD Ch 6

    18/30

    VI-18

    Theory of isotropic linear elasticity

    Compatibility equations in terms of stresses:

    EPe:

    EP:

    From one state to the other:

    EPEPe:

    EPeEP:

    2 11 221

    div

    1

    F

    2 11 22 1 div F

    identicalifF= cst

    2

    ' ';

    1 ' 1 '

    EE

    2

    ' 1 2 ' ';

    1 '1 '

    EE

  • 7/27/2019 EMSD Ch 6

    19/30

    VI-19

    Theory of isotropic linear elasticity

    1. In-plane problems:

    a) Plane stress state

    2

    1 01

    1 0 0

    0 0 2 1 0

    01 0

    1 0 01

    1 0

    0 0 2

    z x yx x

    y y xz

    xy xy yz

    zx x

    y y xz

    xy xy yz

    E

    E

    E

    e

    e

    e

    e

    e

    0z xz yz

  • 7/27/2019 EMSD Ch 6

    20/30

    VI-20

    Theory of isotropic linear elasticity

    1. In-plane problems:

    b) Plane strain state

    1 01 0 0

    1 1 21 2 0

    0 0

    2

    01 01

    1 0 0

    0 0 2 0

    z x yx x

    y y xz

    xy xy yz

    zx x

    y y xz

    xy xy yz

    E

    E

    e

    e

    ee

    e

    0z xz yz e

  • 7/27/2019 EMSD Ch 6

    21/30

    VI-21

    Theory of isotropic linear elasticity

    From one state to the other:

    Problem in plane stress state:

    Let be the solution

    this solution depends on Eand

    One gets the solution for the plane strain state by thesubstitutions:

    NB: - this does not change G

    - if= 0, both solutions coincide

    x y xy

    x y xy

    e e

    2;

    1 1EE

  • 7/27/2019 EMSD Ch 6

    22/30

    VI-22

    Theory of isotropic linear elasticity

    2. Basic equations in plane state:a) Balance equations

    b) Reciprocity

    0

    0

    0

    xyxx

    x xy x

    xy y xy y

    j ij i j

    y

    i

    y

    ij

    Fl m Tx y

    l m TF

    x

    F T

    y

    xij i y yxj

  • 7/27/2019 EMSD Ch 6

    23/30

    VI-23

    Theory of isotropic linear elasticity

    2. Basic equations in plane state:c) Stresses on an oblique facet

    2 2

    2

    *

    2

    2

    cos sin 2 cos sin

    sin2 cos2

    2

    x y xy

    x y xy

    y x

    ij i j

    i

    xy

    j i j

    l m lm

  • 7/27/2019 EMSD Ch 6

    24/30

    VI-24

    Theory of isotropic linear elasticity

    2. Basic equations in plane state:d) Dilatation and shearing

    *

    *

    2 2

    Dilatation along

    Shearing of angle

    cos sin 2 cos sin2

    sin2 cos2

    2 2

    ij i j

    i

    xy

    x y

    x

    j

    y x y

    i j

    e e e

    e e

    e e

    e

  • 7/27/2019 EMSD Ch 6

    25/30

    VI-25

    Theory of isotropic linear elasticity

    2. Basic equations in plane state:e) Displacements-strains relationship

    2

    2

    1ij i j j

    x

    y

    xy xy

    i

    u

    x

    v

    y

    u v

    y x

    u u

    e

    e

    e

    e

  • 7/27/2019 EMSD Ch 6

    26/30

    VI-26

    Theory of isotropic linear elasticity

    3. St-Venants equations of compatibility:

    3D case:

    22 22

    2 2

    22 2 2

    2 2

    2 22 2

    2 2

    0

    2

    2

    2

    kk ij ij kk ik jk jk ik

    yz xy x xzy xyx

    y yz xy x z xz xz

    y yzz z

    y z x x y z y x x y

    z x x z x z y x y z

    z y y z x y

    e e e e

    e e e

    e e e

    e e e

    yz xy xz

    z x y z

  • 7/27/2019 EMSD Ch 6

    27/30

    VI-27

    Theory of isotropic linear elasticity

    3. St-Venants equations of compatibility:plane stress state (EP):

    particular case: Fxand Fy= cst z= 0 : ok

    general case: doing following substitutions in EPe case

    (Best approximation consistent with the assumptions z=xz=yz=0)

    NB: if= 0 or if volumetric forces Fiare constant,both plane states lead to

    ' 1and 1 '

    1 ' 1

    2 2

    2 21

    yxx y

    FF

    x y x y

    approximation

    2 22

    2 2 0x y x yx y

  • 7/27/2019 EMSD Ch 6

    28/30

    VI-28

    Theory of isotropic linear elasticity

    3. St-Venants equations of compatibility:plane stress state (EP):

    moreover:

    in general the 3 equations above are not satisfied(they require ez = ax + by + c = linear function)

    plane stress state is an approximation

    0 ; 0 ; 0

    xz yz z x yz e e e

    2 22

    2 2

    y xyx

    y x x y

    e e

    2 2 2

    2 2

    0 ; 0 ; 0z z z

    x y x y

    e e e

  • 7/27/2019 EMSD Ch 6

    29/30

    VI-29

    Theory of isotropic linear elasticity

    Engineering notation:

    cartesian

    coordinates x,y,z

    cylindrical

    coordinates r,q,z

    spherical

    coordinates r,j,q

    r r rz

    r z

    zr z z

    q

    q q q

    q

    x xy xz

    yx y yz

    zx zy z

    r r r

    r

    r

    j q

    j j jq

    q qj q

  • 7/27/2019 EMSD Ch 6

    30/30

    VI-30

    Theory of isotropic linear elasticity

    Engineering notation:

    cartesian

    coordinates x,y,z

    cylindrical

    coordinates r,q,z

    spherical

    coordinates r,j,q

    1 1

    2 2

    1 1

    2 2

    1 1

    2 2

    x xy xz

    yx y yz

    zx zy z

    e

    e e

    e

    1 1

    2 2

    1 1

    2 2

    1 12 2

    r r rz

    r z

    zr z z

    q

    q q q

    q

    e

    e e

    e

    1 1

    2 2

    1 1

    2 2

    1 12 2

    r r r

    r

    r

    j q

    j j jq

    q qj q

    e

    e e

    e