EMS Summer 2000

Embed Size (px)

Citation preview

  • 8/3/2019 EMS Summer 2000

    1/47

    University of Twente

    MWElectro-catalytic membrane reactors

    EMS Summer School

    Cetraro, Italy

    9-15 September 2000

  • 8/3/2019 EMS Summer 2000

    2/47

    University of Twente

    MW

    Outline Electro-catalytic membrane reactors

    ! Chlor-Alkali Electrolysis

    The oldest membrane reactor?

    ! Fuel Cells

    The energy supply of the future?

    ! Bipolar membranes

    The new tool to produce acids andbasis?

  • 8/3/2019 EMS Summer 2000

    3/47

    University of Twente

    MW

    Integrated Reaction And Separation

    SeparationProblem

    ReactionEngineering

    Mass

    Transport

    MaterialScience

    MaterialProcessing

    Equipment

    Design

    Process

    Technology

    IRAS

  • 8/3/2019 EMS Summer 2000

    4/47

  • 8/3/2019 EMS Summer 2000

    5/47

    University of Twente

    MW

    Membrane Requirements

    ! Separate hydrogen and chlorine

    ! Separate caustic and chlorine! Separate slightly acidic anolyte from strong

    caustic

    ! Transfer sodium from anolyte to catholyte

    ! Transfer water

    ! Little electrical resistance

    Material

    Science

  • 8/3/2019 EMS Summer 2000

    6/47

    University of Twente

    MW

    Membrane materials and morphology

    CF CF2 CF2 CF2

    O

    CF2 CF

    CF3

    O CF2 CF2 COO-

    n m

    z

    CF CF2 CF2 CF2

    O

    CF2 CF

    CF3

    O CF2 CF2 SO3-

    n m

    z

    Nafion

    MaterialScience SO3-

    SO3-

    SO3-

    SO3-

    SO3-

    SO3-

    SO3- SO3

    -

    SO3-

    SO3-

    SO3-

    SO3-

    SO3-

    SO3-

    SO3-

    SO3-

    SO3- SO3

    -

    SO3-

    SO3-

  • 8/3/2019 EMS Summer 2000

    7/47

    University of Twente

    MW

    Composite membrane concept

    MaterialScience

    +

    --

    --

    ----

    -

    -

    ---

    --

    --

    Na+

    [Na+] = [OH-]

    [OH-]

    ShortLongAnode life time

    > 2 %< 0.5 %O2 in product chlorine

    HighLowElectrical resistance

    9675Current effic.at 8 N NaOHLowHighWater content

    2-3

  • 8/3/2019 EMS Summer 2000

    8/47

    University of Twente

    MW

    Membrane module requirements

    Equipment

    design

    Prevention of polymerembrittlement

    Gas pocket elimination

    < 7 mbarReduction of mechanical

    stress on membrane

    Stable discharge pressure of

    mixed G/L flow

    0.05%Uniform micro-distribution ofthe current density

    Optimum geometry of theelectrodic structures

    Limited gradient of caustic

    close to the membrane

    < 5 g/l NaClLimited gradient of depletedbrine close to membraneHigh mass transfer between

    membrane and bulk

    32 0.2 %Uniform caustic concentration

    210 g/lUniform brine concentration

    3 CUniform temperature across

    membrane surfaceEfficient mixing in anodic and

    cathodic compartments

    ValueGoalRequirement

    Source: Iacopetti, I. Membrane electrolyser operating at high current density, Modern Chlor Alkali Technology Vol. 6

  • 8/3/2019 EMS Summer 2000

    9/47

    University of Twente

    MW

    Process requirements Process flow diagram

    Process

    technology

    Salt transport, storage, handling

    Salt disolver

    Primary brine treatment

    Secondary brine treatment

    Electrolysis

    HydrogenTreatment

    CausticEvaporator

    Chlorine Cooling

    And Drying

    Chlorine Liquefaction

    Power supply

  • 8/3/2019 EMS Summer 2000

    10/47

    University of Twente

    MW

    Outline Electro-catalytic membrane reactors

    ! Chlor-Alkali Electrolysis

    The oldest membrane reactor?

    ! Fuel Cells

    The energy supply of the future?

    ! Bipolar membranes

    The new tool to produce acids andbasis?

  • 8/3/2019 EMS Summer 2000

    11/47

    University of Twente

    MW

    Principle of fuel cells

    Anodicoxidation -

    cationproduction

    Transport ofcation through

    membrane

    Cathodicreduction

    Gas or Liquid (Fuel)

    By-product

    Mass

    Transport

    &

    React. Eng.

    e- e-

  • 8/3/2019 EMS Summer 2000

    12/47

    University of Twente

    MW

    Electrochemical reaction in H2-fuel cell

    Anode: 2 H2 4 H+ + 4e-

    Hydrogen oxydation reaction

    Cathode: O2 + 4H+ + 4e- 2 H20

    Oxygen reduction reaction

    Reaction

    Engineering

  • 8/3/2019 EMS Summer 2000

    13/47

    University of Twente

    MW

    Polymer Electrolyte Fuel Cells Hydrogen based

    Graphite plates/Current collector

    with gas distributorgrooves

    H+

    Anode feed H2Cathode feed O2

    (Air)

    Anode vent Cathode vent

    Carbon particles

    with platinumcatalyst particles

    Gas diffuser

    Protonconductingcation-exchangemembrane

    Source: S. Gottesfeld, T. Zawodzinski, Polymer Electrolyte Fuel Cells, in: Advances in

    Electrochemical Science and Engineering

    Equipmentdesign

  • 8/3/2019 EMS Summer 2000

    14/47

    University of Twente

    MW

    Membrane electrode morphologies

    MaterialScience

    &Processing

    Platinum

    Ionomer

    PTFE Pt/C/PTFECatalyst

    Carboncloth

    50 mm

    Pt/CCatalyst

    3 mm

    4 mg/cm2 0.5 mg/cm2 0.15 mg/cm2

    Ionomer

    Ionomer

    Source: S. Gottesfeld, T. Zawodzinski, Polymer Electrolyte Fuel Cells, in: Advances in

    Electrochemical Science and Engineering

  • 8/3/2019 EMS Summer 2000

    15/47

    University of Twente

    MW

    Cathode catalyst performance

    0 5 10 15 20 25

    0.2

    0

    0.4

    0.6

    0.8

    1.0

    CellVoltage

    (V)

    Cathode specific activity (A/mg Pt)

    Source: S. Gottesfeld, T. Zawodzinski, Polymer Electrolyte Fuel Cells, in: Advances in

    Electrochemical Science and Engineering

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    16/47

    University of Twente

    MW

    Oxygen reduction reaction (ORR)

    H+

    Air/O2 inletGas diffusion

    layerMembrane

    Cathodecatalystlayer

    P0C= k*P1

    Diffusion in porous backing

    Oxygen diffusionProtonic conductivityInterfacial losses

    OxygenDepletionalong theAir/O2 flowchannel

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    17/47

    University of Twente

    MW

    Limiting current density

    0 0.5 1.0 1.5 2.0

    0.2

    0

    0.4

    0.6

    0.8

    1.0

    Current density (A/cm2)

    CathodePotential

    (V)

    5 atm O2

    5 atm AirN2+O22 atm

    (13.5% O2)

    N2+O25 atm (5.2% O2)

    Mass

    Transport

    Source: T.E. Springer, M.S. Wilson, S. Gottesfeld, J.

    Electrochem. Soc. 140 (1993) 3513

  • 8/3/2019 EMS Summer 2000

    18/47

    University of Twente

    MW

    Outline Electro-catalytic membrane reactors

    ! Chlor-Alkali Electrolysis

    The oldest membrane reactor?

    ! Fuel Cells

    The energy supply of the future?

    ! Bipolar membranes

    The new tool to produce acids andbasis?

  • 8/3/2019 EMS Summer 2000

    19/47

    University of Twente

    MW

    Principle of bipolar membranes

    H O2

    H+ OH-

    Na+ Cl-

    cem aem

    Na+Cl -

    +

    +

    +

    -

    -

    -cathode anode

    H+ OH-

    H O2

    H O2

    bipolar membrane

    -

    --

    +

    ++

    +

    +

    +

    -

    -

    -

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    20/47

    University of Twente

    MW

    Bipolar Electrodialysis Principle

    salt

    NaCl

    acidHCl

    baseNaOH

    salt

    NaCl

    bmaem cem

    H O2

    OH-H+

    Cathode Anode

    cem aem

    Na

    +

    Cl-

    H O2

    Na+

    Cl

    -

    --

    ----

    ++

    ++++

    ++

    ++++

    ++++++

    --

    ----

    --

    ----

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    21/47

    University of Twente

    MW

    Bipolar Electrodialysis Acid + Base production

    ED-BPMsalt solution

    water

    base

    acid

    diluted salt

    Process

    technology

  • 8/3/2019 EMS Summer 2000

    22/47

    University of Twente

    MW

    Bipolar ED process

    salt solution

    water

    base

    acid

    diluted salt

    bipolar membrane electrodialysis unit

    Membrane Module

    123

    (ED-BPM)

    1

    2

    3 base

    acid

    salt

    Processtechnology

  • 8/3/2019 EMS Summer 2000

    23/47

    University of Twente

    MW

    Mass transport desired and undesired

    acid

    H+X-

    rinse rinse

    OH-

    CEM

    O

    2

    H

    2

    BPM

    X-

    AEM BPM

    H+OH-H+OH-

    repeat unit

    CEM

    M+

    CEM

    OH-

    AEM

    salt

    M+X-

    3 base

    base

    M+OH-

    H2

    O

    H2O H2O

    M+

    Membrane Module

    2 acid

    1 salt

    3 base

    2 acid

    1 salt

    H2O

    X-OH-

    H+

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    24/47

    University of Twente

    MW

    Stacking membranes into module

  • 8/3/2019 EMS Summer 2000

    25/47

    University of Twente

    MW

    Process realization

    ACID PRODUCT

    organic (lactic-, ascorbic-,salicylic-, amino-) acid

    inorganic acid (HF,H2SO4, HCl)

    sodium hydroxide

    potassium hydroxide

    recycling (pickling)

    purification

    fermentation

    PROCESS INTEGRATION

    BASE PRODUCT

    sodium methoxide

    pH-stabilization

    Processtechnology

  • 8/3/2019 EMS Summer 2000

    26/47

    University of Twente

    MW

    Installed processes (Eurodia Tokoyama Soda)

    Processtechnology

    4004001500Installed

    membrane area(m2)

    Meth. sulf. acid

    AAP

    OAP

    OAP

    OAP

    AAP

    Pickling liquorsrecovery

    HF recovery

    OAP

    OAR

    OAP

    1986

    1994

    1995

    1996

    1997

    1998

    1999

    EuropeJapanUSAYear

    Source: Presentation Eurodia, 3rd Bipolar Workshop, Montpellier, June 5th, 2000

  • 8/3/2019 EMS Summer 2000

    27/47

    University of Twente

    MW

    Acid recovery + Precipitation

    BaseSalt

    Acid

    Diluate

    Concentrate

    Filter

    press

    Metal hydroxidefilter cake

    Waste acid

    Pickling bath

    ED diluatecake wash

    steel sheet

    cleansteel sheet

    ~ 1.5M KOH / 0.5M KF

    Acid product HF/HNO3

    Aquatech process

    Bipolar stack

    ED stack

    Neutralizationtank

    pH=9

    Processtechnology

  • 8/3/2019 EMS Summer 2000

    28/47

    University of Twente

    MW

    CDI Continous deionization

    +

    Anode

    ----

    -----

    -

    -

    ++

    ++

    ++

    +++++

    -

    ---

    ------

    -

    ++++

    +++++

    +

    +

    -

    Na+

    Cl-Cl-

    Na+

    Process to prepare low conductivity water: bed of mixed IEX beads increases conductivity

    in diluate compartment

    Mixed IEX bed

    R.W. Baker, Membrane Technology and Applications, 1999, McGraw-Hill

    Feed(aqueous salt solution)

    ConcentrateConcentrate

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    29/47

    University of Twente

    MW

    Bipolar CDI

    +

    Anode

    ----

    -------

    ++

    ++

    +++++

    ++

    ---

    -

    ----

    --

    -

    ++++

    ++++++

    +

    Na+Cl-

    catIEX bed

    Source Parsi, US Patent 469,983, 1989:

    Feed

    anIEX bed

    Product

    -

    Cathode

    Concentrate

    Na+Cl-

    OH-H+

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    30/47

    University of Twente

    MW

    Problems-Challenges

    ! Membrane stability

    base stability (loss of capacity, polymerbreakdown)

    ! Product purity

    salt ion leakage membrane selectivity

    ! Process economics

    membrane costs membrane potential

  • 8/3/2019 EMS Summer 2000

    31/47

    University of Twente

    MW

    Systematic study of selectivity performance

    support

    2dry

    CE layer

    1cast

    CE polymer

    5cure

    BPM

    4press

    AE layer

    3cast

    CE glue

    Material

    Science

    &

    Processing

  • 8/3/2019 EMS Summer 2000

    32/47

    University of Twente

    MW

    Membrane structures

    Cation permeable layerblend S-PEEK sulphonated poly(ether ether ketone)

    PES poly(ether sulfone)

    varied substitution, composition, thickness.

    Anion permeable layercommercial anion exchange membranes

    AMH, AHA, AMX(Tokuyama),

    R4030 (Pall), ADP (Solvay)

    Attachment

    glue with cation layer polymer-blend solution

    Bipolar interfacedifferent catalystsintroduce roughness

    MaterialScience

    &

    Processing

  • 8/3/2019 EMS Summer 2000

    33/47

  • 8/3/2019 EMS Summer 2000

    34/47

    University of Twente

    MW

    Membrane characterization

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    35/47

    University of Twente

    MW

    Membrane characterization

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    36/47

    University of Twente

    MW

    Membrane characterization

    CEM CEM

    1 65432

    V

    H+ OH-

    O

    2

    H2

    BPM

    H+OH-

    X

    -

    BPMBPM

    M+

    Na2SO4 NaCl Na2SO4NaClNaClNaCl

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    37/47

    University of Twente

    MW

    Current-Voltage curve

    i

    [A/m2]

    Um [V]

    iop

    ilim

    Uop

    1000

    3000

    10

    20

    0

    JOH-JH+

    JM+ + |J X-|

    Udiss 1

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    38/47

    University of Twente

    MW

    Concentration profiles - Selectivity

    c

    z

    ++++++

    base ca acid

    OH-

    M+X-

    H+

    cFIX cFIX

    BPM

    OH-M+ X-H+

    X-X- M+ M+

    Mass

    Transport

    2

    l im

    1

    2

    M S

    M X

    f ix

    D cJ J i

    l c F= = =

  • 8/3/2019 EMS Summer 2000

    39/47

    University of Twente

    MW

    Current-Voltage curve

    CE-Layer IEC=1.6

    0

    5

    10

    0 1 2

    V_mem

    0.04 mm

    0.09 mm

    0.10 mm

    2M NaCl

    25C26 cm2

    current

    density[mA/cm2]

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    40/47

    University of Twente

    MW

    Influence of layer thickness

    0

    50

    100

    0.0E+00 1.0E-04 2.0E-04

    layer thickness [m]

    limitingcurrentdensity

    [A/m2]

    Mass

    Transport

    2

    l im

    1

    2

    M S

    f i x

    D ci

    l c F=

  • 8/3/2019 EMS Summer 2000

    41/47

    University of Twente

    MW

    Variation of ion exchange capacity

    0

    50

    100

    0 1 2 3 4membrane potential [V]

    currentdensity

    [A/m2]

    80%90%S-PEEK

    20%

    40%

    70%

    60%

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    42/47

    University of Twente

    MW

    Influence of ion exchange capacity

    0

    50

    100

    0 1 2

    ion exchange capacity [meq/g]

    limitingcurrentdensity

    [A/m2

    ]

    predicted

    measured

    Mass

    Transport

    2

    l im

    1

    2

    M S

    f i x

    D ci

    l c F=

    Necessary totake swelling into

    account (for cand D) !

  • 8/3/2019 EMS Summer 2000

    43/47

    University of Twente

    MW

    Pilot plant

    Mass

    Transport

  • 8/3/2019 EMS Summer 2000

    44/47

    University of Twente

    MW

    Limiting current density in Pilot Tests

    c ca cc b

    salt base acidblock

    ac

    repeat unit

    (+) Anode Cathode (-)saltblock block rinserinse

    Membrane module with Effective membrane area: 180 cm2

    2 repeat units

    Membranes commercial heterogeneous types (FuMA-Tech)

    Add extra layersto bipolar membrane

    Operate 2 mol/L solutions

    25 - 30 C

    up to 100 mA/cm2

    Mass

    Transport

    I i il d l

  • 8/3/2019 EMS Summer 2000

    45/47

    University of Twente

    MW

    Ilim in pilot module

    b

    base acid

    ac

    salt

    c

    b

    base acid

    ac

    salt

    a

    b

    base acid

    ac

    salt

    b

    base acid

    ac

    salt

    ca

    ilim = 9 mA/cm2 Current-voltage characterization

    Udiss = 0.6 V

    ilim = 5 mA/cm2

    Udiss = 0.6 V

    ilim = 4 mA/cm2

    water limitation

    ilim = 1.8 mA/cm2water limitation

    0

    5

    10

    15

    20

    0 1 2 3 4 5 6 7 8 9 10

    U_module (V)

    currentdensity

    [mA/cm2]

    b ab

    abc

    bc

    Mass

    Transport

    I it t t

  • 8/3/2019 EMS Summer 2000

    46/47

    University of Twente

    MW

    Impurity transport

    b

    base acid

    ac

    salt

    a

    b

    base acid

    ac

    salt

    iLIM total salt flux flux Cl -/ Na+

    (measured) (measured)

    [mA/cm2] [mol/(m2h)] [-]

    standard 9 16.6 20.0

    thick (a) layer 5 11.7 29.3

    current-voltagecurve

    Electrodialysis withacid and baseat 100 mA/cm2

    Mass

    Transport

    C l i

  • 8/3/2019 EMS Summer 2000

    47/47

    University of Twente

    MW

    Conclusions Electro-catalytic membrane reactors

    ! Chlor-Alkali Electrolysis

    The oldest membrane reactor

    ! Fuel Cells

    The energy supply of the future

    ! Bipolar membranes

    The new tool to produce acidsand basis