Emory 1992 E.coli

Embed Size (px)

Citation preview

  • 8/16/2019 Emory 1992 E.coli

    1/15

     10.1101/gad.6.1.135Access the most recent version at doi: 1992 6: 135-148Genes Dev.

     S A Emory, P Bouvet and J G Belasco Escherichia coli.A 5'-terminal stem-loop structure can stabilize mRNA in 

    References

     http://genesdev.cshlp.org/content/6/1/135#related-urlsArticle cited in:

    http://genesdev.cshlp.org/content/6/1/135.refs.htmlThis article cites 41 articles, 15 of which can be accessed free at:

    serviceEmail alerting

     click herethe top right corner of the article orReceive free email alerts when new articles cite this article - sign up in the box at

     http://genesdev.cshlp.org/subscriptions go to:Genes & Development To subscribe to

    Copyright © Cold Spring Harbor Laboratory Press

     Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://genesdev.cshlp.org/lookup/doi/10.1101/gad.6.1.135http://genesdev.cshlp.org/lookup/doi/10.1101/gad.6.1.135http://genesdev.cshlp.org/content/6/1/135#related-urlshttp://genesdev.cshlp.org/content/6/1/135#related-urlshttp://genesdev.cshlp.org/content/6/1/135.refs.htmlhttp://genesdev.cshlp.org/content/6/1/135.refs.htmlhttp://genesdev.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genesdev;6/1/135&return_type=article&return_url=http://genesdev.cshlp.org/content/6/1/135.full.pdfhttp://genesdev.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genesdev;6/1/135&return_type=article&return_url=http://genesdev.cshlp.org/content/6/1/135.full.pdfhttp://genesdev.cshlp.org/subscriptionshttp://genesdev.cshlp.org/subscriptionshttp://genesdev.cshlp.org/subscriptionshttp://genesdev.cshlp.org/subscriptionshttp://genesdev.cshlp.org/subscriptionshttp://www.cshlpress.com/http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/subscriptionshttp://genesdev.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genesdev;6/1/135&return_type=article&return_url=http://genesdev.cshlp.org/content/6/1/135.full.pdfhttp://genesdev.cshlp.org/content/6/1/135#related-urlshttp://genesdev.cshlp.org/content/6/1/135.refs.htmlhttp://genesdev.cshlp.org/lookup/doi/10.1101/gad.6.1.135

  • 8/16/2019 Emory 1992 E.coli

    2/15

    A 5'-terminal stem-loop structure can

    stabilize mRNA in  Escherichia coli

    S h e r i A . E m o r y / P h i l i p p e B o u v e t / ' ^ a n d J o e l G . B e l a s c o ^ ' ^

    ^Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 USA;

    ^Laboratoire de Biologic et Genetique du Developpement, Universite de Rennes I, 35042 Rennes Cedex, France

    The 5'-untranslated region of the long-lived   Escherichia coli ompA  transcript function s as an mR NA stabilizer

    capable of prolonging the lifetime in

      E. coli

      of a num ber of heterolo gous m essag es to whic h it is fused. T o

    elucidate the structural basis of differential mRNA stability in bacteria, the domains of the   ompA

    5'-untranslated region that allow it to protect mRNA from degradation have been identified by mutational

    analysis . The presence of a stem-loop no more than 2-4 nucleot ides from the extreme 5 ' terminus of this

    RNA segment is crucia l to it s stabil iz ing inf luence, whereas the sequence of the stem-loop is relat ively

    unimportant. The potential to form a hairpin very close to the 5' end is a feature common to a number of

    stable prokaryotic messages. Moreover, the lifetime of a normally labile message   {bla  mRNA) can be

    prolonged in £.  coli  by adding a simple hairpin structure at its 5' terminus. Accelerated degradation of  ompA

    mRNA in the absence of a 5'-terminal stem-loop appears to start downstream of the 5' end. We propose that

    E. coli  m essag es beginning wit h a single-stranded RNA segm ent of significant length are preferentially

    targeted by a degradative tibonuclease that interacts with the mRNA 5' terminus before cleaving internally at

    one or more distal sites.

    [Key Words:  mR NA s tab i l i ty ; 5 ' - u n t r an s la ted r eg io n ;  Escherichia coli;  g en e r eg u la t io n ;  ompA;  R N A s t ru c tu r e ]

    Received October 18, 1991; revised version accepted November 27, 1991.

    Degradation of mRNA is a cel lu lar process that is h ighly

    impor tant for contro ll ing gene express ion . The capacity

    to degrade mRNA is essential to the ab il i ty of cel ls to

    al ter their patterns of pro tein synthesis rap id ly in re-

    sponse to their changing needs. In addit ion , the s teady-

    s ta te ce l lu la r co n cen t r a t io n o f a co n t in u o u s ly sy n th e-

    s ized me ssage is d irect ly propor t i onal to i ts half - l ife . T he

    lifet imes of indiv idual messages can vary widely with in

    a s ingle cel l . For ins tance, mRNA half - l ives in  Escherich-

    ia coh

      range f rom seconds to near ly an hour , with an

    average l ifet ime of 2-4 min (Pedersen et a l . 1978; Nils-

    son et a l . 1984; Donovan and Kushner 1986; Emory and

    B elasco 19 9 0) . Desp i te th e imp o r tan ce of mR N A in s ta -

    b i l i ty to g en e r eg u la t io n , th e mech an isms an d s t ru c tu r a l

    d e te rmin an ts o f p ro k ary o t ic mR NA d ecay a r e n o t we l l

    unders tood (Kennell 1986; Belasco and Higgins 1988) .

    Elements at the 5 ' and 3 ' ends of bacter ial and phage

    messag es h av e b een imp l ica ted in mR NA s tab i l iza t io n .

    M o s t p ro k a r y o t i c m R N A s e n d i n a 3 ' - t e r m i n a l s t e m -

    loop s tructure, which serves as a pro tective barr ier

    against degradation by 3 ' exor ibonucleases (Belasco et a l .

    1985;  Mott et a l . 1985; Newbury et a l . 1987; Chen et a l .

    1988).

      Ho wev er , f o r b ac te r ia l mR NAs th a t en d wi th a 3 '

    hairp in , there is hard ly any evidence to indicate that s ta-

    bility differences in vivo result from differential rates of

    ex o n u c leo ly t ic p en e t r a t io n o f th ese 3 ' s tem- lo o p s t ru c-

    ^Corresponding author.

    tu res (Belasco et a l . 1986; Chen et a l . 1988; Chen and

    Belasco 1990) . Ins tead , i t appears that the d isparate l i fe-

    t imes o f mo s t p ro k ary o t ic mR NAs a r e co n t ro l led b y d e-

    cay d e te rmin an ts lo ca ted u p s t r eam o f th e 3 ' en d . Esp e-

    c ia l ly n o te wo r t h y a r e a smal l n u m b er o f 5 ' - t e rm in a l

    mR NA seg men ts th a t h av e b een sh o wn to s tab i l ize h e t -

    ero logous messages to which they are fused . These 5 '

    mR NA s tab i l ize r s co mp r ise th e 5 ' - u n t r an s la ted r eg io n

    (UTR) of cer tain s tab le bacter ial and phage messages ,

    such as the

      ompA

      tran scr ip t of

      E. coli,

      t h e

      ermC

      and

    ermA  trans cr ip ts of  Bacillus subtilis  an d  Staphylococcus

    aureus,

      and the gene 32 mes sage of phage T4, as we ll as

    a 5 ' segment of the phage \  p ^  t r an scr ip t (Yamamo to an d

    Im am oto 1975; Gors ki et a l . 1985; Belasco et a l . 1986;

    Bechhofer and Dubnau 1987; Sandler and Weisblum

    1988).

      Ap p aren t ly , th ese 5 ' e lemen ts a r e ab le to p ro tec t

    mR NA f ro m a t tack b y an imp o r tan t ce l lu la r r ib o n u -

    c lease th a t in i t i a tes mR NA d eg rad a t io n in v iv o ; th e

    id en t i ty o f th i s k ey d eg rad a t iv e en zy me r emain s u n cer -

    ta in . Mo s t o f th e k n o wn 5 ' mR NA s tab i l ize r s f u n c t io n

    only under special condit ions . For example, the gene 32

    5 '  UTR can in c r ease messag e l i f e t imes o n ly in T4 - in -

    fected cel ls (Gorski et a l . 1985) , and s tab il izat ion of

    m R N A b y t h e  ermC  a n d  ermA  5 ' UT R s req u i r es rib o -

    so me s ta l l in g in d u ced b y an an t ib io t ic th a t in h ib i t s

    translat ion (Bechhofer and Dubnau 1987; Sandler and

    We isb lu m 1 9 88 ). S imi la r ly , messag e s ta b i l iza t io n b y th e

    5 '  por t ion of the X P t r an scr ip t i s mo s t p ro n o u n ced o n ly

    GENES & DEVELOPMENT 6 :135-148 © 1992 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/92 $3.00

    135

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/

  • 8/16/2019 Emory 1992 E.coli

    3/15

    Emory et al.

    af te r p ro lo n g ed X in f ec t io n (Y amam o to an d Ima mo to

    1975).

    In contras t , the  ompA  5 ' UT R can s tab i l ize mR NA in

    £.

      coli

      under normal condit ions of rap id cel l g rowth

    (Belasco et al. 1986; Em ory an d Belas co 1990). Th is RN A

    segment is der ived f rom the

      ompA

      gene transcr i p t ,

    wh ich en co d es a majo r  E. coli  o u t e r m e m b r a n e p r o t e i n

    (OmpA). In cel ls growin g rapid ly at 30°C, the

      ompA

      m e s -

    sage decays with a half-life of ~ 17 min, making it one of

    t h e m o s t s t a b l e m R N A s i n   E. coli  (von Gabain et al.

    1983).  Th e l i f e t ime o f  ompA  m R N A is g ro wth ra te r eg-

    u lated and fal ls by as much as a factor of 4 in s lowly

    growing cells (Nilsson et a l . 1984) . Growth rate regula-

    tion of  ompA  m R NA stabil i ty , l ike the longevity of the

    ompA

      trans cr ip t unde r condit io ns of rap id growth , is de-

    te rmin ed b y th e 1 3 3 -n u c leo t id e  ompA  5 ' UTR , wh ich

    can confer both of these proper t ies onto o ther messages

    to which i t is jo ined (Emory and Belasco 1990) .

    As the l i fet imes of a var iety of lab ile messages can be

    prolonged by fusion to the  ompA  5' UT R (Belasco et al.

    1986;

      M. Ha nse n and J . Belasco , unpub l. ) , i t appears th at

    m a n y

      E. coli

      mR NAs a r e d eg rad ed v ia a co mmo n p a th -

    way ag a in s t wh ich th i s 5 ' R NA seg men t p ro v id es p ro -

    tec t io n . M essag e s tab i l iza t io n b y th e

      ompA

      5 ' UT R is

    not an indirect consequence of close r ibosome spacing ,

    wh ich th eo re t ica l ly mig h t s te r ica l ly h in d er r ib o n u c lease

    attack (Lundberg et a l . 1988; Emory and Belasco 1990;

    M. Han sen and J. Belasco , unpu bl. ) . Ins tead , th is R NA

    seg men t seems to ac t d i r ec t ly to p ro tec t mR NA f ro m

    degradation by a r ibonuclease that responds to one or

    mo re e lemen ts n ear th e mR NA 5 ' en d . B o th th e seco n d -

    ary s tructure of the

      ompA

      5 ' UT R and i ts ab il i ty to func-

    t io n as a g ro wth - r a te - r eg u la ted m R N A s tab i lize r a r e

    highly conserved among enter ic bacter ia (Chen et a l .

    1991).  However , the identi ty of the specif ic  ompA  5 '

    UTR s t ru c tu r a l f ea tu r es th a t a r e imp o r tan t f o r mR NA

    stabil izat ion has not been explored previously .

    To e lu c id a te th e mech an ism o f mR NA s tab i l iza t io n

    b y th e

      E. coli ompA

      5 ' UTR , we h av e d is sec ted th i s R NA

    seg men t to id en t i fy th e s t ru c tu r a l co mp o n en ts th a t can

    p ro tec t mR NA f ro m d eg rad a t io n in £ .

      coli.

      Ou r s tu d ies

    reveal that the presence of a s tem-loop at or very near

    th e ex t r eme 5 ' t e rmin u s o f th e  ompA  5 ' UT R is essen tial

    for i ts function as a potent mRNA stabil izer . Fur ther-

    more, the half - l i fe of a normally lab ile   E. coli  messag e

    can be pro longed by adding a s imple s tem-loop at i ts 5 '

    en d . Th e 5 ' s tem- lo o p p ro tec t s  ompA  mR NA f rom d eg-

    radation that appears to begin downstream of the 5 ' end .

    By def in ing impo r ta nt aspec ts of the sub strat e specif ici ty

    of the

      E. coli

      mR NA d eg rad a t io n mach in ery , th ese f in d -

    ings provide key insights in to both the s tructural basis of

    d i f f e r en t ia l messag e s tab i l i ty in b ac te r ia an d th e mech -

    an ism o f mR NA d ecay .

    Results

    Two domains of the  o m p A 5 '  UTR are important for

    mRNA stabilization

    We h av e sh o wn p rev io u s ly th a t th e   E. coli ompA  5 ' UT R

    comprises two imperfect s tem—loop s tructures (hpl and

    hp2) and two s ingle-s tranded RNA segments (ss l and

    ss2) (Fig. 1; Chen et al. 1991). The   ompA  5 ' UT R was

    d is sec ted to id en t i fy th e s t ru c tu r a l d o main s r esp o n s ib le

    for i ts act iv i ty as an mRNA stabil izer in rap id ly growing

    E. coli  c ells . Var ious 5 ' UT R segm ent s we re delete d f rom

    a p lasmid-borne copy of a pseudo-wild- type  ompA  gene

    {ompA

      + 4]

      th a t en co d es a t r an scr ip t v i r tu a l ly id en t ica l

    in sequence and s tab il i ty to the wild- type

      ompA

      messag e

    (Emory and Belasco 1990) . Th ese dele ted se gm ents cor-

    responded to one or more RNA structural domains of the

    ompA  5 ' UTR u p s t r ea m of th e r ib o so me-b in d in g s i te

    (Fig. 1). Plasm ids enco ding the resu l t ing m ut an t

      ompA

    messag es were in t ro d u ced in to  E. coli  s train C600S, and

    to tal cel lu lar RNA was iso lated f rom rapid ly growing

    cu l tu r es a t t ime in te rv a ls a f te r t r an scr ip t io n in h ib i t io n

    wi th r i f amp ic in . Deg rad a t io n o f each mu tan t messag e

    and of the endogenous wild- type  E. coli ompA  messag e

    was mo n i to r ed s imu l tan eo u s ly b y S I an a ly s i s o f th ese

    RN A sa mpl es (Table 1). Th e paral lel analy sis of the de-

    cay of wild-type  ompA  mR NA p ro v id ed an in te rn a l s tan -

    dard that faci l i ta ted in terpretat ion of s tab il i ty d if fer -

    en ces amo n g th e v ar io u s mu tan t t r an scr ip t s .

    Two d is t in c t s t r u c tu r a l d o main s ap p ear to co n t r ib u te

    to mR NA s tab i l iza t io n b y th e  ompA  5 ' UT R. On e is the

    5 ' - te rmin a l s tem - lo o p s t ru c tu r e (h p l ; F ig . I ) , wh o se p r e -

    cise deletion reduces the half-life of  ompA  m R N A b y a

    factor of 3 to just 5.7 ± 0.4 min   {ompAA64)  Fig. 2, left).

    20

    G U

    A A

    A U

    G C

    C G

    C G

    G U

    V A G

    : A u

    G U

    G U

    C G

    U A

    C G

    G C

    U A

    1 ^

    A

    1 u

    G C

    G C

    G C

    G C

    A

    A

    G

    U

    u

    A

    -

    A C -6 0

    C G

    C G

    ^40

    U

    G

    C

    U

    C

    U

    A

    U

    U

    G

    U

    G

    C

    G UGAAGGAUUUAAC

    u

    G

    G

    A

    G

    A

    U

    A

    U

    U

    c

    A -100

    U

    G

    120

    1

    GCGUAUUUUGGAUGAUAACGAGGCGCAAAAAAUG

    hpl ss1 hp2

    ss2

    Figure 1.  Secondary stru cture of the

      ompA

      5' UTR. Brackets

    delineate the boundaries of the four secondary-structure do-

    mains w ithin this RNA segment (Chen et al. 1991): hpl (nucle-

    otides  1-63),  ssl (64-74), hp2 (75-103), and ss2 (104-133). The

    Shine-Dalgamo element and translation initiation codon are

    underlined. Precise

     5'-end

     mapping by primer extension shows

    that roughly equal numbers of  E. coli orapA  transcripts begin

    with the indicated 5'-terminal nucleotide or with a cytosine

    residue 1 nucleotide upstream (data not shown).

    136 GENES & DEVELOPMENT

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/

  • 8/16/2019 Emory 1992 E.coli

    4/15

    mRNA stabilization by a 5' stem- loop

    Th e other is a single-stranded R NA segme nt (ss2; Fig. 1),

    the 3' portion of which contains the ribosome-binding

    site. The stabiUty of

      ompA

      mRN A is halved by deleting

    from ss2 an 11-nucleotide RNA segment (5'-ss2) located

    a few nucleotides upstream of the

     ompA

      Shine-Dalgamo

    sequence

      {ompAA104-114)

      Fig.

      2,

      middle). Larger dele-

    tions that remove either of these two elements (hpl or

    5'-ss2) also destabilize the

      ompA

      message

      {ompAA104,

    ompAAllS)

      Table 1). In contrast, deletio n of the inte rnal

    hairpin (hp2) within the 5' UTR and of the single-

    stranded segment (ssl) between hp l and hp2

      [ompAA65-

    104, onipAA74-103)

      has little or no effect on the degra-

    dation rate of the

      ompA

      transcript (Fig. 2, middle; Table

    1).

     All of these deletions leave the

      ompA

      ribosome-bind-

    ing site intact, and none impair translation of

      ompA

    mRNA (Emory and Belasco 1990; Emory 1991).

    Stabilization by the 5'-terminal stem—loop

    is independent of its sequence

    The 5' UTRs of

     ompA

      mRNA from

      Seiratia maicescens

    an d

      Enterobacter aerogenes

      function as effective mRNA

    stabilizers in

      E. coli

      despite extensive sequence differ-

    ences in both hpl and hp2 (Chen et al. 1991). To assess

    the importance of the sequence of hpl to

      ompA

      mRNA

    stability, the degradation of variant

      E. coli ompA

      mes-

    sages with altered 5'-terminal hairpins was examined

    (Fig. 3; Table 2). Tru nca tion of hp l by deleting 44 nucle-

    otides from its top reduces th e ^df-life of the

     ompA

      mes-

    sage by

  • 8/16/2019 Emory 1992 E.coli

    5/15

    Emory et al.

    :

    i

    I

    i

    1

    1 1

    o o>

    CO 00

    1

    t

    1

    1

    f

    1

    o

    I

    I

    f

    1

    1

    11

    I

    {

    1

    Q. Q.

    E E

    o o

    V

    I

    I

    l i

    It

    m

    m

    m

    n

    • f

    g 05 ^

    CO 00 o

    o o)  en

    138 GENES & DEVELOPMENT

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/

  • 8/16/2019 Emory 1992 E.coli

    6/15

    Table 1.  Half-lives of mutant  ompA  transcripts lacking 5'

    UTR segments

    ompA

      allele

    Mutant

    5'  UTR half-life

    structure'' (min)

    Wild-type

    half-life

    (min)''

    mRNA stabilization by a 5' stem-loop

    ompA

      +

     4"

    (pseudo-wild- type)

    ompAl ^64^

    (Ahpl)

    ompAM04-114'-'^

    (A5'-ss2)

    ompAM4-103'^

    (Ahp2)

    ompA^65-104^

    (Assl, hp2)

    ompAM04^'^

    (Ahpl , ssl , hp2)

    ompAMlS^'^

    (Ahpl , ssl , hp2, 5 '-

    -ss2)

    XL

    \

    \l

    If

    f

    .._-

    19 ±

     1'^

    SJ ±0.7

    9.5 ± 0.8

    14 ± 1

    1 7 ± 1

    4.4 ± 0.2

    3.6 ± 0.6'^

    N D

    16 ± 2

    18 ± 1

    14 ± 1

    19 ± 1

    1 7 ± 3

    1 9 ± 4

    ' 'The expected secondary structure of each mutant 5' UTR is

    represented diagrammatically (for a detailed secondary struc-

    ture of the wild-type 5' UTR, see Fig. 1). All were transcribed

    from the  hla  promoter, whose transcription initiation site was

    mapped precisely by primer extension (data not shown). (Solid

    line) Retained 5' UTR segment; (dotted or absent line) deleted 5'

    UTR segment; (solid rectangle) Shine-Dalgarno element.

    ''The half-life of the endogenous wild-type

      ompA

      message was

    measured simultaneously in the same strain as each mutant

    transcript. (ND) Not determined.

    '=The  ompA + 4,  ompAM4-103,  and  ompAM04-114  5' UTRs

    differ at the 5' end from that of wild-type

      ompA

      mRNA in that

    the 5'-terminal G has been replaced by the sequence GAUCA.

    The last 3 nucleotides of this substituted pentanucleotide

    (UCA) are expected to augment hp 1 by 2 bp by pairing with the

    last nucleotide of hpl (U) and the first 2 nucleotides of ssl (GA)

    (see Table 2).

    ''Emory and Belasco (1990).

    '^In addition to deletion of the number of 5'-terminal nucle-

    otides indicated by the  ompA  allele name, 4 nucleotides

    (GAUC) have been added at th e 5' end of ompA/: i64 mRNA, and

    6 nucleotides (GAUCAG) have been added at the 5' end of

    ompAM04

      and

      ompAMlS

      mRNA.

    'Segment

      5'-ss2

     comprises

      ompA

      nucleotides 104—114.

    ®In  ompAA65-104 mRNA, the G-U pair normally at the bottom

    of hpl has been changed to an A-U pair, and hpl has been

    augmented at its base by 4 additional nucleotide pairs (GAUC-

    hpl-GAUC). Furthermore, the deleted RNA segment (ssl-hp2)

    has been replaced by 2 nucleotides (AG).

    Owin g to th e p r esen ce o f th e w i ld - ty p e  ompA  t r an -

    scr ip t in s train C600S, i t was unclear in i t ia l ly whether

    th e r ap id d i sap p earan ce o f th e ex ten d ed  ompA  messag es

    r ep resen ted mR NA d eg rad a t io n o r mere r emo v a l o f th e

    single-s tranded por t ion of the 5 ' ex tension to generate a

    s tab le p ro cess in g p ro d u c t r esemb l in g w i ld - ty p e  ompA

    U A

    C G

    G C

    U A

    G C

    G C

    G C

    G C

    A C

    C G

    C G

    A U

    C G

    G A U A A G G A U .

    ompA+4

    G C

    G C

    G C

    A C

    C G

    C G

    A U

    C G

    G A U A A G G A U .

    ompAA9-52

    G CA AGG AU. . .

    G A U A A G G A U .

    ompAA64 ompAA29

    Figure 3. Variant 5' stem-loop structures . For each  ompA

    message with an altered 5' hairpin, the sequence and expected

    secondary structure of a 5'-terminal RNA segment tha t extends

    into ssl are shown. In every case, the remainder of the mRNA

    sequence is identical to that of the wild-type   ompA  transcript.

    Adenosine, cytosine, and uridine residues susceptible to signif-

    icant methylation by DMS in £.

      coli

      are indicated for the 5'-

    terminal segment of

     ompAA29

      mRNA. (#) Heavy methylation;

    (•) moderate methylation; (A) weak methylation.

    mR NA . If s tab le , su ch a p ro cess in g p ro d u c t wo u l d b e

    ex p ec ted to accu mu la te in th e ce l l to a s tead y - s ta te co n -

    cen t r a t io n h ig h er th a n th a t o f i t s mo re lab i le p r ecu r so r s ,

    the fu l l- length  ompA  t r an scr ip t s w i th 5 ' ex ten s i o n s . To

    d is t in g u ish th ese p o ss ib i l i t i e s , R NA was i so la ted f ro m

    an isogenic host s train (SE600) that bore a chromosomal

    delet ion of the

      ompA

      g en e an d ca r r ied p lasm id

    pOMPA-h 16a or pOMPA-l- 16b . SI and pr imer-extension

    an a ly s i s of th ese s tead y - s ta te R NA sam p les sh o we d l i t t l e

    or no detectable  ompA + 16a

      OT

     ompA + 16b  m R N A p r o -

    cess in g p ro d u c t th a t was s imi la r in len g th to th e w i ld -

    ty p e  ompA  mes sage (Fig . 5 , cont ro l lane s; Fig. 6) . The re-

    fore,

      addit io n of a shor t , s ingle-s t randed R NA se gm ent t o

    Table 2.  Half-lives of mutant  ompA  transcripts with variant

    5' hairpins

    ompA

      al lele

    ompA + 4

    ompAA9-52

    ompAA64*

    ompAA29

    m u t a n t

    m e ssa g e

    1 9 ± 2 ' '

    13 ± 1

    12 ± 1

    15 ± 2

    Half-life (min

    1

    wi ld- type

    message^

    N D

    1 8 ± 2

    1 8 ± 3

    1 7 ± 2

    ^The half-life of the endogenous wild-type   ompA  message in

    each strain was measured simultaneously. (ND) Not deter-

    mined.

    ''Emory and Belasco (1990).

    GENES & DEVELOPMENT 139

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/

  • 8/16/2019 Emory 1992 E.coli

    7/15

    Emory

     et

     al.

    Table 3.

      Mutant

      ompA

      transcripts with or without

    destahihzing   5'  extensions

    ompA  al lele

    ompA

    ompA

      +

     4

    ompA + 12a

    ompA + 16a

    ompA + 16b

    ompA + 12a*

    ompA + 16b*

    ompAM3a

    ompAA73b

    ompAA104»

    5 '

    U T R

    st ructure^

    (

    L

    H

    ii

    2

    1

    *

    1

    M u t a n t

    half-life

    (min)

    19

      ±2

    3. 2

      ± 1.1

    5.8

      ± 0.3

    6. 2

      + 0.8

    13

     ± 1

    13

     + 1

    6. 0

      ± 0.3

    13

     + 1

    24

      ± 3

    Wild- type

    half-life

    (min) ' '

    17

     ± 2

    N D

    15

      ± 3

    16

     ± 2

    12

     + 1

    17

      ± 1

    15

      + 1

    14

     ± 1

    15

      + 1

    19

     + 3

    ^The secondary structure

     of

     each muta nt 5' UTR is represented

    diagrammatically. Only 5'-terminal single-stranded extensions

    >2 nucleotides  in length  are show n. (Solid rectangle) Shine-

    Dalgamo element;

      [1]  ompA

      hpl; (2)

     ompA

      hp2; (*) synthetic

    hp*.

    ''The half-life of the endogenous wild-type  ompA  message in

    each strain was measured simultaneously. (ND) Not determined.

    •^Emory and Belasco (1990).

    t h e

     5' end of

      ompA

      m R N A d e s t ab i l iz e s

      th e

     en t i r e t r an -

    script.

    Five unpaired nucleotides  at the 5' end can  destabilize

    o m p A

      mRNA

    A n

      ompA

      d e l e t i o n m u t a n t

      [ompAAJSa]

      lack in g h p l and

    s s l an d b eg in n in g in s tead w i th h p 2 - s s2 p r eced ed b y ju s t

    5 n u c leo t id es (GAUC A) d ecay s w i th  a  sho rt half-life

    (6.0

     ±

      0 .3 min ) co m p ared wi th w i ld - ty p e  ompA  m R N A

    (14 ±  1 min) (Table 3; Fig. 7). As a 5 ' h a i rp in  of any k ind

    a n d

      ss 2

     ap p ear

      to be the

     only features

      of the

     ompA

      5 '

    U T R t h a t  are n ecessa ry  for m R N A l o n ge v i ty ,  the shor t

    l i f e t ime

      of

     ompAA73a  mR NA su g g es ts th a t

      a

      5 ' - te rmi-

    n a l s in g le - s t r an d ed seg men t o n ly 5 n u c l e o t i d e s  in len g th

    m a y

      be

     e n o u g h

      to

     acce le r a te  ompA  m R N A d eg rad a t io n .

    Th is h y p o th es i s was co n f i rmed  by m e a s u r i n g  th e decay

    ra te  of a  m e s s a g e

      {ompAAJSb]

      t h a t  is  id en t ica l  to

    ompAA73a  ex cep t th a t  it  h as o n ly  1 nuc leo tide (A) up-

    s t r e a m  of hp 2- ss 2 (Table 3). As expec ted , t he half - l i fe of

    ompAA73b  m R N A (1 3 ± 1 min ) p ro v ed  to be a b o u t as

    long  as  t h a t  of the wi ld - ty p e

      ompA

      tran scr ip t (15 ± 1

    min) (Fig.

      7).

     Th e se f in d in g s in d ica te th a t

      as few as 5

    u n p a i r ed b ases at the 5 ' end are suff icien t to target

      ompA

    m R N A

      for

     rap id d eg rad a t io n

      in

     E. coli.

    Addition

      of a

     5'-terminal stem-loop

      can

      prolong

    the lifetime

      of a

     normally short-lived mRNA

    A s  a  f ina l d emo n s t r a t io n th a t  a 5 '  s t e m - l o o p  and the

    s in g le - s t r an d ed R NA seg men t en co mp ass in g  th e  ompA

    r ib o so me-b in d in g s i te  are suff icien t  for th e full efficacy

    of  th e

     amp A

      mR NA s tab i l ize r ,  a m i n i m a l  5 ' U T R c o m -

    pr is ing only  a  sy n th e t ic te rm in a l h a i rp in (hp *)  and the

    ompA

      s s2 seg me n t was ev a lu a ted . As sh o w n

     in

     Figure

     7,

    a n  ompA  t r an scr ip t b ear in g th i s mi n im al

      5' UT R

    {ompAA104*)  Tab le 3 )

     is as

     s tab le

     as

     th e w i ld - ty p e mes -

    sage .

     It is also f ive t im es m ore s ta b le tha n a s imi la r m es -

    00 1 -

    10

    N  ^ ^ ~ ^

    o'\

    A o m p A + 1 2 a »

    • o m p A + 1 6 a

    O o m p A + 1 2 a

    •_

      ^

    •"

     

    5 CAGACUUUACAUC

    10 20

    Time (min)

    loo t

    10

    N

    A o m p A + 1 6 b »

    • o m p A + 1 6 b

    ,

    \

    s

    •  N

    \

    5 '  g  c a G A U C U A U A C U A U A A C C  . . .

    ^_*

    0 15 30 45

    Time (min)

    Figure

      4.

      Decay

      of

     mutant  ompA  transcripts with

      5'

      exten-

    sions.

      After transcription inhibition, total cellular RNA was

    isolated periodically from

      E.

      coli  strain C600S containing

    pOMPA-l-12a, pOMPA-Hl6a,  or pOMPA -l-12a»

      [top]

     or con-

    taining pOMPA-l- 16b or pOMPA-l- 16b»

      [bottom].

      The mutant

    transcripts and the endogenous wild-type  ompA  message were

    detected by SI analysis, and mRNA concentration was plotted

    semilogarithmically as a function of time. Beside the graphs are

    drawn the 5' extensions of ompA

     + 12a* [top]

     and  ompA -\-16b*

    [bottom]

      mRNA.  The 5'  extensions  of

      ompA + 12a

     and

    ompA-\-16b  mRNA

      are

     related

      to

     those

      of

     ompA-\-12a*

     and

    ompA + 16b*  mRNA, respectively, but include only those nu-

    cleotides shown  in  uppercase letters.  The 5'  extension  of

    ompA

     + 16a

     mRNA is identical to that of ompA

     + 12a

     except for

    4 additional nucleotides (GAUC) at th e 5 '  end. Underlined nu-

    cleotides

     at

      the 3' end

     of

      each extension are expected to base-

    pair with the first 1-2 nucleotides of 5' UTR segment ssl . Tran-

    scription initiation sites

     for

     these messages were mapped pre-

    cisely by primer extension (data not shown). The measured half-

    lives were 3.2 ± 1.1 min for ompA-\-12a  mRNA (O) and 15 ± 3

    m in   for  wild-type ompA m RNA

      [top],

      5.8 ± 0.3  mi n for

    ompA + 16a

      mRNA  ( ) and 16 ± 2 min for wild-type

      ompA

    mRNA  [top],  13

     ± 1 min for

      ompA-\-12a*  mRNA

      (A) and

    17

     ±

     1 min for wild-type  ompA  mRNA  [top],  6.2

     ±

     0.8 min for

    ompA

     +

     16b  mRNA  ( ) and 12 ± 1 m in for wild-type  ompA

    mRNA  [bottom],  and 13 ± 1 min for ompA

     +

     16b*  mRNA (A)

    and 15 ± 1 min for wild-type

      ompA

      mRNA

      [bottom].

    140 GENES & DEVELOPMENT

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://file//-/-16b*http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/http://file//-/-16b*

  • 8/16/2019 Emory 1992 E.coli

    8/15

    mRNA stabilization by a 5' stem -loop

    sage

      {ompAA104)

      with a 5' UTR consisting only of the

    ss2 segment (Table 1; Fig. 7). Thi s finding confirms tha t

    a simple 5'-terminal hairpin and the

      ompA

      ss2 segment

    together are as effective as the com plete

     ompA

      5' UTR at

    stabilizing mRNA. Moreover, when the same synthetic

    stem-loop (hp*) was introduced at the 5' terminus of

      bla

    mRNA, which encodes p-lactamase, the resulting

    bla202

      messages were found to decay with a half-life of

    6.8 ± 0.4 min (Fig. 7), about twice the lifetime of wild-

    type

     bla

      mRNA (3.7 ± 0.3 min) (Fig. 7; von Gabain et al.

    1983).

      Thus, the ability of

      bla

      mRNA to resist degrada-

    tion in

     E. coli

     can be enhanced simply by adding a st em -

    loop at its 5' end.

    Degradation in the absence of a 5'-terminal stem-loop

    appears to begin downstream of the

      ompA 5'

      end

    In principle, accelerated degradation of

      ompA

      mRNA

    lacking a 5'-terminal hairpin migh t be initiated either by

    a 5' exonuclease (defined here as a ribonuclease that re-

    moves single nucleotides sequentially from the RNA 5'

    terminus) or by a 5'-end-dependent endonuclease that

    cuts internally but is sensitive to the presence or absence

    of secondary structure at the 5' terminus of mRNA. Of

    these two possibilities, degradation by a single-strand-

    specific 5' exonuclease seems less likely because no 5'

    exoribonuclease has ever been detected in £.

      coli

      and

    because destabilizing single-stranded extensions added

    upstream of

      ompA

      h pl are not preferentially removed

    from the 5' end of

      ompA + 16a

     a nd

      ompA  + 16b

      mRNA

    to generate wild-type-like

      ompA

      mRNA as a readily de-

    tectable processing product. As 5' exoribonucleases, by

    definition, digest RNA from the 5' end, the plausibility

    of 5'-exonucleolytic initiation of mRNA decay can be

    tested further by determining whether degradation of the

    5'  mRNA segment is faster or slower than decay of the

    rest of the message.

    Degradation of three different

      ompA

      messages with-

    out a 5'-terminal stem-loop

      {ompAA64, ompA + 16a,

    an d

      ompA

      +

     16b

      mRNA) was monitored by SI analysis

    with a mixture of two DNA probes, one complementary

    to the 5'-terminal segment of these transcripts (the 5'

    UTR and codons 1-37) and the other complementary to

    an internal

      ompA

      segment spanning codons 67-295. By

    combining these two probes in each SI protection assay,

    differences in the relative decay rates of the two RNA

    segments could be measured w ith considerable accuracy.

    As observed previously for wild-type

      ompA

      mRNA (von

    Gabain et al. 1983), the internal segment of all three of

    these m uta nt messages was found to decay more rapidly

    than the corresponding 5'-terminal segment (Fig. 8). To

    demonstrate that the differential lifetimes measured for

    the 5'-terminal and internal

      ompA

      mRNA segments are

    independent of the relative lengths of the two DNA

    probes used simultaneously for SI protection, the mea-

    surements were repeated with the same 5'-terminal

    probe and a mu ch shorter internal probe com plementary

    to

      ompA

      codons 249 -295 . Regardless of the length of

    either the internal probe or the RNA segment with

    which it hybridized, the same segmental difference in

    stability was observed for each of the three mutant

    ompA

      messages (Fig. 8). In every one of these six inde-

    pendent experiments, the relative concentration of the

    internal mRNA segment declined steadily to a level be-

    tween one-third and one-half that of the 5'-terminal seg-

    ment within 30 min after transcription inhibition.

    Thus,

      it appears for three different labile

      ompA

      tran-

    scripts lacking a 5'-terminal stem-loop that degradation

    of an internal RNA segment precedes decay of the 5'

    UTR. This conclusion is consistent with our finding, for

    a number of mutant

      ompA

      messages, that there is no

    correlation in rapidly growing cells between m RN A half-

    life and the relative steady-state concentration of the

    major products of endonucleolytic cleavage within the 5'

    UTR (data not shown; Lundberg et al. 1990); only when

    ompA

      mRNA decay accelerates in slowly growing cells

    does its rate appear to be controlled by 5' UTR cleavage

    (Melefors and von Gabain 1988). Together, our data sug-

    gest that under conditions of rapid bacterial growth, the

    function of the 5'-terminal

      ompA

      hairpin is to protect

    the message from degradation by a ribonuclease that ini-

    tiates decay downstream of the 5' end.

    Discussion

    A key to understanding the molecular basis for differen-

    tial mRNA stability in bacteria is to identify the struc-

    tural features of stable messages that are responsible for

    their unusual longevity in vivo. The studies reported

    here show th at a 5'-termin al stem—loop is bot h crucial to

    the function of the

      ompA

      5' UTR as a potent mRNA

    stabilizer and sufficient to prolong the lifetime of a nor-

    mally labile

      E. coli

      message. Remarkably, the 5'-termi-

    nal stem-loop shields

      ompA

      mRNA from attack by a

    cellular ribonuclease that appears to initiate degradation

    far from the 5' end.

    Our data also indicate that the

     ompA

      mRNA stabilizer

    is bipartite, with a second, distinct domain of functional

    importance. Both the 5' stem -loop and a single-stranded

    RNA segment in the vicinity of the

      ompA

      ribosome-

    binding site and its flanking sequences contribute to th e

    remarkable longevity of the

      ompA

      transcript, and to-

    gether they are sufficient for full activity of the

      ompA

    mRN A stabilizer. Alone, each of these elem ents can sta-

    bilize mRNA to a lesser extent. Thus,

      ompA

      transcripts

    that have both stabilizing elements (wild-type,

    ompAA65-104]

      are more stable than

      ompA

      messages

    lacking either the 5' hairpin or

      5'-ss2

      [ompAA64,

    ompAA104, ompAA104-114]

      which, in turn, are more

    stable than a message that lacks both of these RNA seg-

    ments

      [ompAAllS].

      Sim ilarly, the half-life of

      bla

    mRNA , wh ich is increased twofold simply by adding a 5'

    s tem-loop

      [bla202],

      increases about fivefold when its 5'

    UTR is replaced with the entire

      ompA

      5' UTR (Belasco

    et al. 1986; Emory and Belasco 1990).

    The longevity of

      ompAA104*

      mRNA, in which hpl,

    ss l ,

     and hp2 are replaced by a synthetic stem -loo p, ru les

    out any contributio n to

     ompA

      mRNA stability from pos-

    GENES & DEVELOPMENT 141

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/

  • 8/16/2019 Emory 1992 E.coli

    9/15

    Emory et al .

    V

    • %.

    »• IS i

    1

    *< t

    s

    1

    f4 1

    f

    * J

    i » •

    f* »

    f : • , ' : •

    C D

    +

    <

    Q .

    E

    O

    mt<

    8

    1

    1

    ^11

    1

    1

    1 < i

    V 0 V

    • 0

    • •

    U D U D  sC  D

    U D O U U

    » •

      *tt f^

    0 •

  • 8/16/2019 Emory 1992 E.coli

    10/15

    tnRNA stabilization by a 5' stem-loop

    sib le s i tes of t ranslat ion in i t ia t ion upstream of ss2 .

    These s i tes , which were identif ied on the basis of se-

    quence analysis (Movva et a l . 1980) , probably are inac-

    cess ib le to r ib o so me s d u e to o cc lu s io n b y in t r a mo le cu la r

    base-pairing (Chen et al. 1991).

    Stabilization of mRNA by a

      5 '

      stem-loop

    Th e p resen ce o f a 5 ' - t e rmin a l s tem - lo o p can p ro lo n g th e

    lifet ime of  ompA  m RN A by as m uc h as a factor of 5 . The

    lo ca t io n of th i s s tem - lo o p a t o r v e ry n ear th e 5 ' t e rm in u s

    is crucial to i ts s tab il izing ef fect , whereas the sequence

    of th is hairp in and i ts posi t ion relat ive to the r ibosome-

    binding s i te appear to be of l i t t le consequence to message

    s tab i l i ty . Up to two u n p a i r ed n u c leo t id es u p s t r eam o f

    the 5 ' hairpin (e.g. ,  ompA+4, ompAA29]  are to lerat ed

    wi th o u t an y r ed u c t io n in mR NA s tab i l i ty , b u t th e ad d i -

    t io n o f 1 0 -1 5 u n p a i r ed n u c leo t id es o f r an d o m seq u en ce

    to the

      ompA

      5 ' end

      {ompA + 12a, ompA + 16a,

    ompA + 16b]  is as destab il izing as delet ion of the 5 ' hair -

    p in . Moreover , the shor t l i fet ime of

      ompAA73a

      m R N A

    v er su s  ompAAlSb  m R N A in d ica tes th a t 5 u n p a i r ed

    bases at the 5 ' end are suff icien t to accelerate degrada-

    tion of  ompA  mR NA , as th ese two messag es a re id en t i -

    cal in sequence except for the number of nucleotides that

    p r eced e h p 2 - s s2 . Th ere fo re , th e min imu m n u mb er o f 5 ' -

    t e rmin a l u n p a i r ed n u c leo t id es th a t can d es tab i l ize  ompA

    m R N A i n  E. coli  is no more than f ive and may be as few

    as three. The destab il izing ef fect of unpaired bases at the

    ompA

      5 ' t e rmi n u s d o es n o t ap p ear to b e seq u en ce sp e-

    cific.

    These f indings explain our previous observation that

    the 5 ' UTRs of the

      S. maicescens

      an d

      E. aerogenes ompA

    t rans cr ip ts function as very ef fective mR N A stabil izers

    in

      E. coli

      (Chen et a l . 1991) . Alt hou gh thes e

      ompA

      5 '

    UTRs are quite s imilar in secondary s tructure to that of

    E. coli  and the sequence of ss l and ss2 is h ighly con-

    served (80%), there is ex tensive sequence d ivergence in

    hpl and hp2 (Chen et al. 1991). The efficacy of the   Ser-

    337 —

    296 —

    M

    -

    MM

    m^

    Figure 6. 5'-End m apping of  ompA + 16a  and  ompA  + 16b

    mRNA at steady state. Total cellular RNA was isolated from  E.

    coli

      strain C600S or from strain SE600 containing either

    pOMPA-l-16a or pOMPA+16b. The wild-type and mutant

    ompA  transcripts were detected by SI analysis with 5'-end-la-

    beled DNA probes complementary to the first 0.32-0.34 kb of

    each message. Calibration is in nucleotid es. A set of m olecular

    size standards (lane M) was generated as in Fig. 2.

    ratia  an d  Enterobactei ompA 5'  U T R s i n  E. coli,  d esp i te

    n u m ero u s h p l an d h p 2 seq u en ce d i f fe r ences , i s n o w u n -

    ders tandable in l igh t of our present f inding that v ir tually

    any 5 ' - terminal hairp in fo l lowed by ss2 is suf f icien t to

    p ro tec t  ompA  mR NA f rom rap id d eg rad a t io n .

    As th e seq u en ce o f th e 5 ' s tem- lo o p i s r e la t iv e ly u n -

    imp o r tan t to messag e s tab i l i ty an d i t s s tab i l iz in g in f lu -

    ence is negated by the presence upstream of several un-

    paired nucleotides , i t ev idently is the absence of a s ig-

    n i f ican t s in g le - s t r an d ed R NA seg men t a t th e 5 ' t e rmin u s

    ra th er th an th e p r esen ce o f  ompA  h p l t h a t m a k e s m e s -

    sages bear ing the  ompA  5 ' UT R res i s tan t to d eg rad a t io n .

    We n o te th a t s ev era l o th er lo n g - l iv ed p ro k ary o t ic mes -

    sages in their mature form (e.g . ,  E. coli papA  m R N A , T 4

    g en e 3 2 mR NA, an d  Rhodobacter capsulatus pufBA

    mR N A) h av e th e p o ten t ia l to fo rm a h a i rp in s t ru c tu r e

    with in 1-4 nucleotides of the 5 ' end (Fig . 9) , (Youvan et

    al.

      1984; Belasco et al. 1985; Gorski et al. 1985; Baga et

    al.

      1988; Mc Phe ete rs et a l . 1988) . Tog ethe r wit h our

    present f indings, th is observation suggests that a 5 '

    Figure 5. Me thyla tion of

      ompA

      transcripts bearing 5' extensions.

      [Top]

      Total cellular RNA was isolated from £.

      coli

      strain SE600

    containing pOMPA+16a

      [left]

     or pOMPA-t-16b

      (right)

     after treating each culture w ith DMS (DMS/in vivo). Alternatively, total

    cellular RNA was purified from the sam e cultures with out prior DMS treatmen t and then a lkylated in vitro with either DM S (DMS/in

    vitro) or CMCT. Sites of alkylation within the 5' UTR of ompA + 16a and ompA + 16 b mRNA were mapped by primer extension with

    AMV reverse transcriptase, using complem entary oligodeoxynucleotides (AGCGA AACCAG CCAGTGC CACTGC or GATAACACG-

    GTTAAATCCTTCAC) that annealed to mRNA sequences either 22-45 nucleotides downstream or 50-72 nucleotides upstream of

    the translation initiation codon of

      onipA + 16a

     and

      ompA + 16b.

      Gel electrophoresis was performed in parallel with the products of

    primer extension on unmethylated RNA templates in the presence (lanes

      U, G, C, A]

      or absence (control lane) of dideoxynucleoside

    triphosphates. The sequencing lanes are labeled to indicate the sequence of the RNA, not the c omplem entary D NA. Blockage of prime r

    extension by an alkylated RNA base results in a complementary DN A fragment t hat is 1 nucleotide shorter than that arising from

    incorporation of a dideoxynucleotide opposite the same RNA base. Calibration is in nucleotides from the mRNA 5' end.   (Bottom)

    Summary of alkylation data for the 5' UTRs of  ompA

     +

     lSa (left) and  onipA

     +

      16b (right) mRN A. Adenosine, cytosine, and u ridine

    residues susceptible to significant me thylation by DMS in

      E. coli

     are indicated. (•] Heavy methyla tion; (•) m oderate methy lation; (A)

    weak me thylation . Also labeled are uridine and guanosine residues that are significantly alkylated by CMCT in vitro. (•) Heavy-to-

    moderate alkylation; ( 0) weak alkylation. Com parisons of susceptibility to alkylation are meaningful only among nucleotides wit hin

    the same message and at a similar distance from the annealed primer. Arrows identify the principal sites of termination by reverse

    transcriptase on an unalkylated template; the structural significance of primer extension products ending at these sites on alkylated

    RNA is often difficult to assess. Two of these termination sites on unalkylated RNA (at nucleotides 84 and 123) correspond to known

    RNase K cleavage sites within the

     ompA

      5' UTR (Lundberg et al. 1990); whether or not the others also correspond to RNA 5' ends is

    uncertain. N o differences w ere observed between the alkylation patterns of the ompA + 12a (data not shown) and ompA + 16a5'  UTRs.

    GENES & DEVELOPMENT 143

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/

  • 8/16/2019 Emory 1992 E.coli

    11/15

    Emory et al.

    Figure 7. Degrad ation  of a variant  ompA

    transcript bearing  a minimal  5'  stabilizer

    preceded  by 0, 1, or 5 nucleotides  and of

    bla  mRNA with  an  added 5'-terminal

    stem-loop. After transcription inhibition,

    total cellular  RNA was isolated periodi-

    cally from   E. coli  strain C600S containing

    pOMPAA 73a  (top left),  pOMPAA 73b (bot-

    tom

      left),

      pOMPAA304*

      (top

      hght),

    pBLA200

      {bottom hght),

      or pBLA202

     {bot-

    tom hght).

      Transcripts  of the

      ompA,

    ompAA73a, ompAA73b, ompAA104*,

    bla200, an d bla202 genes were detected by

    SI analysis, and mRNA concentration was

    plotted semilogarithmically  as a  function

    of time.  Th e  mea sured half-lives we re

    6.0

     ±

     0.3

     min for ompAA73a

      mRNA

     (A)

    and 14 ±  1  min for  wild-type  ompA

    mRNA  (• )  {top left),  13 ±  1  min for

    ompAAJSb   mRNA (A) and 15 ±  1 min for

    wild-type  ompA  mRNA  ( ) (bottom

      left),

    24 ± 3 min for

      ompAA104*

      mRNA (A)

    and 19 ± 3 min for  wild-type  ompA

    mRNA

      (• )

      {top hght),

      3.7 ±

     0.3

      min for

    bla200  mRNA (wild-type) (•) and 18 ± 2

    min  for wild-type  ompA  mRNA  {bottom

    hght), and 6.8 ± 0.4 min for

     bla202

     mRNA

    (A)  and  17 ± 2 m in for wild-type

      ompA

    mRNA  {bottom hght). For comparison, de-

    cay data for ompAA104  mRNA (•) are also

    shown  {top hght;  Table 1).

    100

    10

    ^r

    A ompA A73o

    • ompA

    100

    g  10

    A ompA A l 04-*

    • ompA A104

    • ompA

    0  15 30

    Time  min)

    15

    30 45

    Time (min)

    10011

    10

    • b la202

    • b la200

    2 0  40

    Time  min)

    10

    Time  min)

    20

    S t e m - l o o p m a y be of  g en era l imp o r tan ce  as a m e a n s b y

    wh ich p ro k ary o t ic o rg an isms

      can

      se lec t iv e ly en h an c e

    th e s tab i l i ty  of  m R N A .

    Mechanism

      of

     mRNA degradation

      in  E.

     coli

    Th e ro u g h ly ad d i t iv e co n t r ib u t io n s  to m R N A s tab i l i ty of

    two d is t in c t s t r u c tu r a l d o main s  of the  ompA  5' UTR

    suggest that the degradation  of messag es th a t can be sta-

    b il ized

      by

     fusion

      to

      t h i s

      5' UTR is

     in i t i a ted e i th e r

      by a

    s in g le r ib o n u c lease wh o se r a te of a t tack i s d e te rm in ed b y

    a c o m b i n a t i o n of 5' UT R s t ru c tu r a l f ea tu r es  or by a pair

    of r ibonucleases with d if fer ing specif ici t ies , bo th  of

    w h i c h m u s t  be b lo ck ed  to  a c h i e v e p r o n o u n c e d m R N A

    lo n g ev i ty . Un d o u b ted ly th e r e  are  u n s tab le t r an scr ip t s

    wh o se lab i l i ty r esu l t s f ro m a t tack  by a dif ferent r ibonu-

    c lease th a t  is n o t sen s i t iv e to s t ru c tu r a l f ea tu r es n e ar the

    m R N A  5 ' en d ; ad d i t io n of a 5 ' - te rmi nal ha irp in or fusion

    to  th e en t i r e  ompA  5'  U T R  is not ex p ec ted  to  stab il ize

    su ch messag es . Nev er th e les s ,

      the

      l i f e t imes

      of

      m a n y

    shor t- l ived   E. coli  R NAs ( in c lu d in g  bla, lacZ,  an d  phoA

    mRNA) are contro lled by the r ibonuclease(s) impeded by

    s u b s t i t u t i n g

      the  ompA  5' UT R or

      ad d in g

      a

      s i m p l e

      5'-

    t e rmin a l s tem- lo o p (B e lasco et  al. 1986; M. Han sen an d

    J. Belasco , unpu bl. ) ; and ,  in p r in c ip le ,  all  long- l ived mes-

    sag es mu s t h av e s t ru c tu r es , s eq u en ces ,  or bou nd factors

    th a t sh ie ld th em f ro m a t tack  by th i s en zy m e.

    Our data therefore suggest that  E. coli  c o n t a i n s  a r ibo-

    n u c lease th a t p r e f e r s  to a t tac k messag es b eg in n in g w i th

    > 2 - 4 u n p a i r e d n u c l e o t i d e s . T h i s e n z y m e  is no t a 3 ' ex-

    o n u c lease , as m u l t i p l e l i n e s of ev id en ce in d ica te th a t bla

    mR NA d eg rad a t io n , wh ich  is  s lo wed  by  ad d i t io n  of a

    5 ' - te rmin a l h a i rp in , b eg in s u p s t r eam  of th e 3 ' end (von

    G a b a i n  et  al. 1983; Belasco et  al. 1986). Instead,  the sen-

    s i t iv i ty

      of

     th i s r ib o n u c lease

      to

     base-pair ing

     at

     t h e m R N A

    5 '

      te rmin u s in d ica tes th a t

     it is

     e i th e r

      a 5 '

     ex o n u c lease

     or

    a 5 '- en d -d ep en d en t en d o n u c lease th a t cu ts in te rn a l ly b u t

    in te r ac ts ,  at  leas t in i t ia l ly , w i th  th e 5' en d of  m R N A .

    Th ere a r e a n u m b e r  of r easo n s  to  d o u b t th a t  the r ib o n u -

    c lease o b s t ru c ted  by the ompA  5' UT R is a 5'  ex o n u -

    c lease th a t r em o v es s in g le n u c leo t id es seq u en t ia l ly f rom

    th e R NA  5 '  end. First,  as sh o w n p rev io u s ly  for the wild-

    ty p e

      ompA

      trans cr ip t (von Gab ain  et  al. 1983), rapid deg-

    r ad a t io n  of  onipAA64, ompA + 16a,  and  ompA + 16b

    m R N A a p p e a r s  to  b e gi n d o w n s t r e a m  of th e 5'  U T R . In

    addit ion , degradation  of ompA  tran scr i p ts wi th ei ther of

    two s in g le - s t r an d ed  5'  ex ten s io n s d o es  no t  g en era te

    wi ld - ty p e  ompA  m R N A  as a readily dete ctab le decay in-

    te rmed ia te ; s ig n i f ican t accu mu la t io n  of  s u c h  an  in ter -

    m e d i a t e m i g h t

      be

      ex p ec ted

      if

      th ese messag es were

     de-

    graded  by a h y p o t h e t i c a l  5 ' e x o n u c l e a se t h a t  is  imp ed ed

    w h e n  it e n c o u n t e r s  an R NA s tem - lo o p s t ru c tu r e . Th i rd ,

    n o  5 '  ex o r ib o n u c lease h as ev er b een d e tec ted  in E. coli.

    Fin a l ly , in ac t iv a t io n  of the

     ams/rne

      g en e p ro d u c t  in E.

    coli  s tab i l izes man y R NAs ( in c lu d in g  ompA  mR N A) an d

    in h ib i t s th e i r c leav ag e  in v iv o  by R N a s e  E or R N a s e K,

    t w o  £.  coli  en d o n u c leases th a t ap p ear  to be in te r r e la ted

    a n d  m ay ev en  be ident ical (Apir ion 197 8; O no and Ku-

    wan o 1 9 7 9 ; Lu n d b erg  et al.  1 9 9 0 ; Mu d d  et al.  1990a,b;

    B ab i tzk e  and Ku sh n er 1 9 9 1 ; L in -C h ao  and C o h e n 1 9 9 1 ;

    144 GENES DEVELOPMENT

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/

  • 8/16/2019 Emory 1992 E.coli

    12/15

    mRNA stabilization by a 5' stem-loop

    100

    10 -

    ompA+16o

    • 5'

    • in ternal (6 7- 29 5)

    100 '

      >A onr)pA+1 6a

    10

    1

    V ^

    k N.

    • 5'

    A in te rna l (249 -295 ) .

    10 20

    Tlnne (min)

    30 10 20

    Tim*

      (min)

    30

    100

    10

    onnpA+16b

    • 5'

    • in ternal (67 -29 5) f

    IOOI 'A

    10

    ompA+16b

    • 5'

    • in ternal (2 49 -2 95 )

    10 20

    TlnDe (min)

    30

    10 20

    Time (min)

    30

    l O O o

    10

    o m p M 6 4

    • 5'

    • in ternal (67 -29 5)

    100

    10

    ompAA64

    • in ternol (24 9- 29 5)

    10 20

    Time (min)

    30

    10 20 30

    Time (min)

    Figure 8. Segmental differences in stability with in mu ta nt

    ompA  transcripts lacking a 5'-terminal stem-loop. After tran-

    scription inhibition, total cellular RNA was isolated periodi-

    cally from   E. coli  strain SE600 containing pOMPA-l-16a,

    pOMPA-l-16b, or pOMPAA64. The degradation of 5'-terminal

    and internal segments of each mutant   ompA  transcript was

    monitored simultaneously by SI analysis with a mixture of two

    5'-end-labeled DNA probes, one complementary to the 5' UTR

    plus codons 1-37 and the other comp lementary either to codons

    67-295 or to codons 249-295.

      [Top]

     Semilogarithmic plots of

    the decay of 5'-terminal (#) and internal (A) segments of

    ompA + 16a [top], om pA + 16b {middle], and  ompAA64 {bottom]

    mRNA, as determined by Si analysis with tw o pairs of segment-

    specific probes. In every case, decay of the internal segment is

    faster than decay of the 5'-terminal segment.

     {Below]

     Map of the

    5'

     and internal

      ompA

      mRNA segments detected by SI analysis

    with each probe. (Thin lines)

      ompA

      UTRs; (open rectangle)

    ompA  protein-coding region; (arrowhead)  ompA  3' end; (thick

    lines)  ompA  mRNA segments complementary to each of the

    three probes.

    in g en d o n u c leo ly t ic c leav ag e a t o n e o r mo re s i te s d o wn -

    stream of the 5 ' end . The precise location of these s i tes is

    cu r r en t ly u n d er in v es t ig a t io n .

    I f th e en zy me th a t i s imp ed ed b y th e  ompA  5 ' UT R is

    an endonuclease ( i .e . , a r ibonuclease that cu ts in ter -

    nal ly) ,

      th en th e r a te o f mR NA c leav ag e b y th i s en d o n u -

    clease is determined not only by the presence of RNA

    sequences that can serve as cleavage s i tes but also by the

    p resen ce o r ab sen ce o f s t r u c tu r es n ear th e mR NA 5 ' en d

    that can contro l access to these s i tes . Indeed , the ab il i ty

    o f a 5 ' - t e rmin a l s tem- lo o p to sh ie ld an en t i r e t r an scr ip t

    f ro m d eg rad a t io n su g g es ts th a t th e p r imary d e te rmin an t

    of mRNA half - l i fe may of ten be the accessib i l i ty of po-

    ten t ia l c leav ag e s i tes r a th er th an th e i r n u mb er o r th e i r

    in tr i ns ic susce ptib i l i ty to cleavage. Th is pro t ecti ve ef fect

    o f a 5 ' s tem- lo o p su g g es ts a d eg rad a t io n mech an ism fo r

    E. coli  messages that can be s tab il ized by fusion to the

    ompA

      5 ' UTR , wh ere b y a r a te -d e te rm in in g , 5 ' -en d -d e-

    p en d en t en d o n u c lease f i r s t b in d s in a s t r u c tu r e -d ep en -

    d en t s tep to th e m R N A 5 ' en d o r to a p ro te in b o u n d th ere

    o p

    mRNA

    249-295

    67-295

    intemal

    u

    A

    U

    U

    G

    G

    U

    C

    U

    A

    G

    JO

    G

    U

    A

    A

    U

    C

    G

    G

    G

    U

    C

    AUUUUA

    G

    G

    G

    U

    G

    G

    G

    C

    A

    C

    C

    U

    C

    D

    GO

    C

    c

    c

    c

    u

    c

    G

    0

    G

    G

    0

    G

    G

    A

    AAOGCG

    0 A

    G 0

    C G

    „ G

    M ac k ie 1 9 9 1 ; M ele fo r s an d v o n Gab a in 1 9 9 1 ; N i l s so n

    and Uh lin 1991; Tara sevic iene et a l . 1991) ; therefore,

    ei ther or both of these endonucleases are candidates for

    th e k ey en zy me( s ) wh o se ac t io n i s imp ed ed b y th e  ompA

    5 '  UTR. I t seems l ikely , therefore, that the  ompA  5 ' UT R

    p ro tec ts th e  ompA  mess ag e f ro m in i t ia l , ra te -d e te rmin -

    papA

    pufBA

    gene 32

    Figure 9. Stem-loop structures near the 5 ' end of stable

    prokaryotic mRNAs. The sequence and likely secondary struc-

    ture is shown for a 5'-terminal untranslated segment of  E. coli

    papA  mRNA,  R. capsulatus pufBA  mRNA, and T4 gene 32

    mRNA (McPheeters et al. 1988).

    GENES

     &,

     DEVELOPMENT

    145

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/

  • 8/16/2019 Emory 1992 E.coli

    13/15

    Emory et al.

    an d th en seek s o u t c leav ag e s i tes d o w n s t r ea m. Th e R NA

    fragments thereby generated could be rap id ly degraded to

    mo n o n u c leo t i d es b y fu r th er en d o n u c lease c leav ag e an d

    ex o n u c lease d ig es t io n .

    Th e in f lu en ce o f a 5 ' - t e rmin a l s t r u c tu r a l e lem en t o n

    th e s tab i l i ty o f mR NA b ear s a s t r ik in g r esemb lan ce to

    the select ive degradation of pro teins on the basis of their

    amin o - te rmin a l amin o ac id r es id u e (Var sh av sk y e t a l .

    1988).  Moreo ver , the appa rent ef fect of an up stre am

    s t ru c tu ra l e lemen t o n mR NA c leav ag e a t d o wn s t r eam

    s i tes i s r em in isc en t o f ce l lu la r r eg u la to ry m ech an is ms

    th a t co n t ro l t r an scr ip t io n an d t r an s la t io n r a tes v ia se -

    q u en ce e lemen ts lo ca ted u p s t r eam o f in i t i a t io n s i tes f o r

    R N A o r p ro te in sy n th es i s .

    Mateiia ls and methods

    Bacterial strains and plasmids

    E. coli  K-12 strains C600S and SE600 (Nilsson et al. 1987) are

    streptomycin-resistant,   supE44~ variants of strain C600. SE600

    is identical to C600S except for a deletion of the chromosomal

    ompA

      gene (Emory and Belasco 1990).

    Plasmid constructions were confirmed by restriction map-

    ping and DNA sequencing. When necessary, protruding DNA

    ends were made blunt prior to ligation by treatment with T4

    DNA polymerase, the Klenow fragment of DNA polymerase I,

    or mung bean nuclease. Oligonucleotide-directed mutagenesis

    was performed as described previously (Kunkel 1985; Naka-

    maye and Eckstein 1986) using purified oligodeoxynucleotides

    synthesized on an Applied Biosystems 381A instrument.

    Plasmid pOMPA-l-4 is a pBR322 derivative that encodes a

    pseudo-wild-type   ompA  message transcribed from the  bla pro-

    moter (Emory and Belasco 1990); this plasmid has a

     Bell

     site at

    th e

      ompA + 4

      transcription initiation site. Plasmid pOMPA-l-

    4-1-3 was constructed by oligonucleotide-directed insertion of 3

    bp (ATC) into pOMPA-l-4 to create a second   Bell  site at the

    promoter-distal end of the segment encoding hpl (GTGAA-*

    GTGATCAA). Deletion of the 0.07-kb   Bell  fragment of

    pOMPA-f4-l-3 generated pOMPAA64. Plasmids pOMPAA29

    and pOMPAA73a were c onstructed by deleting from pOMPA  -I- 4 a

    0.03-kb Bell  (filled-in)-£coRV fragment or a 0.08-kb Bell  (filled-

    in)-Hphl  (T4 DNA polymerase) fragment, respectively, thereby

    reconstituting the  Bell  site. Plasmid pOMPAA73b was con-

    structed by cleaving pOMPAA73a wi th  Bell, treating the linear-

    ized DNA with mung bean nuclease, and religating the result-

    ing blunt ends. The 5' terminus of

      ompAAlSb

      mRNA mapped

    to 1 nucleotide upstream of ompA hp2, and DNA sequencing of

    pOMPAA73b revealed the unexpected loss of one additional

    base pair upstream of the four that were planned. Plasmid

    pOMPAA74-103 was constructed by oligonucleotide-directed

    deletion of a 30-bp pOMPA  -I- 4  fragment that encodes hp2 and

    the preceding nucleotide; this mutation created a Sna^l  at the

    site of deletion. Plasmid pOMPAA104 was created by deleting

    the 0.08-kb  Bell-Snam  fragm ent of pOMP AA74-103, after first

    adapting the  SndSi  end with a  Bell  linker (CTGATCAG) and

    cleaving the linker with

     Bell.

     Insertion of the 0.06-kb

      Bell

      frag-

    ment of pOMPA -1-4-1-3  in its natural orientation into the

      Bell

    site of pOMPAA104 generated pOMPAA65-104. Plasmids

    pOMPAA9-52 and pOMPAA104-114 were constructed by oligo-

    nucleotide-directed deletion from pOMPA-f4 of either a 44-bp

    fragment encoding th e top of hpl or an 11-bp fragment encoding

    the first 11 nucleotides of ss2, respectively.

    Plasmid pOMPA-l- 16a was created by cloning a 1.28-kb AccI

    (filled-in)-PstI  ompA  fragment of pTUlOO (Bremer et al. 1980)

    between the Bell (filled-in) an d Pstl sites of pJB322 (Belasco et al.

    1986),

     thereby reconstituting the BeR. s ite. Plasmid pOMPA-h 12a

    was constructed by cleaving pOMPA-l- 16a with

      Bell,

     removing

    the protruding ends with mung bean nuclease, and religating

    the resulting blunt ends. Plasmid pOMPA-l-21b was con-

    structed by oligonucleotide-directed insertion of 17 bp (GATC-

    TATACTATAACCG) at a site immediately promoter-distal to

    th e

     Bell

     recognition sequence of pOMPA-l-4, thereby creating a

    Bglll

      site adjacent to the

      Bell

      site (TGATCAGATCTATAC-

    TATAACCG). Plasmid pOMPA-hl6b is nearly identical to

    pOMPA-l-21b but lacks the 5-bp  Bell-BglU  fragment. Insertion

    of a symmetrical DNA linker (GCCCACCGGCAGCTGCCG-

    GTGGGC) into the  Bell  site (filled-in) of pOMPAA64,

    pOM PA+ 16a, pOMPA 

    21b,

     pOMPAA104, and pBLA200 (Em-

    ory and Belasco 1990) created pOMPAA64», pOMPA-l-12a*,

    pOMPA-l- 16b*, pOMPAA104*, and pBLA202, respe ctively.

    Plasmid pOMPAA331 was constructed by deleting a 0.33-kb

    Bell  (filled  \n]-Hpal  fragment from pOMPA-l- 16a, thereby re-

    constituting the  Bell  site. Plasmid pPBlOl was created by in-

    serting a 0.39-kb

      BamHl-Pstl

      fragment of pOM PA+ 16a be-

    tween the BflmHI and Pstl sites of pUC19.

    Measurement of mRNA lifetimes

    Bacterial culture at 30°C in supplemented LB medium, RNA

    extraction, SI analysis, and calculation of mRNA half-lives

    were performed as described previously (Emory and Belasco

    1990).

     All strains grew rapidly under these conditions, with dou-

    bling times between 34 and 44 min. Q uantita tion of SI-protec-

    tion data was accomplished either by autoradiography and den-

    sitometry (Emory and Belasco 1990) or by gel scanning on a

    Molecular Dynamics model 400 Phosphorlmager. Half-lives

    were calculated by least-squares analysis of semilogarithmic

    plots of mRNA concentration versus time. Half-life errors were

    estimated from the standard deviation of the slope of each plot.

    Three different 5'-end-labeled DNA fragments of pOMPA-l- 16a

    were used as probes to monitor the decay of wild-type

      ompA

    mRNA and most variants

     thereof.

     SI analysis with any of these

    probes (a  1.2-kb  SgiII-£coRI DNA fragment, a 0.6-kb BstEII-

    £coRI fragment, or a 0.6-kb //indlll-fcoRI fragment), which

    have be en described prev iously (Emory and B elasco 1990), gives

    the same half-life for the wild-type

     ompA

      transcript because all

    three probes extend beyond the 3' boundary of the compara-

    tively stable 5'-terminal segment of  ompA  mRNA. Decay of

    ompA + 16 b  and  ompA + 16b*  mRNA was monitored by SI

    analysis with a 0.6-kb   Hindlll-EeoRl  fragment of a

    pOMPA-l-

     16b*

     point mutan t, which was 5'-labeled at a Hindlll

    site created by oligonucleotide-directed mutagenesis at a site

    corresponding to  ompA  codon 94. Differential decay of seg-

    ments within the ompA + 16a, ompA + 16b, an d ompAA64  mes-

    sages was monitored by simultan eous SI analysis with two seg-

    ment-specific probes labeled at the 5' end: a 0.46-kb   Avall-

    Hindlll

      fragment of pOMPA-l-16a complementary to the 5'

    UTR plus codons 1-37, and either a 0.86-kb BgiII-£coRI frag-

    ment of pOMPAA331 complementary to codons 67-295 or a

    0.16-kb BgiII-£coRI fragment of pPBlOl complementary to

    codons 249-295. Comparative 5'-end-mapping of  ompA,

    ompA

     + 16a,

     and ompA

     +

     16b mRNA was performed by SI anal-

    ysis with a 0.5-kb

     BstEU-EeoW.

     fragment of eithe r pOMPA-H 16a

    or pOMPA-l- 16b. Decay of blaZOO and bla202 mRNA was mon-

    itored by SI analysis with a 5'-labeled

      1.03-kb

      Hinil-Hindlll

    fragment of pBLA200.

    Probing of RNA seeondaiy structure w ith DM S

    Methyla tion of RNA by DMS in £.

      eoli

     and in vitro, alkylation

    of RNA with CMCT in vitro, and mapping of reactive nucle-

    146

    GENES & DEVELOPMENT

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/

  • 8/16/2019 Emory 1992 E.coli

    14/15

    mRNA stabilization by a 5' stem -loop

    ot ides were performed as descr ibed previously (Moazed et al .

    1986;

     Ch en e t a l . 1991) . Bacter i a for DMS and CM CT alkyla t ion

    (SE600/pOMPA+12a, SE600/pOMPA+16a, SE600/pOMPA+16b,

    or SE600/pOMPAA29) were grown and harves t ed under t he

    sa m e c o n d i t i o n s a s w e r e e m p l o y e d fo r m e a su r e m e n t s of m R N A

    stabi l i t y . Two 5 ' - end- l abeled DNA ol igonucleot ides (AGC-

    G A A A C C A G C C A G T G C C A C T G C o r G A T A A C A C G G T T A -

    A A T C C T T C A C ) w e r e u se d a s p ri m e r s t o m a p m e t h y l a t i o n s i t es

    wi th in the 5 ' UTR of

      ompA

      m R N A v a r i a n t s . T h e se p r i m e r s

    a n n e a l e d t o m R N A se q u e n c e s 2 2 - 4 5 n u c l e o t i d e s d o w n s t r e a m

    or 50-72 nucleot ides upst r eam of t he   ompA  t r ans l a t ion in i t i a -

    t i on codon, r espect ive ly , and they were extended a t 55°C wi th

    AMV rever se t r ansc r ip t ase (Boehringer) .

    A c k n o w l e d g m e n t s

    We thank L.-H. Chen, I . Laird-Offr inga, and C. Well ington for

    the i r he lpfu l com me nt s and M. Han sen for a p l asm id cons t ruc-

    t i on . Thi s work was suppor t ed by U.S. Publ i c Heal th Servi ce

    grant GM 35769 to J .G.B. f rom the Na t iona l Ins t i t u t es of Hea l th ,

    a Nat ional Sci ence Foundat ion Graduate Fel lowship to S .A.E. ,

    and funds f rom the Associa t ion pour l a Recherche sur l e Cancer

    to P.B.

    The publ icat ion costs of this ar t icle were defrayed in par t by

    payment of page charges . Thi s ar t i c l e must t herefore be hereby

    m a r k e d a d v e r t i s e m e n t i n a c c o r d a n c e w i t h 1 8 U S C se c t io n

    1734 solely to indicate this fact .

    R e f e r e n c e s

    Api r ion , D. 1978. I so l a t ion , genet i c mapping, and s ome charac-

    t er i za t ion of a muta t ion in

      Escherichia coh

      that af fects the

    process ing of r i bonucle i c ac ids .

      Genetics

      9 0 :

      6 5 9 - 6 7 1 .

    Babi t zke , P . and S .R. Kushner . 1991. Th e Am s ( a l te r ed mR NA

    stabi l it y) pro t e in and r ibonuclea se E are encoded by the sam e

    st ructura l gene of

      Escherichia coh. Proc. Natl.  Acad.  Sci.

    8 8 :

      1-5.

    Baga, M., M. Goransson, S. Normark, and B.E. Uhl in. 1988.

    Processed mRNA wi th d i f f er ent i a l s t ab i l i t y i n t he r egula t ion

    of

      E. coh

      pi l i n gene express ion .

      Cell

      52: 197-206.

    Bechhofer, D.H. and D. Du bna u. 1987. Induced m RN A st abi l i t y

    in

      Bacillus subtilis. Proc. Natl  Acad.  Sci.

      84: 498 -502 .

    Belasco , J .G. and C.F. Higgins . 1988. Mechani sms of mRNA

    decay in bact er i a : A per spect ive .

      Gene

      7 2 :

      15-23 .

    Belasco, J.G., J.T. Beat ty, C.W. Adams, A. von Gabain, and S.N.

    Coh en. 1985. Di f f er enti a l express ion of photos ynthe s i s

    genes in  R. capsulata  res ul ts f rom seg me nta l di f ferences in

    s t abi l i t y wi th in the polyci s t ronic  rxcA  t r anscr ip t .  Cell

    40 : 171-181 .

    Belasco, J.G., G. Ni lsso n, A. von G abain , and S.N. Coh en. 1986.

    The s t abi l i t y of  E. coh  gene t r anscr ip t s i s dependent on de-

    t erminant s l oca l i zed to speci f i c mRNA segment s .

      Cell

    46 : 245-251 .

    Bremer , E. , E. Beck, I . Hindennach, I . Sonntag, and U. Henning.

    1980.

      Cloned s t ruc tura l gene

      [ompA]

      for an in t egra l me m-

    brane pro t e in of

      Escherichia coh

      K-12.

      Mol. Gen. Genet.

    179:  13-20.

    Chen, C.-Y.A. and J.G. Belasco. 1990. Degradat ion of

      pufLMX

    m R N A i n

      Rhodobacter capsulatus

      i s i n i t i a t ed by non- r an-

    dom endonucleoly t i c c l eavage . / .

      Bacterial.  172:

     4 5 7 8 - 4 5 8 6 .

    Chen, C.-Y.A., J.T. Beat ty, S.N. Cohen, and J.G. Belasco. 1988.

    An in t er c i s t ronic s t em- loop s t ruc ture funct ions as an

    mRNA decay t erminator necessary but i nsuf f i c i ent for

      puf

    m R N A s t a b i l i t y .

      Cell

      5 2 : 6 0 9 - 6 1 9 .

    Chen, L.-H., S.A. Emory, A.L. Br icker , P. Bouvet , and J.G.

    Belasco . 1991. S t ruc ture and funct ion of a bact er i a l mR NA

    stabi l i zer : Analys i s of t he 5 ' unt r ans l a t ed r egion of

      ompA

    m R N A . / .

      Bacteriol.

      173:  4 5 7 8 - 4 5 8 6 .

    Donovan, W.P. and S .R. Kushner . 1986. Polynucleot ide phos-

    phorylase and r ibonuclease I I are required for cel l viabi l i ty

    a n d m R N A t u r n o v e r i n

      Escherichia coli

      K-12.

      Proc. Natl.

    Acad.  Sci.

      83: 120-124.

    Emo ry, S.A. 1991 . An alys is of th e

      Escherichia coli ompA

    m R N A s t a b i l i z e r. P h . D . t h e s i s . H a r v a r d U n i v e r s i t y , C a m -

    br idge , Massachuset t s .

    Emory, S.A. and J.G. Belasco. 1990. The

      ompA

      5 ' u n t r a n s l a t e d

    R N A se g m e n t f u n c ti o n s i n

      Escherichia coli

      as a growth- r a t e-

    r egula t ed mRNA st abi l i zer whose ac t iv i ty i s unre l a t ed to

    t ranslat ional ef f iciency. / .  Bacteriol.  172: 4 4 7 2 - 4 4 8 1 .

    Gorski , K., J.-M. Roch, P. Prentki , and H.M. Krisch. 1985. The

    st abi l i t y of t he bact er iophage T4 gene 32 mR NA : A 5 ' l eader

    sequence tha t can s t abi l i ze mRNA t r anscr ip t s .  Cell  4 3 : 4 6 1 -

    469.

    Jaeger, J.A., D.H . Tur ner , an d M. Zu ke r . 1989. Imp rov ed pred ic-

    t i ons of secondary s t ruc tures for RNA.  Proc. Natl.  Acad.  Sci.

    86:   7 7 0 6 - 7 7 1 0 .

    Kennel l , D .E. 1986. Th e ins t abi l i t y of mess enge r RN A in bac-

    ter ia. In

     Maximizing gene expression

      (ed. W.S. Reznikoff and

    L. Gold) , pp . 101-142. But t erwor th s , S toneha m, Mass achu -

    se t t s .

    Kunkel , T .A. 1985. Rapid and ef fi c i ent s i t e - speci f ic mu tage nes i s

    w i t h o u t p h e n o t y p i c s e l e c t i o n .

      Proc. Natl.  Acad.  Sci.

    82 :

      4 8 8 - 4 9 2 .

    Lin-Chao, S . and S .N. Cohe n. 1991. Th e r a t e of process ing and

    degradat ion of an t i sense RNAI r egula t es t he r epl i ca t ion of

    ColEl - type p l asmids in v ivo .

      Cell

      6 5 : 1 2 3 3 - 1 2 4 2 .

    Lund berg, U., G. Ni lsson , and A. von Ga bain . 1988 . Th e differ-

    ent ial stabi l i ty of the

      Escherichia coli ompA

      a n d

      hla

      m R N A

    at var ious growth rates is not correlated to the eff iciency of

    t r a n s l a t i o n .  Gene  7 2: 141-14 9.

    Lundberg, U., A. von Gabain, and O. Melefors. 1990. Cleavages

    in the 5' region of the

      ompA

      an d

      bla

      m R N A c o n t r o l s t a b i l -

    i t y : S tudies wi th an £ .

      coli

      m u t a n t a lt e r i n g m R N A s t a b i l it y

    and a novel endor ibonuclease .

      EMBO J.

     9 : 2 7 3 1 - 2 7 4 1 .

    Mack ie , G. 1991. Speci fi c endon ucleo ly t i c c l eavage of t he

    mR NA for ri bosom al pro t e in S20 of

     Escherichia coli

      r equi r es

    the product of t he

      am s

      gene in vivo and in vi t ro. / .

      Bacteriol.

    173:  2 4 8 8 - 2 4 9 7 .

    Mayford, M. and B. We i sblum . 1989. Con forma t ional a l t e r -

    a t ions in t he

      eimC

      t r anscr ip t s i n v ivo dur ing ind uct io n .

    EMBO J.  8: 4307-4314.

    McP heeter s , D.S . , G .D. Stormo, and L . Gold . 1988. Au toge nou s

    regula tory s i t e on the bact er iophage T4 gene 32 messenger

    RNA. / .  Mol. Biol.  2 0 1 :  5 1 7 - 5 3 5 .

    Melefor s , O. and A. von Gabain . 1988. S i t e- speci f i c endonucle-

    o ly t i c c l eavages and the r egula t ion of s t ab i l i t y of   E. coli

    ompA  m R N A .  Cell  5 2 :  8 9 3 - 9 0 1 .

    . 1991. Gen et i c s tudies of c l eavage- in i t i a t ed m RN A de-

    cay and process ing of r i bosom al 9S RN A sho w tha t t he  Esch-

    erichia coli ams

      and

      rne

      loc i a r e t he same.

      Mol. Microbiol.

    5:

      8 5 7 - 8 6 4 .

    Moazed, D. , S . S t ern , and H.F. NoUer . 1986. Rapid chemical

    probing of conform at ion in 16S r ibosom al RN A and 30S r i-

    b o so m a l su b u n i t s u s i n g p r i m e r e x t e n s i o n ,

      f. Mol. Biol.

    1 8 7 : 3 9 9 - 4 1 6 .

    Mott , J.E. , J.L. Gal loway, and T. Piat t . 1985. Maturat ion of

      Esch-

    erichia coh

      t ryptophan operon mRNA: Evidence for 3 ' exo-

    nucleoly t i c process ing af t er r ho-dependent t e rminat ion .

    EMBO J. 4 : 1 8 8 7 - 1 8 9 1 .

    M ow a, N.R. , K. Na kam ura , and M. Inouye. 1980. Regula tory

    GENES & DEVELOPMENT 147

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/

  • 8/16/2019 Emory 1992 E.coli

    15/15

    Emory et al.

    r eg ion of t he gene for t he omp A prote in , a major outer m em -

    brane pro t e in of  Escherichia coh. Pioc. Natl.  Acad.  Sci.

    77 :

      3 8 4 5 - 3 8 4 9 .

    Mudd, E.A., A.J. Carpousis, and H.M. Krisch. 1990a.  Escherich-

    ia coh

      RNa se E has a ro l e i n t he decay of bact er iophage T4

    m R N A .

      Genes Sk Dev.

      4 :  8 7 3 - 8 8 1 .

    Mudd, E.A., H.M. Krisch, and C.F. Higgins. 1990b. RNase E, an

    endor ibon uclease , h as a genera l r o l e i n t he chem ical decay of

    E. coh

      m R N A : E v i d e n c e t h a t

      me

      a n d

      am s

      are t he same ge-

    net i c l ocus .  Mol. Microbiol.  4 : 2 1 2 7 - 2 1 3 5 .

    Na kam aye , K.L. and F . Eckst e in . 1986. Inhib i t i on of r es t r i c t i on

    e n d o n u c l e a se   Neil  c l eavage by pho spho roth ioa t e groups and

    i t s appl i ca t ion to o l igonucleot ide-di r ec t ed mutagenesi s .  Nu -

    cleic Acids Res.  1 4: 9679 -9697 .

    Newbury, S.F. , N.H. Smith, E.G. Robinson, I .D. Hi les, and C.F.

    Higgins . 1987. S t abi l i za t ion of t r ans l a t ional ly ac t ive mRNA

    by prokaryot i c REP sequences .  Cell  4 8 : 2 9 7 - 3 1 0 .

    Nils son , P. and B.E. Uh l in . 19 91. Different ial decay of a poly-

    c i s t ronic  Escherichia coh  t r anscr ip t i s i n i t i a t ed by RNase

    E-dependent endonucleoly t i c process ing .  Mol. Microbiol.

    5 :  1 7 9 1 - 1 7 9 9 .

    Nilsson, G., J.G. Belasco, S.N. Gohen. and A. von Gabain. 1984.

    Growth- r a t e dependent r egula t ion of mRNA st abi l i t y i n

    Escherichia coh. Nature

      3 1 2 :

      7 5 - 7 7 .

    . 1987. Ef fec t of pr ema ture t e rm inat ion of t r ans l a t ion on

    mRNA st abi l i t y depends on the s i t e of r i bosome r e l ease .

    Proc. Natl.

      Acad.

      Sci.

      8 4 : 4 8 9 0 - 4 8 9 4 .

    O n o ,

      M. and M. Kuwan o. 1979. A condi t i onal l e tha l mu ta t io n

    in an

      Escherichia coh

      s t r a in wi th a l onger chem ical l i f e t ime

    o f m R N A .  f. Mol. Biol.  129:  3 4 3 - 3 5 7 .

    Pedersen, S. , S. Reeh, and J.D. Fr iesen. 1978. Funct ional mRNA

    half- l ives in

      E. coh. Mo l. G en. Genet.

      166:  3 2 9 - 3 3 6 .

    Sandler , P . and B. We i sblum . 1988. Erythrom ycin- ind uced s t a-

    bi l izat ion of  ermA  m e sse n g e r R N A i n  Staphylococcus au-

    reus  and  Bacillus subtilis. J. Mol. Biol.  2 0 3 : 9 0 5 - 9 1 5 .

    Tarasevic i en e , L ., A . Miczak , and D . Api r ion . 1991. The gene

    specifying RNase E

      [rne]

     and a gen e affect ing m RN A s tabi l -

    i ty   [ams]  are t he same gene .  Mol. Microbiol.  5: 851 -855.

    Varshavsky, A., A. Bachmair , D. Finley, D. Gonda, and I . Wun-

    ning . 1988. The N-e nd ru l e of se l ec t ive pro t e in turno ver . I n

    Ubiquitin  ( ed . M. Rechst e iner ) , pp . 287 -324 . P l en um Press ,

    New York .

    von Gabain, A., J.G. Belasco, J.L. Schot tel , A.C.Y. Chang, and

    S.N. Cohen. 19 83. Deca y of mR NA in

      Escherichia coh:

      In -

    vest igat ion of the fate of specif ic segments of t ranscr ipts.

    Proc. Natl.  Acad.  Sci.

      8 0 : 6 5 3 - 6 5 7 .

    Yam amo to , T . and F . Ima mo to . 1975. Di f f erent i a l s t ab i l i t y of

    trp   messenger RNA synthes i zed or ig ina t ing a t t he  trp  pro-

    mo ter and PL prom oter of l ambd a  trp  phage. / .  Mol. Biol.

    92 :  2 8 9 - 3 0 9 .

    Youvan, D.C., E.J. Byl ina, M. Alber t i , H. Begusch, and J.E.

    Hear s t . 1984. Nu cleo t ide and deduced polypept ide se-

    quences of t he photosynthet i c r eac t ion-center , B870 an-

    t enna , and f l anking polypept ides f rom

      R. capsulata. Cell

    37 :  9 4 9 - 9 5 7 .

    Cold Spring Harbor Laboratory Presson October 10, 2011 - Published by genesdev.cshlp.orgDownloaded from 

    http://www.cshlpress.com/http://www.cshlpress.com/http://genesdev.cshlp.org/http://genesdev.cshlp.org/http://www.cshlpress.com/http://genesdev.cshlp.org/