50
Emerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science and Engineering Center for Advanced Molecular Photovoltaics Bay Area Photovoltaic Consortium Precourt Institute for Energy Stanford University

Emerging High-Efficiency Low-Cost Solar Cell Technologies

Embed Size (px)

Citation preview

Page 1: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Emerging High-Efficiency Low-Cost Solar Cell Technologies

Mike McGehee

Materials Science and Engineering Center for Advanced Molecular Photovoltaics

Bay Area Photovoltaic Consortium Precourt Institute for Energy

Stanford University

Page 2: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Source: US DOE report “$1/W Photovoltaic Systems,” August 2010.

DOE’s Sunshot Goal: $1/W by 2017

A module efficiency of 25 % is wanted to enable the installation cost reductions.

Page 3: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Last  Week’s  Lecture  by  Anshu  Sahoo  and  Stefan  Reichelstein  

In 2017 the cost of silicon cells will probably be $0.65/W.

Silicon is currently competitive in favorable locations with the current subsidies.

Page 4: Emerging High-Efficiency Low-Cost Solar Cell Technologies

National Renewable Energy Laboratory Innovation for Our Energy Future

There are many approaches to making PV cells and experts do not agree on which one is the best

20x-100x 500x Cu(In,Ga)Se2 ~ 1-2 um c-Si ~ 180 um

Page 5: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Efficiency  Records  Chart  available  at:  h6p://www.nrel.gov/ncpv/images/efficiency_chart.jpg.    The  chart  above  was  downloaded  on  2/27/2014.  

Page 6: Emerging High-Efficiency Low-Cost Solar Cell Technologies

National Renewable Energy Laboratory Innovation for Our Energy Future

Silicon PV

Silicon Feedstock Ingot Growth Slicing Wafers

Cell Fabrication Module Encapsulation Photovoltaic System

Page 7: Emerging High-Efficiency Low-Cost Solar Cell Technologies

National Renewable Energy Laboratory Innovation for Our Energy Future

19.6% efficient planar cells on silicon

Source: J-H Lai, IEEE PVSC, June 2011

Page 8: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Cost analysis of Si Modules

8 Tonio Buonassisi et al., Energy and Env. Sci. 5 (2012) p. 5874.

LOS is line of sight

Page 9: Emerging High-Efficiency Low-Cost Solar Cell Technologies

9 Tonio Buonassisi et al., Energy and Env. Sci. 5 (2012) p. 5874.

Page 10: Emerging High-Efficiency Low-Cost Solar Cell Technologies

10 Tonio Buonassisi et al., Energy and Env. Sci. 5 (2012) p. 5874.

Page 11: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Cost analysis of Si Modules

11 Tonio Buonassisi et al., Energy and Env. Sci. 5 (2012) p. 5874.

Page 12: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Thin Crystalline Silicon Cells

Page 13: Emerging High-Efficiency Low-Cost Solar Cell Technologies
Page 14: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Using  nanocones  to  enable  complete  light  absorp2on  in  thin  Si  

Sangmoo Jeung, Mike McGehee, Yi Cui, Nature Comm. in press.

Page 15: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Gallium  Arsenide  •  The 1.4 eV band gap is ideal for solar cells. •  High quality films are grown on single crystal substrates with MOCVD.

Page 16: Emerging High-Efficiency Low-Cost Solar Cell Technologies
Page 17: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Photon  recycling  

Eli  Yablonovitch  et  al.,  IEEE  J.  of  Photovoltaics,  2  (2012)  p.  303.  

Si   GaAs  

Page 18: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Why  thin  film  GaAs  is  beGer  

•  RemiGed  photons  are  weakly  absorbed  and  can  easily  travel  more  than  a  carrier  diffusion  length  away  from  the  junc2on  in  a  wafer-­‐based  device.  

•  In  a    thin  cell,  a  mirror  keeps  photons  near  the  pn  junc2on.  

Eli  Yablonovitch  et  al.,  IEEE  J.  of  Photovoltaics,  2  (2012)  p.  303.  

Page 19: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Theore2cal  limits  

Eli  Yablonovitch  et  al.,  IEEE  J.  of  Photovoltaics,  2  (2012)  p.  303.  

Page 20: Emerging High-Efficiency Low-Cost Solar Cell Technologies

NREL  is  a  na2onal  laboratory  of  the  U.S.  Department  of  Energy,  Office  of  Energy  Efficiency  and  Renewable  Energy,  operated  by  the  Alliance  for  Sustainable  Energy,  LLC.  

A  Manufacturing  Cost  Analysis      Relevant  to  Photovoltaic  Cells  Fabricated    with  III-­‐Vs    

The  Na5onal  Center  for  Photovoltaics  Aaron  Ptak  David  Young  ScoG  Ward  Myles  Steiner  Pauls  Stradins  John  Geisz  Daniel  Friedman  Sarah  Kurtz    

         Graphics  and  Communica5ons  Alfred  Hicks  Kendra  Palmer  Nicole  Harrison        

Strategic  Energy  Analysis  Center            Ted  L.  James      David  Feldman      Robert  Margolis          

           Hydrogen  Technologies  Center  (Photoelectrolysis  Interest)            Todd  Deutsch      Henning  Doscher  John  Turner      

September  30,  2013        Publica2on  Number:  NREL/PR-­‐6A20-­‐60126  Contract  Number:  NREL:  DE-­‐AC36-­‐08GO28308      

Michael  Woodhouse                        Alan  Goodrich      AddiVonal  NREL  Contributors:  

Page 21: Emerging High-Efficiency Low-Cost Solar Cell Technologies

21  

An Example Process Flow for Making Single-Junction III-V Devices by ELO

Ongoing  NREL  Analysis  9/13/2013  

Page 22: Emerging High-Efficiency Low-Cost Solar Cell Technologies

22  

!"#"$

!%#"$

!&#"$

!'#"$

!(#"$

!)"#"$

!)%#"$

!)&#"$

!)'#"$

!)(#"$

*$ %*$ &*$ '*$ (*$ )"*$ )%*$ )&*$ )'*$ )(*$ %"*$

+,--./

0$1#2#$!3$4

567+

8$

9,:;.-$<=$>.,?.?$

@A.$+<?0?$=<-$0A.$B5C$2,;?0-D0.$D?$D$E,/FG</$<=$>.,?.$9,:;.-$!"#"$"%&"'()*"'!"+,-.*/.%0'(,*1'234'+"$'$"+,-.*/'+"$'566'&78'9)#"$:')%;'("--'<=&."%&>'28?@:'

+<?0?$H?$>.,?.?$

Reference Case Repolishing Cost

(Assuming a Repolish is Needed for Each Growth Cycle)

NREL Cost Analysis 9/13/2013

Step 1: Unpack and Clean GaAs Parent Epi-Substrate—3 (The Reference Case Scenario in the Bar Chart Assumes 50 Reuses and 70% Yields)

$0.0

$1.0

$2.0

$3.0

$4.0

$5.0

$6.0

$7.0

Cur

rent

US

$/ W

p (D

C)

Cost Estimates for Unpacking Parent EpiSubstrate 500 MWp(DC) U. S. Facility, 25% Cell Efficiency and 70% Yield

Depreciation (Equipment and Building)

Utilities

Labor & Maintenance

Chemical Surface Treatment Materials

Epi-Wafer (50 reuses)

Chemical Mechanical Polishing (CMP)

NREL DRAFT Cost Analysis 9/13/2013

Please  see  the  annotated    notes  below  this  slide    for  more  details.      

Page 23: Emerging High-Efficiency Low-Cost Solar Cell Technologies

23  

Cost  Summary,  by  Step,  for  the  Reference  Case.    (20  substrate  reusages,  precursor  uVlizaVons  of  30%  for  the  III-­‐  source  and  20%  for  the  V-­‐  source,  15  µm/hr  GaAs,  70%  effecVve  cell  yield  )  

$0.00

$1.00

$2.00

$3.00

$4.00

$5.00

$6.00

$7.00

Unpack and Clean

Epiwafer

MOVPE of AlAs Release

Layer

MOVPE of GaAs Front

Contact Layer

MOVPE of AlInGaP Window

Layer

MOVPE of GaAs Emitter

MOVPE of GaAs Base

MOVPE of InGaP Back

Surface Field

MOVPE of AlGaAs

Buffer/ Back Contact Layer

Bottom Metallization

Dissolve AlAs Release

Layer & Epitaxial Lift-

Off

Etching of GaAs

Contact Layer and

ARC

Top Metallization

Edge Isolation,

Test and Sort

Cur

rent

US

$/ W

p(D

C)

Calculated Device Processing Costs for Single-Junction III-V's 500 MWP(DC) U.S. Facility, 25% Cell Efficiency, 70% Yield, 5 yrs Equipment Depreciation

Depreciation Costs (Equipment and Building)

Utility Costs

Labor & Maintenance Costs

Material Costs

NREL Cost Analysis. 9/13/2013

TACT time in base layer step

20 Reuses Includes CMP

2.5 µm, 15 µm/hr 8 substrates per reactor

25 nm Au

50 nm, 4 µm/hr

100 nm 3 µm/hr

Please  see  the  annotated    notes  below  this  slide    for  more  details.      

Page 24: Emerging High-Efficiency Low-Cost Solar Cell Technologies

24  

Technology  Roadmap  SimulaVons  for  Single-­‐JuncVon  III-­‐V’s  (GaAs  Base)  

$0.00

$1.00

$2.00

$3.00

$4.00

$5.00

$6.00

$7.00

$8.00

$9.00

$10.00

$11.00

$12.00

$13.00

Cur

rent

US

$/ W

p(D

C)

Reference Case (!=25%) Mid-Term (!=27%) Long-Term MOVPE (!=29%) Long-Term SJ GaAs (!=29%)

Cost Model Results for Single-Junction (SJ) GaAs Solar Cells by ELO $150 for 133 cm2 Substrates, 0.25 Laborers per Reactor, U.S. Manufacturing

All stated efficiencies are AM 1.5G and 1000 W/m2 Required margin to meet minimum sustainable cell price Depreciation (Capital Equipment and Building) Electricity

Labor & Maintenance

Materials Costs for Device Layers

Parent epi-substrate and Chemical-Mechanical Polishing

$4.60/ W

Improvements in Epi-Substrate Utilization Increase Parent Epi-Substrate Reuses: From 20 reuses to 500 reuses Replace Chemical-Mechanical Repolishing with Wet Bench Surface Preparation Lower WACC: From 9% to 7%

$13.60/ W

!!$0.50/ W (SunShot Adjusted Cell Price Goal)

Novel Manufacturing Process* *Publicly Available Demonstrations Currently Unknown Reduce Device Materials Costs by 80% from the Long-Term Case for MOVPE (e.g., different precursors and higher utilizations) Reduce Cell Labor & Depreciation Expenses by 80% from the Long-Term Case for MOVPE (e.g.,, higher dep. rates and larger batch sizes)

NREL Cost Analysis 9/23/2013

Improvements in Cell Processing Increase Material Utilization: From 30% to 50% for TMG, TMI, and TMA From 20% to 30% for AsH3 and PH3 Reduce GaAs Base Thickness: From 2.5 µm to 1.5 µm Increase GaAs Deposition Rate: From 15 µm/hr to 20 µm/hr Secure Lower TMG Costs: From $2.50/g to $2.00/g Eliminate Au, Pt and/ or Pd from metallizations! Improve the Effective Cell Yield: From 70% to 95% Lower WACC: From 7% to 6%

$2.40/ W

Epi-S

ubst

rate

C

MP

Page 25: Emerging High-Efficiency Low-Cost Solar Cell Technologies
Page 26: Emerging High-Efficiency Low-Cost Solar Cell Technologies

What  can  be  done  to  bring  the  costs  down?  

•  Huge  breakthrough  in  reducing  materials  deposi2on  cost.  

•  Light  trapping  to  reduce  film  thickness.    See  Jim  Harris’s  2013  GCEP  talk  at  hGp://gcep.stanford.edu/symposium.  

•  Use  concentrators.    With  epitaxial  lifoff,  500  X  concentrators  might  not  be  necessary.    Trackers  for  10  X  concentrators  are  rela2vely  cheap.  

Page 27: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Cadmium Telluride Solar Cells

CdS/CdTe

glass •  Direct bandgap, Eg=1.45eV •  High module production speed •  Very inexpensive •  20.4 % efficiency

Image from Rommel Noufi Schematic from Bulent Basol

Page 28: Emerging High-Efficiency Low-Cost Solar Cell Technologies

28

CdTe: Industrial Status First Solar is the leader. It takes them 2.5 hours to make a 13.4 % module.

www.firstsolar.com; greentech media

Average Manufacturing Cost 2006: $1.40/watt 2007: $1.23/watt 2008: $1.08/watt 2009: $0.87/watt 2010: $0.77/watt 2011: $0.74/watt 2012: $0.64/watt 2013: $0.53/watt

The energy payback time is 0.8 years.

Page 29: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Efficiency limits Below band gap photons not absorbed

Thermalization of excess energy

Sources of energy loss

CB

VB

Increasing VOC and decreasing JSC

Page 30: Emerging High-Efficiency Low-Cost Solar Cell Technologies

There  are  lots  of  3rd  Genera2on  ideas  to  beat  the  Shockley-­‐

Quiesser  limit,  but  only  one  that  works.  

Page 31: Emerging High-Efficiency Low-Cost Solar Cell Technologies

ISC2009—Tokyo University, March 3, 2009 JSH 31

Multijunctions: The Road to Higher Efficiencies

Higher-efficiency MJ cells require new materials that divide the solar spectrum equally to provide current match

Ge provides lattice match but the bandgap is too small

GaAs1.4 eV

GaAs1.4 eV

GaInP1.8 eV

GaInP1.8 eV

0.7 eV

future generationexample structures

inproduction

1.0 eV

4 5 6 7 8 91

2 3 4

Energy (eV)

Ge0.7 eV

GaInP1.8 eV

1.25 eV

0.7 eV

GaAs1.4 eV

GaAs1.4 eV

GaInP1.8 eV

GaInP1.8 eV

0.7 eV

future generationexample structures

inproduction

1.0 eV

4 5 6 7 8 91

2 3 4

Energy (eV)

Ge0.7 eV

GaInP1.8 eV

1.25 eV

0.7 eV

Ge  0.7  eV  

GaAs1.4 eV

GaAs1.4 eV

GaInP1.8 eV

GaInP1.8 eV

0.7 eV

future generationexample structures

inproduction

1.0 eV

4 5 6 7 8 91

2 3 4

Energy (eV)

Ge0.7 eV

GaInP1.8 eV

1.25 eV

0.7 eV

GaInNAs  1.0  eV  

New  Solar  Junc2on  MJ  Cell  

Conven2onalMJ  Cell  

Page 32: Emerging High-Efficiency Low-Cost Solar Cell Technologies

4-junction cell with 44.7 % efficiency at 297 suns

Page 33: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Multijunction Cells are Very Expensive

Ge substrate: Bottom Cell

Ga0.99In0.01As: Middle Cell

Ga0.50In0.50P: Top Cell

R.R. King; Spectrolab Inc., AVS 54th International Symposium, Seattle 2007

•  These complex structures are grown very slowly under high vacuum.

•  37 % cells can be purchased for $50,000/m2

•  Concentrating the light is essential.

Page 34: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Concentrating Light

Dish  Shape  

It is possible to track the sun and concentrate the light by 500X

Sol Focus

Page 35: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Hybrid  Tandems  Are  Intended  to  be  a  High-­‐Performance  Low-­‐Cost  Op2on  

Efficiency Cost Organic 12% efficient

$30/m2

Epitaxial Crystalline

45 % efficient $40,000/m2

Hybrid 30% efficient

$100/m2

Established Technology:

Silicon or CIGS Eg ~ 1.1 eV

Low Cost Defect-Tolerant Technology: Perovskite, Organic,

Nanowires or II-VI Eg ~ 1.9 eV

Page 36: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Science 339 (2013) p. 1057. Surface recombination velocity = 170 cm/s

Page 37: Emerging High-Efficiency Low-Cost Solar Cell Technologies

37

Stion, Khosla-Funded PV Startup, Hits 23.2% Efficiency With Tandem CIGS

Greentech Media February 24, 2014

Page 38: Emerging High-Efficiency Low-Cost Solar Cell Technologies

‘Perovskite’  Describes  a  Crystal  Structure  Class  

Generic formula: ABX3

Methylammonium-lead-iodide

CH3NH3PbI3

CH3NH3+ Pb2+ I-

A B X

Page 39: Emerging High-Efficiency Low-Cost Solar Cell Technologies

2  

4  

6  

8  

10  

12  

14  

16  

2009   2010   2011   2012   2013   2014  

Efficien

cy  (%

)  

Perovskite  Solar  Cells  are  Soaring  

15.9% 15%

Snaith et al., En. Env Sci. Jan 2014 Snaith et al., Nature Sep 2013 Grätzel et al., Nature Jul 2013

Year

15.4% evaporated thin film PIN

MSSC, Al2O3 solution-processed

mesop. TiO2 2-step solution deposition

Page 40: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Perovskite  Solar  Cells  Evolved  From  the  Dye-­‐Sensi2zed  Solar  Cell  

Page 41: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Perovskites  Are  Compa2ble  With  A  Planar  P-­‐I-­‐N  Architecture  

Jsc = 21.5  mA/cm2 Voc = 1.07  V FF = 0.68 η = 15.4%

Page 42: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Low  Bandgap  –  q·∙Voc  Loss  in  Perovskite  Solar  Cells  

Material   Bandgap  (eV)   q·∙Voc  (eV)   Energy  loss  (eV)  GaAs   1.43   1.12   0.31  Silicon   1.12   0.75   0.37  CIGS   ~1.15   0.74   0.41  

Perovskite  (CH3NH3PbI3)  

1.55   1.07   0.48  

CdTe   1.49   0.90   0.59  a-­‐Silicon   1.55   0.89   0.66  

M. Green et al. Solar cell efficiency tables (version 42) July 2013

Page 43: Emerging High-Efficiency Low-Cost Solar Cell Technologies

The  traps  are  shallow  

43 Yanfa Yan et al., Appl. Phys. Lett. 104 (2014) 63903.

Page 44: Emerging High-Efficiency Low-Cost Solar Cell Technologies

The  Perovskite  is  a  Strongly-­‐Absorbing  Direct  Band  Gap  Semiconductor  

Page 45: Emerging High-Efficiency Low-Cost Solar Cell Technologies

The  Perovskite  Bandgap  can  be  tuned  by  Chemical  Subs2tu2on  

The band gap can be tuned from 1.57 eV to 2.23 eV by substituting bromine for iodine in CH3NH3Pb(BrxI1-x)3

data by McGehee group and Noh et al., Nano Lett. 2013

For hybrid tandem with CIGS

eV

Eva Unger

Page 46: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Hybrid  Tandem  Architectures  

2 Terminal •  Fewer layers that parasitically

absorb •  Module fabrication easier

4 Terminal •  Easier prototyping •  No current matching required •  No tunnel junction or

recombination layer required

Bottom Cell

Rear Contact

Transparent Electrode

Top Cell

Transparent Electrode

Transparent Electrode Glass

Bottom Cell

Rear Contact

Top Cell

Tunnel Junction/ Recomb Layer

Transparent Electrode

Page 47: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Our  Semitransparent  Perovskite  Cells  

Colin Bailie, Grey Christoforo

Page 48: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Preliminary  Cost  Es2mates  48

Today’s  Silicon   Silicon-­‐Perovskite  

Efficiency   19.4  %   25  %  

Cost/Area   $153/m2   $167/m2  

Cost/WaG   $0.79/W   $0.67/W  

Expected improvements in silicon technology will take the cost below $0.5/W!

Page 49: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Conclusions   •  Conventional silicon leads the solar cell race, but

will not take us where we need to go.

•  Several technologies could take over in the next 10 years.

•  We are still discovering new materials with substantially better properties.

•  I think multijunction solar cells will be thin, light, cheap and > 30 % efficient.

Page 50: Emerging High-Efficiency Low-Cost Solar Cell Technologies

Final  thoughts  

•  We have to solve the energy problem. •  Any technology that has good potential to cut carbon

emissions by > 10 % needs to be explored aggressively.

•  Researchers should not be deterred by the struggles

some companies are having.

•  Someone needs to invest in scaling up promising solar cell technologies.