61
Correlation between electronic structure, magnetism and physical properties of Fe-Cr alloys: ab initio modeling Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden

Electronic Theory of Materials Propertiesiramis.cea.fr/meetings/matgen4/Presentations/Abrikosov.pdf · 2007. 9. 27. · properties of Fe-Cr alloys: ab initio modeling Igor A. Abrikosov

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Correlation between electronic structure, magnetism and physical properties of Fe-Cr alloys: ab initio

    modeling

    Igor A. AbrikosovDepartment of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden

  • Fe-Cr alloys

    • Are the base for many important industrial steels• Used as cladding material in fast neutron reactors• Low Cr steels, up to 10 % Cr, show:

    anomalous stabilityresistance to neutron radiation induced swellingcorrosion resistance increased ductile to brittle transition temperature

    Accelerator of protons

    Cooling media

    Fuel

    Target

  • In collaboration with:

    P. Olsson, EDF R&D, France A. V. Ponomareva, MIS&A, RussiaA. V. Ruban, KTH, SwedenL. Vitos, KTH, SwedenJ. Wallenius, KTH, Sweden

  • CONTENTS :

    • Phase equilibria in solid solutions: theoretical background

    • First-principles methods: recent developments

    • Fe-Cr alloys: first-principles results• Discussion: understanding of first-principles

    results• Conclusions

  • Microstructure – Property Relationships

    Engine Block≅ 1 meter

    Microstructure - Grains≅ 1 – 10 mmProperties• High cycle fatigue• Ductility

    Microstructure - Phases≅ 100 – 500 micronsProperties• Yield strength• Ultimate tensile strength• High cycle fatigue• Low cycle fatigue• Thermal Growth• Ductility

    Microstructure - Phases≅ 3-100 nanometersProperties• Yield strength• Ultimate tensile strength• Low cycle fatigue• DuctilityOriginal idea for this figure belongs to Chris Wolverton

    Ford Motor Company

    Atoms≅ 10-100 AngstromsProperties• Thermal Growth

  • F F

    C

    A

    BC

    D

    Structures:

    A

    B

    CD

  • ∑ ⎟⎠⎞

    ⎜⎝⎛ −=−=

    s

    sB kT

    EZTkF exp Zln

  • A atom B atom

    AxB1-x alloy

    n(r) , the electron density

  • h2

    2me∇2 +VKS(x1,R1,R2,...,RNI )

    ⎣ ⎢

    ⎦ ⎥ φi(x1,R1,R2,...,RNI ) =εiφi(x1,R1,R2,...,RNI )

    LDA, GGA, etc.

    VASP, Wien2k,CASTEP,ABINIT, KKR, etc.

    Supercell, CPA, etc.

    It is NOT a trivial task to run ab initio software!

  • Ordered compounds

  • Solution phases: supercell method

  • 2X2X7, segregation energy -0.043 eV

    A. V. Ponomareva et al., Phys. Rev. B 75, 245406 (2007)

  • 3X3X9, segregation energy 0.090 eV

    A. V. Ponomareva et al., Phys. Rev. B 75, 245406 (2007)

  • Solution phases: coherent potential

  • =

    + (1-c)c

  • bcc Cr-Fe, magnetic moments

  • bcc Cr-Fe, mixing enthalpies

    P. Olsson, I. A. Abrikosov, L. Vitos, and J. Wallenius, J. Nucl. Mater. 321, 84 (2003)

  • P. Olsson, I. A. Abrikosov, and J. Wallenius, Phys. Rev. B 73, 104416 (2006)

  • }{ is σσ =r

    ⎩⎨⎧

    =otherwise

    atomby occupied is site if

    1- 1 Ai

    1 1 -1 1 11 -1 1 1 -11 1 -1 1 1-1 1 1 1 -1

    ,... ,s

    kji

    s

    ji σσσσσ

    ∑ ⎟⎠⎞

    ⎜⎝⎛ −=−=

    s

    sB kT

    EZTkF exp Zln

    ...),3(),2(

    )1()0(

    ++

    ++=

    ∑∑s

    kjis

    sji

    s

    tot

    VV

    VVE

    σσσσσ

    σ

  • Calculations of effective interatomic potentialsThe generalized perturbation method

    1. Calculate electronic structure of a randomalloy (for example, use the CPA):

    )( ,~ BAtg

    ...21)(

    )'(

    ''

    RR

    jiRR

    RRoneone VcEE σσ∑+= -determine a perturbationof the band energy due tosmall varioations of the correlation functions

    2.

    where the effective interatomic interactionsare given by an analytical formula:

    { }∫−= ARRRBRRRARRR tttdEV ''''1 γγπ

  • Calculations of effective interatomic potentials

    The Connolly-Williams method

    1. Choose structures fcc L12 L10 DO22

    2. Calculate Etot: E(fcc) E(L12) E(L10) E(DO22)

    with predefinedcorrelation functions [ ],... , , )1,3()2,2()1,2( kjijiji σσσσσσσ

    ...),2()1()0( ∑++=s

    jis

    tot VVVE σσσ

    min2

    ...}{ :L.S.Mby found are thenIf =∑⎥⎥⎦

    ⎢⎢⎣

    ⎡∑−≤

    m f fVfmEVNN strpot

  • The Monte Carlo method

    Calculations of averages at temperature T:Z

    TkEA

    A s Bs

    s∑ ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    =exp

    Create the Marcov chain of configurations: ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    TkE

    ZP

    B

    ss exp

    1

    Balance at the equilibrium state: ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−→=⎟⎟

    ⎞⎜⎜⎝

    ⎛−→

    TkEssW

    TkEssW

    B

    s

    B

    s 'exp)'(exp)'(

    EΔ )10( exp 00

    ⎪⎭

    ⎪⎬⎫

    ⎪⎩

    ⎪⎨⎧

    ≤≤>⎥⎦

    ⎤⎢⎣

    ⎡ Δ−>Δ

    ≤Δ

    rrTkEE

    E

    B

    Atoms exchanged

    ΔE

  • Multiscale simulations of radiation damage in Fe-Cr alloysJ. Wallenius, I. A. Abrikosov, P. Olsson et al.,

    J. Nucl. Mater. 329-333, 1175 (2004).

  • Atom Crystal

    ∑=occ

    iatomitot nEE ∫∑ +=

    FE

    valence

    core

    iitot dEEEnnEE )(

    CORE

    VALENCE

    EF

  • Atom Crystal

    ∫ −=−=FE

    valence

    atomvalence

    atomtot

    crystaltotBOND dEEnEEEEE )()(

    VALENCE

    EF

  • Transition metal

    ∫ −=−=FE

    valence

    atomvalence

    atomtot

    crystaltotBOND dEEnEEEEE )()(

    EFZr

  • Transition metal

    ∫ −=−=FE

    valence

    atomvalence

    atomtot

    crystaltotBOND dEEnEEEEE )()(

    EFNb

  • Transition metal

    ∫ −=−=FE

    valence

    atomvalence

    atomtot

    crystaltotBOND dEEnEEEEE )()(

    EFMo

  • Transition metal

    ∫ −=−=FE

    valence

    atomvalence

    atomtot

    crystaltotBOND dEEnEEEEE )()(

    EFTc

  • Transition metal

    ∫ −=−=FE

    valence

    atomvalence

    atomtot

    crystaltotBOND dEEnEEEEE )()(

    EFRu W

  • Transition metal

    EFRu

    )10(201

    ddBOND NWNE −−=

    W

  • theory (nm)

    exp (nm)exp (fm)

  • Transition metal

    EFRu

    )10(201

    ddBOND NWNE −−=

    W

  • Transition metal

    EFFe

    )10(201

    ddBOND NWNE −−=

  • EFFe

    ∫ −=FE

    bandupspin

    atomvalenceBOND dEEnEEE )()(

    ∫ −+FE

    banddownspin

    atomvalence dEEnEE )()(

    DIFFERENT PROPERTIES !!!

  • CONCLUSIONS :

    • First-principles simulations can be carried out for real materials of technological importance.

    • The results allow for the cautious optimism, and the choice of methodology should depend on the problem at hand.

    • The mixing enthalpy for paramagnetic alloys is positive at all concentrations, in excellent agreement with experiment.

    • On the contrary, ferromagnetic bcc Fe-Cr alloys are anomalously stable at low Cr concentrations. Therefore, magnetic effects must be taken into account in simulations.

    • The stability of the ferromagnetic alloys is determined by the strong concentration dependence of interatomic interactions in this system, which therefore must be taken into account in simulations.

    Correlation between electronic structure, magnetism and physical properties of Fe-Cr alloys: ab initio modeling���Fe-Cr alloysIn collaboration with:CONTENTS :Microstructure – Property RelationshipsCalculations of effective interatomic potentialsCalculations of effective interatomic potentialsThe Monte Carlo method CONCLUSIONS :