22
Survey of Materials. Lecture 3 Electronic structure of materials Andriy Zhugayevych October 5, 2017 Outline Quantum mechanics and Schrodinger equation Electronic structure of atoms and molecules Electronic structure of crystals Atomic motions Total energy Electronic properties Defects 1 / 22

Electronic structure of materials - zhugayevych.mezhugayevych.me/edu/Materials/Lecture3_AZ.pdf · Electronic structure of materials Andriy Zhugayevych October 5, ... exciton; U=V

  • Upload
    lytuyen

  • View
    220

  • Download
    1

Embed Size (px)

Citation preview

Survey of Materials. Lecture 3

Electronic structure of materials

Andriy Zhugayevych

October 5, 2017

Outline

• Quantum mechanics and Schrodinger equation

• Electronic structure of atoms and molecules

• Electronic structure of crystals

• Atomic motions

• Total energy

• Electronic properties

• Defects

1 / 22

Why do we need to know Quantum Mechanics

• mechanical

• thermal

• at macroscale

• electronic

• chemical

• anything at nanoscale

2 / 22

Pragmatic approach to Quantum MechanicsLet’s start with a single particle

Particle position r(t) → probability distribution |ψ(r , t)|2, wherethe wave-function ψ is the solution of Schrodinger equation:

i~∂ψ

∂t= Hψ ≡ − ~2

2m∆ψ + U(r , t)ψ

Any observable can be calculated as follows:

A = 〈ψ|A|ψ〉 ≡∫ψ(r , t) (Aψ) (r , t) dV

For example, average position:

r(t) =

∫r |ψ(r , t)|2 dV

3 / 22

Example: particle in uniform field

Initial conditions (a particle at r0 with velocity ~k/m):

ψ(r , 0) = C exp

[ikr − (r − r0)2

a2

]If U(r , t) = −Fr then

ψ(r , t) ∼ exp

i(k +F t

~

)r −

(r − r0 − ~kt

m −F t2

2m

)2

a2 + i2~tm

=⇒ classical dynamics + gaussian broadening

4 / 22

Example: simple model of electron transfer

Two-site Holstein model:

H =

(g x VV −g x

)+

Mx2

2+

kx2

2

Evolution: real space and coefficients5 / 22

Stationary Schrodinger equation

If the Hamiltonian is time-independent then the evolution can bewritten explicitly:

ψ(t) =∑n

cnψne−i En~ t , cn = 〈ψn|ψ(0)〉,

here (En, ψn) are eigenvalues and eigenfunctions of the stationarySchrodinger equation:

Hψ = Eψ

6 / 22

Examples

potential ψn En

free particle eikr ~2k2

2m k ∈ R3

potential box sin πnxa

π2~2n2

2ma2 n = 1,∞

oscillator Hn(ξ)e−ξ2/2 ~ω

(n + 1

2

)n = 0,∞

Coulomb r lL2l+1n−l−1

(2rn

)e−

rnYlm(θ, φ) − α

2an2 n ∈ N,

l < n, |m| 6 l

7 / 22

Practical considerations: basis setPlane waves or atomic orbitals

Wikipedia

8 / 22

Combination of atomic orbitals: examples

9 / 22

Many particle systems: fermions

Slater determinant – basis for many-body systems:

Ψ(ξ1, . . . , ξN) =1√N!

∣∣∣∣∣∣∣∣ψ1(ξ1) ψ1(ξ2) . . . ψ1(ξN)ψ2(ξ1) ψ2(ξ2) . . . ψ2(ξN). . . . . . . . . . . .

ψN(ξ1) ψN(ξ2) . . . ψN(ξN)

∣∣∣∣∣∣∣∣where ψi is i-th orbital and ξj is coordinate+spin of j-th electron.

Methods:

• Hartree–Fock (HF) – take single Slater determinate

• DFT – the same but modify energy functional

• post-HF – expand in basis of finite excitations

10 / 22

One-electron orbitals

• molecular orbitals (MO) – eigenfunctions of one-electronHamiltonian (HF/DFT)

• localized molecular orbitals (LMO) – a rotation of MOslocalizing each orbital in space

• natural orbitals (NO) – eigenfuntions of one-electron densitymatrix ρ1e

Ψ (ξ; η) = N∫

Ψ(ξ, ζ2, . . . , ζN)Ψ(η, ζ2, . . . , ζN)dζ

• natural transition orbitals (NTO) – the same for transitiondensity matrix ρ1e

ΨΦ(ξ; η) = N∫

Ψ(ξ, ζ2, . . . , ζN)Φ(η, ζ2, . . . , ζN)dζ

Explore examples here

11 / 22

More examples: MO vs NO

HOMO LUMO

ground statenh = 2ne = 0

hole NO electron NO

cation/anionnh/e = 1

∆n2 = .07/.06

singlet excitonnh = 1 + .12ne = 1 − .12

triplet excitonnh = 1 + .17ne = 1 − .18

12 / 22

More examples: NO vs NTO

hole NTO/NO electron NTO/NO

singlet excitonnh = 1 + .12ne = 1 − .12

singlet transitionnh/e = 1 ± .17

triplet excitonnh = 1 + .17ne = 1 − .18

triplet transitionnh/e = 1 ± .25

13 / 22

Strong correlations: Extended Hubbard modelPopulation analysis: ground state, hole, exciton; U/V = 2/1 vs 16/4

Methods: Uniform electron gas approximation for simple metals (LDA)

14 / 22

Extended Hubbard model: density waves1e density matrix (diagonal & subdiagonal): ground state & hole; U/V = 2/1 vs 16/4

15 / 22

Quantum mechanics of crystals

Bloch’s theorem for one-electron wave-function:

ψnk(r) = un(r)eikr

where un is periodic, n enumerates electronic bands, k is thewave-vector “periodic” in the reciprocal space define by vectors

bi = eijk2π

υ(aj × ak)

υ = a1 · (a2 × a3) is unit cell volume

16 / 22

Example 1: Kronig–Penney model

17 / 22

Example 2: Huckel model of trans-polyacetylene

H =

. . .

0 −t1 0−t1 0 −t2

0 −t2 0. . .

ψn = c1,2e

ikn, n ∈ Z, |k | 6 π/2

E (k) = ±√

t21 + t2

2 + 2t1t2 cos 2k

Ebandgap = 2|t1−t2|, Ebandwidth = 2(t1+t2)

18 / 22

Example 2: Total π-electron energy of trans-polyacetylene

Total electronic energy E = 2π

∫ π/20 E (k)dk = −3.34

4x supercell −3.30

19 / 22

Example 3: Silicon crystal

Band structure of Si

L

zk z

Γ

k x

ky

W

3X

Λ

KM

Q

1X

U

XS

Σ1

©bilbao crystallographic serverhttp://www.cryst.ehu.esBrillouin zone for Fm-3m

20 / 22

Silicon crystal: charge density

21 / 22

Summary and Resources

See summary here

• Wikipedia

• Bilbao Crystallographic Server

A few textbooks out of many:

• C Kittel, Introduction to Solid State Physics (2005)

• N W Ashcroft, N D Mermin, Solid state physics (1976)

Visualization software:

• Jmol

• Vesta

22 / 22