58
Technical contribution to the project

ELCOD 2nd workshop | presentation 5

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ELCOD 2nd workshop | presentation 5

Technical

contribution

to the project

Page 2: ELCOD 2nd workshop | presentation 5

Stéphane Le Calvé

Christina Andrikopoulou and Pauline Meyer

Christophe Sutter

Senior research fellow at the CNRS, Head of the

physico-chemistry team of the atmosphere

Indoor / outdoor air quality: Metrology, instrumental

development, sensors’ integration, reactivity

Coordination of projects

Personnel of the Technical Pole at CNRS

Electronics (study, development, troubleshooting), development

of software interfaces (Labview), IT, DSC

Engineer in Analytical chemistry at CNRS

Air quality sensors calibration and evaluation, Conception and

3D designs, Rapid prototyping, Communication of the results

Page 3: ELCOD 2nd workshop | presentation 5

Two objectives

Development of a monitoring system consisting of sensors and the necessary

fluidic and electronic elements for integration inside a drone

ELCOD Project

1- Multi-Sensors Project

2- Development of a Volatile Organic Compounds (VOCs) micro-analyser presenting the future perspective of

integration inside a drone

Page 4: ELCOD 2nd workshop | presentation 5

1- MultiSensors

Project

Christina Andrikopoulou1, Vincent Person3, Pauline

Meyer1, Christophe Sutter 1, Vedrines Marc 2, Kiefer

Renaud 2, Stéphane Le Calvé 1,3

1 ICPEES, University of Strasbourg, CNRS2 INSA Strasbourg

3 In’Air Solutions, Strasbourg, France

Page 5: ELCOD 2nd workshop | presentation 5

VOCs + NOxhv

Smog

O3 , Aldehydes, PAN, NO2

Photo-oxidation productsImportance of monitoring

Paris, France North Rhine, Germany

Pollutants monitored Volatile

Organic

Compounds

(VOCs)

Ozone

(O3)

Nitrogen

dioxide

(NO2)

1. Introduction

Page 6: ELCOD 2nd workshop | presentation 5

Autonomy

Low cost

Low dimensions / weight

Accurate monitoring

1. Introduction

Pollutant / Parameter Range Precision

Volatile Organic Compounds (VOCs) 31-1000 ppb 10 %

Ozone (O3) 20 - 1000 ppb 10 %

Nitrogen Dioxide (NO2) ? - 1000 ppb10 %

Temperature (T) -40 to +85 °C ± 0.5 °C

Relative Humidity (RH) 0 - 100 % ± 3 % RH

Pressure (P) 0.3 -1.1 bar ± 1 mbar

Targeted performance

Page 7: ELCOD 2nd workshop | presentation 5

2. General overview

2.1 Stationary sampling

Page 8: ELCOD 2nd workshop | presentation 5

3. Development: Detection

Volatile Organic Compounds (VOCs)

Ozone (O3)

Temperature (T)Relative Humidity (RH)Pressure (P)

1 cm

0 – 1000 ppb

- 40 to + 85 ° C

0 – 100 %

0,3 – 1,1 bar

Nitrogen Dioxide (NO2)

Carbon Dioxide (CO2)

Carbon monoxide (CO)

0 – 20 ppm0 – 20 ppm

Nitric Oxide (NO)

0 – 20 ppm0 – 20 ppm

Page 9: ELCOD 2nd workshop | presentation 5

9

3. Development: Data visualization

Sensors

Inside the box Outside

Page 10: ELCOD 2nd workshop | presentation 5

General 3D design

3. Development: Mechanics

Page 11: ELCOD 2nd workshop | presentation 5

General 3D design

3. Development: Mechanics

Page 12: ELCOD 2nd workshop | presentation 5

3D design : Tunnel for chemical sensors

3. Development: Mechanics

Fluidic connectors

Connector for cables

Commercial tunnel for Alphasense chemical sensors

Commercial tight box

Page 13: ELCOD 2nd workshop | presentation 5

Beta laboratory prototype

4. Results: Detection

Air

O3 generator(2B Technologies, Inc.)

Exhaust

ExhaustFlow Controller

3-port valve

O3 and NO2 Sensors (alphasense)

mounted on PCB

Gas hood (alphasense)

Flow Controller

2-port valve 1

2-port valve 2

Ambient air

NO2

1) Blank / O3 generation

2) O3 injection

3) NO2 dilution and injection

Page 14: ELCOD 2nd workshop | presentation 5

Final integration : O3 concentration

4. Results: Detection

-200,0

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0

1400,0

13500 15500 17500 19500 21500 23500

Co

nce

ntr

atio

n (

pp

b)

Time (s)

Beta-prototype

-100,0

100,0

300,0

500,0

700,0

900,0

1100,0

1300,0

12:57:36 13:26:24 13:55:12 14:24:00 14:52:48 15:21:36 15:50:24 16:19:12 16:48:00

Co

nce

ntr

atio

n (

pp

b)

Real time

Final integration prototype

Page 15: ELCOD 2nd workshop | presentation 5

Final integration : NO2 concentration

4. Results: Detection

-200,0

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0

12:57:36 13:26:24 13:55:12 14:24:00 14:52:48 15:21:36 15:50:24 16:19:12 16:48:00 17:16:48 17:45:36

Co

nce

ntr

atio

n (

pp

b)

Real time

Final integration prototype

-200

0

200

400

600

800

1000

1200

1400

1600 3600 5600 7600 9600 11600 13600

Co

nce

ntr

atio

n (p

pb

)

Time (s)

Beta-prototype

Page 16: ELCOD 2nd workshop | presentation 5

y = 0,284xR² = 0,9957

y = 0,1353xR² = 0,9974

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

0 200 400 600 800 1000 1200 1400 1600

Sign

al v

aria

tio

n (

mV

)

Injected concentration (ppb)

O3 sensor NO2 sensor

Final integration : calibrations with O3 and NO2

4. Results: Detection

flow rate : 400 mL/min blank performed with cleaned

air from the ozone generator

Linear response In accordance with the injected concentrations

LOD = 108 ppb

LOD = 193 ppb

Electronic/software enhancements :- Arduino Leonardo replaced by Arduino Mega- Analog-to-digital converter 16 bits focused on the ±1V range : theoretical

resolution of 0.125 ppb.- Software filters to reduce the noise : LOD = 10-20 ppb

Page 17: ELCOD 2nd workshop | presentation 5

Tests and calibration of VOCs sensors

Detection limit : 31 ppb

Calibration with injection of BTEX : Benzene, Toluene , Ethyl Benzene, Xylenes

4. Results: Detection

MiCS-VZ89 (SnO2 sensor)

SGX Sensortech

Page 18: ELCOD 2nd workshop | presentation 5

Today

Conception and designs

Materials chosen

Sensors mounting on arduino

Sensors testing and calibration

Final prototype development

Sensors’ calibration finalisation

Prototype indoor testing

Demonstration during flight

Conclusions & Perspectives

Page 19: ELCOD 2nd workshop | presentation 5

2- Development

of a VOCs

microanalyser

Christina Andrikopoulou 1 Irene Lara-Ibeas1, Vincent

Person 1,2, Stéphane Colin3, Stéphane Le Calvé1,2

1 ICPEES, University of Strasbourg,

CNRS2 In’Air Solutions, Strasbourg, France

3 INSA Toulouse, France

Page 20: ELCOD 2nd workshop | presentation 5

1.1

1.2

Total detection of VOCs (VOCs sensor: see before)

Detection of each VOC separately

Detection of Volatile Organic Compounds (VOCs)

Time (s)

Inte

nsit

y (

am

u)

1. Introduction

Toluene

Benzene

Ethylbenzene

m+p Xylenes

o-Xylene

Page 21: ELCOD 2nd workshop | presentation 5

21

1. Introduction: no preconcentration

Three steps analysis:

1. Air Sampling

1. Separation

1. Detection

Nasreddine, R. et al. (2016), Sensors and actuators B Chem., 224, 159–169.

Temperature: 65°CCarrier gas flow: N2 at 2.5 mL/minTime of analysis: 10 min

N2

GC Column

v

Exhaust

PID

PCMicropump

Air

Sample

Mass Flow

Controller

Pressure

Controller

Sampling

loop

Page 22: ELCOD 2nd workshop | presentation 5

22

PPB MiniPID 2

IonScience

Detection limit : 1- 6.6 ppb

Concentration (ppb)

0 10 20 30 40 50 60 70 80 90 100 110 120

Pe

ak

are

a (

u.a

)

0

5000

10000

15000

20000

25000

30000

35000

Benzene

Toluene

Ethylbenzene

m+p - Xylenes

o - Xylene

1. Introduction: no preconcentration

Current analyser without preconcentrator

Page 23: ELCOD 2nd workshop | presentation 5

23

1. Introduction: with preconcentration

Lara-Ibeas et al. (2019),Micromachines, 10, 187.

Four steps analysis:

1. Air Sampling (adsorption in a preconcentrator)

2. Injection / desorption at high temperature

3. Separation

4. Detection

Page 24: ELCOD 2nd workshop | presentation 5

24

1. Introduction: with preconcentration

Operating principle

Sampling Preconcentration Separation Detection

Most energy consuming

Page 25: ELCOD 2nd workshop | presentation 5

2. 1st Preconcentrator

Lara-Ibeas et al. (2019), Micromachines, 10, 187.

Uniform flow distribution inside the microfluidic cavity

Page 26: ELCOD 2nd workshop | presentation 5

2. 1st Preconcentrator

Lara-Ibeas et al. (2019), Micromachines, 10, 187.

Page 27: ELCOD 2nd workshop | presentation 5

2. 1st Preconcentrator

Lara-Ibeas et al. (2019), Micromachines, 10, 187.

Sampling Volume (mL)

0 10 20 30 40 50 60 70 80 90

Peak a

rea (

x10

2 a

.u.)

0

2000

4000

6000

8000

10000

12000Benzene

Toluene

Ethylbenzene

o-Xylene

m/p-Xylenes

R2 = 0.9946

R2 = 0.9892

R2 = 0.9824

R2 = 0.9608

R2 = 0.9838

Concentration = 100 ppb

Page 28: ELCOD 2nd workshop | presentation 5

2. 1st Preconcentrator

Lara-Ibeas et al. (2019), Micromachines, 10, 187.

Concentration (ppb)

0 25 50 75 100

Pe

ak

are

a (

x10

2 a

.u.)

0

500

1000

1500

2000

2500

3000 Benzene

Toluene

Ethylbenzene

o-Xylene

m/p-Xylenes

CompoundLOD

(ppb)

Benzene 0.20

Toluene 0.26

Ethylbenzene 0.49

m/p-Xylenes 0.80

o-Xylene 1.70

R2 = 0.9913

R2 = 0.9777

R2 = 0.9959

R2 = 0.9949

R2 = 0.9895

Sampling volume = 20 mL

Page 29: ELCOD 2nd workshop | presentation 5

2. 1st Preconcentrator

Lara-Ibeas et al. (2019), Micromachines, 10, 187.

The first prototype of preconcentrator takes 65 seconds to rise the temperature up to 200 ªC from room temperature(25ºC). While the energy consumption remains constant at 210 Watts.

Heating

Time

[Sec]

Temperature

[ºC] Power[w]

0 29 210

5 33 210

10 46 210

15 61 210

20 76 210

25 92 210

30 108 210

35 120 210

40 135 210

45 148 210

50 162 210

55 176 210

60 187 210

65 200 210

70 212 210

75 224 210

80 235 210

85 243 210

90 248 210

95 250 210

Page 30: ELCOD 2nd workshop | presentation 5

3. 2nd Preconcentrator

Rodriguez et al. (2019), publication, to be submitted.

The second prototype of preconcentrator takes 23seconds to rise the temperature up to 200 ªC fromroom temperature (25ºC). While, in this case theenergy consumption varies from 42..9 Watts to 22.15Watts .

Heating

Time

[Sec]

Temperat

ure [ºC]

Voltage

[Volt]

Current

[Amp]

Power

[Watt]

0 24 14 3.06 42.9

2 24 14 2.39 33.47

4 27 14 2.28 31.89

6 45 14 2.02 28.28

8 58 14 1.92 26.89

10 76 14 1.85 25.93

12 98 14 1.79 25.09

14 119 14 1.73 24.18

16 136 14 1.69 23.60

18 149 14 1.65 23.06

20 171 14 1.61 22.54

22 192 14 1.58 22.15

24 206

26 216

30 234

34 244

38 246

42 240

46 233

50 225

Le Calvé et al. (2019), patent, to be submitted.

Page 31: ELCOD 2nd workshop | presentation 5

3. 2nd Preconcentrator

Rodriguez et al. (2019), to be submitted.

Page 32: ELCOD 2nd workshop | presentation 5

4. Conclusions

Rodriguez et al. (2019), to be submitted.

0

0,5

1

1,5

2

2,5

3

Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene

Limit Of Detection (LOD) in ppb

LOD without preconcentration (ppb)

LOD with preconcentrator 1 (ppb)

LOD with preconcentrator 2 (ppb)

Lara-Ibeas et al. (2019), Micromachines, 10, 187.

Nasreddine et al. (2016), Sensors and Actuators B, 224, 159-169.

Benzene and Toluene:LOD < 50 pptv

Page 33: ELCOD 2nd workshop | presentation 5

Thank you for your attention

Page 34: ELCOD 2nd workshop | presentation 5
Page 35: ELCOD 2nd workshop | presentation 5
Page 36: ELCOD 2nd workshop | presentation 5
Page 37: ELCOD 2nd workshop | presentation 5

BACK UP SLIDES

Page 38: ELCOD 2nd workshop | presentation 5

Instrumental characteristics by

analysis step

ANNEX Multisensors Project

Page 39: ELCOD 2nd workshop | presentation 5

Element Voltage

(V)

Current

(A)

Consumption

(W)

Dimensions

(mm) *

Weight

(g)

Price

(€ )

Mini-pump 120.16

(max)2 37 x 16 x 25 23 200

2 port valves

(x 2)12 -

2.00

4.00Ø 19.1 x 42.7

18.1

36.2

57.51

115

3 port valve 12 - 2.00 Ø 19.1 x 42.7 18.1 57,51

Housing - - - 50 x 50 x 21 50 50

Total 12 - 2 250 x 170 x 105 127.3 422.53

Sampling Note: Approximate values

Total dimensions

* Length x Width x Height / Diameter x Height

Page 40: ELCOD 2nd workshop | presentation 5

Element Voltage

(V)

Current

(A)

Consumption

(W)

Dimensions

(mm) *

Weight

(g)

Price

(€ )

Box with : - - - 146 x 150 x 60 180 7

Tunnel 1 - - - 52 x 50 x 40 100 5,8

Tunnel 2 - - - 65 x 50 x 45 150 12,9

Gas hood with AFE and 4

electrochemical sensors

(NO2, O3, CO, NO)

3.4 – 6.4 0.0026 0.009 – 0.017

115.7 x 28 x 33.3

(Ø 20.2 x 16.5

each sensor)

168 ?

VOCs (VZ89) 3.3 0.05 22.9 x 14 x 3.2 10 20

CO2 4.75 - 7.5 0.0032 0.0152 – 0.024 45 x 22 x 14.95 20 113

P, T, HR (x2) 1.7-3.6 0.000710.0012 – 0.0026

0.0024 – 0.005222 x 14 x 2

5

10

17

34

Total 3.3-5.5 - 0.71 250 x 170 x 105 638

Detection

* Length x Width x Height / Diameter x Height 40

Note: Approximate values

Total dimensions

Page 41: ELCOD 2nd workshop | presentation 5

Element Voltage

(V)

Current

(A)

Consumption

(W)

Dimensions

(mm) *

Weight

(g)

Price

(€ )

Arduino 12 0.09 1.08 68.6x23.3x1.7 35 25

Electronic card

Battery - - - 110 x 34 x 36 200 30.5

Total 12 1.08 250x170x105 385 446

Electronics

41

Note: Approximate values

* Length x Width x Height

Total dimensions

Page 42: ELCOD 2nd workshop | presentation 5

Element Voltage

(V)

Current

(A)

Consumption

(W)

Dimensions

(mm) *

Weight

(g)

Price

(€ )

GPS 7.2- 21

(12)

0.065 0.5 – 1.4 (0.8) 49 x 20 x 12 12 5.5

Connectors

Bulkhead (x4) - - - 35 (140) 26 (104)

1/16’’ – 1/8’’ mm - - - 18 35

Tee connector 20 20

Total 12 0.065 0.8 250x170x105 202 193

Others

42

Note: Approximate values

* Length x Width x Height

Total dimensions

Page 43: ELCOD 2nd workshop | presentation 5
Page 44: ELCOD 2nd workshop | presentation 5

Final integration

5. Preliminary results : Detection

Electronic enhancements :- Arduino Leonardo replaced by Arduino Mega

- Analog-to-digital converter 16 bits focused on the ±1V range

Alphasense sensors reach a theoretical resolution of 0.125 ppb

Signal filtering needed ?

Integration of all the sensors

Page 45: ELCOD 2nd workshop | presentation 5

2. General overview

2.1 Sampling during flight

Page 46: ELCOD 2nd workshop | presentation 5

3. Instrumental characteristics

Analysis

step

Voltage

(V)

Consumption

(W)

Dimensions

(mm) *

Weight

(g)

Price

(€ )

Sampling 12 2 250 x 170 x 105 127.3 422.53

Detection 3.3-5.5 0.71 250 x 170 x 105 638

Electronics 250 x 170 x 105

Others 250 x 170 x 105

Total 250 x 170 x 105

Estimation based on current progress of the project

* Length x Width x Height

Page 47: ELCOD 2nd workshop | presentation 5

4. Preliminary development : Mechanics

3D design : Tunnel for sensors of meteorological conditions

Fluidic connectors

Connector for cables

Page 48: ELCOD 2nd workshop | presentation 5

Calibrations with O3 and NO2

5. Preliminary results : Detection

y = 0,2142xR² = 0,9925

y = 0,1812xR² = 0,997

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

0 200 400 600 800 1000 1200 1400 1600

Sign

al v

aria

tio

n (

mV

)

Injected concentration (ppb)

Calibration with NO2

O3 sensor NO2 sensor

y = 0,3091xR² = 0,9991

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

450,00

0,0 200,0 400,0 600,0 800,0 1000,0 1200,0 1400,0

Sign

al v

aria

tio

n (

mV

)

Injected concentration (ppb)

Calibration with O3

flow rate : 400 mL/min blank performed with cleaned

air from the ozone generator

Linear response In accordance with the injected

concentrations

LOD = 95 ppb

LOD = 169 ppb

LOD = 253 ppb

Page 49: ELCOD 2nd workshop | presentation 5

Final integration : raw signal with O3 injection

5. Preliminary results : Detection

400

450

500

550

600

650

700

750

800

0 1000 2000 3000 4000 5000 6000

WE

sign

al (

mV

)

Time (s)

Beta-prototype

350

400

450

500

550

600

650

700

750

0 2000 4000 6000 8000 10000 12000 14000

WE

sign

al (

mV

)

Time (s)

Final integration prototype

Noise : 18,8 mV

Noise : 6 mV

Page 50: ELCOD 2nd workshop | presentation 5

Final integration : raw signal with NO2 injection

5. Preliminary results : Detection

Noise : 14,1 mV

Noise : 6 mV

250

300

350

400

450

500

12:57:36 13:26:24 13:55:12 14:24:00 14:52:48 15:21:36 15:50:24 16:19:12 16:48:00

WE

sign

al (

mV

)

Real time

Final integration prototype

250

300

350

400

450

500

550

1000 3000 5000 7000 9000 11000 13000

WE

sign

al (

mV

)

Time (s)

Beta-prototype

Page 51: ELCOD 2nd workshop | presentation 5

51

4. Preliminary results : Data visualization

Android app interface

Page 52: ELCOD 2nd workshop | presentation 5

52

2. Preliminary results: Preconcentration

Main problems:

• Low heating rate

• High energy consumption

• Lack of automatization

6) Conclusions and future work

• Linearity and repeatability has been validated

• Calibration has been performed in the range 2.5 - 100 ppb

• LOD less than 2 ppb have been achieved for all BTEX

• More adsorbents are currently being tested for VOCs trapping (zeolites)

Solutions:

• Heating cartridges will be replaced by ceramic resistances

• Energy consumption reduction from 210 W to less than 36 W

• Functions will be integrated in the current software (Tronico)

Page 53: ELCOD 2nd workshop | presentation 5

3 m GC ColumnHousing

Inlet/outlet 1/16”

Inlet/outlet

Ø = 1 mm

O-ring seals

Nanotechnology Plateforme of CNRS-Toulouse (LAAS)

2. Preliminary development : Separation

Page 54: ELCOD 2nd workshop | presentation 5

2. 1st Preconcentrator

1st Preconcentrator

Study of adsorbentsCarbopack BBasolite C-300SBA-16

Characteristics:

• Weight: 54.9 g

• Adsorbent: 5.8 mg of Basolite C300

• Heating system consumption: 210 W

• Heating rate: 150°C in 60 s

• Sampling time: 4 min

• Analysis time: 15 min

Page 55: ELCOD 2nd workshop | presentation 5

55

2. 1st Preconcentrator

Ten 20-mL samples containing 100 ppb of BTEX were consecutively injected.

1) Repeatability

Retention time RSD (%) < 2 %

Peak area RSD (%) < 15 %

Caused by:

• Co-elution of peaks

• Lack of automatization

Solution:

• Faster heating rate

• Functions integrated in the software

Sampling Volume (mL)

0 10 20 30 40 50 60 70 80 90

Peak a

rea (

x10

2 a

.u.)

0

2000

4000

6000

8000

10000

12000Benzene

Toluene

Ethylbenzene

o-Xylene

m/p-Xylenes

2) Linearity

Compound R2

Benzene 0.9946

Toluene 0.9892

Ethylbenzene 0.9824

m/p Xylenes 0.9608

o-Xylene 0.9838

Linearity is confirmed in the range 5 - 80 mL

Page 56: ELCOD 2nd workshop | presentation 5

2. Preliminary results: Preconcentration

56

3) Calibration

Calibration was performed using different gaseous concentrations of the targeted

compounds in the range 2.5 – 100 ppb. Each concentration was injected in duplicate.

CompoundCalibration

EquationR2

Benzene y = 2828.2 x 0.9913

Toluene y = 1206.3 x 0.9777

Ethylbenzene y = 454.2 x 0.9895

m/p Xylenes y = 311.9 x 0.9959

o-Xylene y = 427.0 x 0.9949

Concentration (ppb)

0 25 50 75 100

Peak a

rea (

x10

2 a

.u.)

0

500

1000

1500

2000

2500

3000 Benzene

Toluene

Ethylbenzene

o-Xylene

m/p-Xylenes

Analyser response is linear in the range 2.5 – 100 ppb

Page 57: ELCOD 2nd workshop | presentation 5

2. Preliminary results: Preconcentration

Compound LOD (ppb)

Benzene 0.20

Toluene 0.26

Ethylbenzene 0.49

m/p Xylenes 0.80

o-Xylene 1.70

4) Limit of detection

LOD lower than 2 ppb is achieved for all compounds

5) Adsorbents for VOCs trapping

Different materials tested as adsorbents

for aldehydes trapping

Selected adsorbents exhibited high adsorption

capacity for BTEX and hexanal

0

0,2

0,4

0,6

0,8

1

0 100 200 300 400

C/C

0

Time (min)

Basolite

CarbopackB

Conditions: C0 = 3300 ppm Flow rate = 20 mL/min

Adsorbent mass = 50 mg

Hexanal adsorption

concentrations (2.5 and 5 ppb).

57

Page 58: ELCOD 2nd workshop | presentation 5

Today

Conception

MEMS GC Column manufacturing

Study of absorbants

Preconcentration tests (major drawback : 210 W

for heating)

Heating performance tests

Miniaturization of

preconcentrator with lower

Energy consumption

(patent under submission)

Conclusions & Perspectives