elasticity

Embed Size (px)

Citation preview

  • 2D Elasticity Examples

    Dr. Robert Gracie University of Waterloo

    CIVE422 2015

  • Dr. Gracie, University of Waterloo 2015

    T3 Example Point Loads

    2

    1MN

    2MN

    1

    2

    I x y 1 0 0 2 1.5 0 3 0 1 4 0 -1

    Nodal Coordinate

    e

    1 1 2 3 2 1 4 2

    Element connectivity

    E=200GPa, ! =0.35

  • Dr. Gracie, University of Waterloo 2015

    T3 Example K1

    3

    1.31 0.71 -0.73 -0.38 -0.58 -0.33! 0.71 1.90 -0.33 -0.26 -0.38 -1.65!-0.73 -0.33 0.73 0 0 0.33!-0.38 -0.26 0 0.26 0.38 0!-0.58 -0.38 0 0.38 0.58 0!-0.33 -1.65 0.33 0 0 1.65!

    K1 = 1011!

    K1 = A B1TDB1

    B1 =N1,x 0 N2,x 0 N3,x 00 N1,y 0 N2,y 0 N3,yN1,y N1,x N2,y N2,x N3,y N3,x

    !

    "

    ####

    $

    %

    &&&&

    =12A

    y23 0 y31 0 y12 00 x32 0 x13 0 x21x32 y23 x13 y31 x21 y12

    !

    "

    ####

    $

    %

    &&&&

    -0.67 0 0.67 0 0 0! 0 -1.00 0 0 0 1.00!-1.00 -0.67 0 0.67 1.00 0!

    B1 =

    [1] [2]

    [1]

    [2]

    [3]

    [3]

  • Dr. Gracie, University of Waterloo 2015

    T3 Example K2

    4

    1.31 -0.71 -0.58 0.33 -0.73 0.38! -0.71 1.90 0.38 -1.65 0.33 -0.26! -0.58 0.38 0.58 0 0 -0.38! 0.33 -1.65 0 1.65 -0.33 0! -0.73 0.33 0 -0.33 0.73 0! 0.38 -0.26 -0.39 0 0 0.26!

    K2 = 1011!

    K2 = A B1TDB1

    B2 =N1,x 0 N2,x 0 N3,x 00 N1,y 0 N2,y 0 N3,yN1,y N1,x N2,y N2,x N3,y N3,x

    !

    "

    ####

    $

    %

    &&&&

    =12A

    y23 0 y31 0 y12 00 x32 0 x13 0 x21x32 y23 x13 y31 x21 y12

    !

    "

    ####

    $

    %

    &&&&

    -0.67 0 0 0 0.67 0! 0 1.00 0 -1.00 0 0! 1.00 -0.67 -1.00 0 0 0.67!

    B2 =

    [1] [4]

    [1]

    [4]

    [2]

    [2]

  • Dr. Gracie, University of Waterloo 2015

    T3 Example Assemble K

    5

    K =1011!

    2.62 0 -1.47 0 -0.58 -0.33 -0.58! 0 3.81 0 -0.51 -0.38 -1.65 0.38! -1.47 0 1.47 0 0 0.33 0! 0 -0.51 0 0.51 0.38 0 -0.38! -0.58 -0.38 0 0.38 0.58 0 0! -0.33 -1.65 0.33 0 0 1.65 0! -0.58 0.38 0 -0.38 0 0 0.58! 0.33 -1.65 -0.33 0 0 0 0!

    0.33! -1.65! -0.33! 0! 0! 0! 0! 1.65!

    22

    4

    3

    11

    K1 = 1011!

    [1] [2]

    [1]

    [2]

    [3]

    [3]

    1.31 0.71 -0.73 -0.38 -0.58 -0.33! 0.71 1.90 -0.33 -0.26 -0.38 -1.65!-0.73 -0.33 0.73 0 0 0.33!-0.38 -0.26 0 0.26 0.38 0!-0.58 -0.38 0 0.38 0.58 0!-0.33 -1.65 0.33 0 0 1.65!

  • Dr. Gracie, University of Waterloo 2015

    T3 Example Assemble K

    6

    K =1011!

    2.62 0 -1.47 0 -0.58 -0.33 -0.58! 0 3.81 0 -0.51 -0.38 -1.65 0.38! -1.47 0 1.47 0 0 0.33 0! 0 -0.51 0 0.51 0.38 0 -0.38! -0.58 -0.38 0 0.38 0.58 0 0! -0.33 -1.65 0.33 0 0 1.65 0! -0.58 0.38 0 -0.38 0 0 0.58! 0.33 -1.65 -0.33 0 0 0 0!

    0.33! -1.65! -0.33! 0! 0! 0! 0! 1.65!

    12

    4

    3

    12

    1.31 -0.71 -0.58 0.33 -0.73 0.38! -0.71 1.90 0.38 -1.65 0.33 -0.26! -0.58 0.38 0.58 0 0 -0.38! 0.33 -1.65 0 1.65 -0.33 0! -0.73 0.33 0 -0.33 0.73 0! 0.38 -0.26 -0.39 0 0 0.26!

    K2 = 1011!

    [1] [4]

    [1]

    [4]

    [2]

    [2]

  • Dr. Gracie, University of Waterloo 2015

    Forces

    7

    f =

    f1xf1yf2 xf2 yf3xf3yf4xf4y

    !

    "

    ############

    $

    %

    &&&&&&&&&&&&

    =

    00

    1106

    2106

    0000

    !

    "

    ##########

    $

    %

    &&&&&&&&&&

    1

    22

    4

    3

    1

    1MN

    2MN

    1

    2

  • Dr. Gracie, University of Waterloo 2015

    Apply BCs and Solve

    8

    1011!

    2.62 0 -1.47 0 -0.58 -0.33 -0.58! 0 3.81 0 -0.51 -0.38 -1.65 0.38! -1.47 0 1.47 0 0 0.33 0! 0 -0.51 0 0.51 0.38 0 -0.38! -0.58 -0.38 0 0.38 0.58 0 0! -0.33 -1.65 0.33 0 0 1.65 0! -0.58 0.38 0 -0.38 0 0 0.58! 0.33 -1.65 -0.33 0 0 0 0!

    0.33! -1.65! -0.33! 0! 0! 0! 0! 1.65!

    u1xu1yu2 xu2 yu3xu3yu4xu4y

    !

    "

    ############

    $

    %

    &&&&&&&&&&&&

    1MN

    2MN

    1

    21

    22

    4

    3

    1

    =

    0+ R1x0+ R1y1106

    2106

    0+ R3x0+ R3y0+ R4x0+ R4y

    #

    $

    %%%%%%%%%%%%

    &

    '

    ((((((((((((

  • Dr. Gracie, University of Waterloo 2015

    Apply BCs and Solve

    9

    1011!

    2.62 0 -1.47 0 -0.58 -0.33 -0.58! 0 3.81 0 -0.51 -0.38 -1.65 0.38! -1.47 0 1.47 0 0 0.33 0! 0 -0.51 0 0.51 0.38 0 -0.38! -0.58 -0.38 0 0.38 0.58 0 0! -0.33 -1.65 0.33 0 0 1.65 0! -0.58 0.38 0 -0.38 0 0 0.58! 0.33 -1.65 -0.33 0 0 0 0!

    0.33! -1.65! -0.33! 0! 0! 0! 0! 1.65!

    = 106

    0+ R1x0+ R1y12

    0+ R3x0+ R3y0+ R4x0+ R4y

    "

    #

    $$$$$$$$$$$

    %

    &

    '''''''''''

    u1xu1yu2 xu2 yu3xu3yu4xu4y

    !

    "

    ############

    $

    %

    &&&&&&&&&&&&

    u1x = u1y = u3x = u3y = u4x = u4y = 0

    KE KEFKFE KF

  • Dr. Gracie, University of Waterloo 2015

    Plot Displacements

    10

    the displacements at node 2 are (0.006825,-0.039) mm. the reactions at node 1 are (-1000,2000) kN. the reactions at node 3 are (-1500,225) kN. the reactions at node 4 are (1500,-225) kN. ELEMENT #1 the strain (Exx,Eyy,2Exy) =(4.55e-06,0,-2.6e-05). the stress (Sxx,Syy,Sxy) = (1,0.3,-2) MPa. ELEMENT #2 the strain (Exx,Eyy,2Exy) =(4.55e-06,0,-2.6e-05). the stress (Sxx,Syy,Sxy) = (1,0.3,-2) MPa.

  • Dr. Gracie, University of Waterloo 2015

    T3 Example Point Loads

    11

    1

    22

    4

    3

    1

    %% Define Material Properties E = 200e9; nu = 0.3; %% Define Coordinates of the nodes x1 = 0; x2 = 1.5; x3 = 0; x4 = 0; x = [x1; x2; x3; x4]; y1 =0; y2 = 0; y3 = 1; y4 = -1; y = [y1; y2; y3; y4]; %% Connectivity conn = [1, 2, 3; 1, 4, 2];

  • Dr. Gracie, University of Waterloo 2015

    K = zeros(8,8);!for e=1:2! enodes= conn(e,:);! sctr = [2*enodes(1)-1,2*enodes(1),2*enodes(2)- ! 1,2*enodes(2),2*enodes(3)-1,2*enodes(3)];! ye = y(enodes); ! xe = x(enodes);! Be = 1/(2*A)*[ye(2)-ye(3),0,ye(3)-ye(1),0,ye(1)-ye(2),0;! 0 ,xe(3)-xe(2), 0 , xe(1)-xe(3), 0, xe(2)-xe(1);! xe(3)-xe(2),ye(2)-ye(3),xe(1)-xe(3),ye(3)-ye(1),xe(2)- ! xe(1),ye(1)-ye(2)];!

    ! D = E/(1-nu^2)*[1 ,nu,0; nu,1 ,0; 0 ,0 ,(1-nu)/2];! Ke = A*Be'*D*Be;! K(sctr,sctr)=K(sctr,sctr)+Ke;!end!

    12

  • Dr. Gracie, University of Waterloo 2015

    Dam Example

    13

    1m

    2m

    5m

    3/1000 mkg=

    2.040

    /2700 3

    =

    =

    =

    GPaEmkgc

  • Dr. Gracie, University of Waterloo 2015

    Dam Example

    14

    g( )yt

    y

    x

    n

    1 25

    34

    6

    7

    8 9

    1 2

    34

  • Dr. Gracie, University of Waterloo 2015

    Body Loads

    n Body load due to gravity

    n Nodal forces due to body load

    15

    b =bxby

    !

    "

    ##

    $

    %

    &&=

    0g

    !

    "##

    $

    %&&

    fe = NeTbd

    e =

    N1e ,( ) 00 N1

    e ,( )N2

    e ,( ) 00 N2

    e ,( )N3

    e ,( ) 00 N3

    e ,( )N4

    e ,( ) 00 N4

    e ,( )

    !

    "

    ##############

    $

    %

    &&&&&&&&&&&&&&

    1

    1(

    1

    1

    ( 0 g!

    "##

    $

    %&&

    Je ,( ) dd=

    N1e 0

    0 N1e

    N2e 0

    0 N2e

    N3e 0

    0 N3e

    N4e 0

    0 N4e

    !

    "

    #############

    $

    %

    &&&&&&&&&&&&&

    0 ! g

    !

    "##

    $

    %&&dxdy

    ( e)

    1 2 5

    3 4

    6 8 9

    1! 2!

    3!4!

  • Dr. Gracie, University of Waterloo 2015

    Body Loads

    n Compute Integral using numerical quadrature. Note that in general the Jacobian is not constant but a

    function of the parent coordinates

    16

    fe =

    N1e i, j( ) 00 N1

    e i, j( )N2

    e i, j( ) 00 N2

    e i, j( )N3

    e i, j( ) 00 N3

    e i, j( )N4

    e i, j( ) 00 N4

    e i, j( )

    "

    #

    $$$$$$$$$$$$$$$

    %

    &

    '''''''''''''''

    0g

    "

    #$$

    %

    &''J e i, j( )

    j=1

    nQ

    i1

    nQ

    WiW j = NeT i, j( )b J e i, j( )j=1

    nQ

    i1

    nQ

    WiW j

    J e ,( )

  • Dr. Gracie, University of Waterloo 2015

    Body Loads

    n Since in general the Jacobian is not constant but a function of the parent coordinates then

    17

    fe =

    f1xe

    f1ye

    f2 xe

    f2 ye

    f3xe

    f3ye

    f4xe

    f4ye

    "

    #

    $$$$$$$$$$$$$

    %

    &

    '''''''''''''

    J e ,( )

    Ag4

    01010101

    "

    #

    $$$$$$$$$

    %

    &

    '''''''''

    This occurs when opposite edges of the element are not parallel (As in this example)

  • Dr. Gracie, University of Waterloo 2015

    Tractions (surface loads)

    n If the surface tractions can be reasonably approximated by a linear function along the edges of the domain (almost always the case) then

    18

    f2 =

    f1xe

    f1ye

    f2 xe

    f2 ye

    f3xe

    f3ye

    f4xe

    f4ye

    "

    #

    $$$$$$$$$$$$$

    %

    &

    '''''''''''''

    =l6

    00

    2t e2 x + te3x

    2t e2 y + te3y

    t e2 x + 2te3x

    t e2 y + 2te3y

    00

    "

    #

    $$$$$$$$$$$

    %

    &

    '''''''''''

    Where the summation is only over the nodes which are on the boundary of the domain t = NI

    e

    i=1

    2

    tIe

    21

    32

    4[5] [2]

    [6]

    [9]

    t 22 =t 22 xt 22 y

    !

    "

    ##

    $

    %

    &&= 5 y2

    e( )wgnxe

    nye

    !

    "

    ##

    $

    %

    &&

    t 23 =t 23xt 23y

    !

    "

    ##

    $

    %

    &&= 5 y3

    e( )wgnxe

    nye

    !

    "

    ##

    $

    %

    &&

  • Dr. Gracie, University of Waterloo 2015

    Tractions (surface loads)

    n If the surface tractions can be reasonably approximated by a linear function along the edges of the domain (almost always the case) then

    19

    f4 =

    f1x4

    f1y4

    f2 x4

    f2 y4

    f3x4

    f3y4

    f4x4

    f4y4

    "

    #

    $$$$$$$$$$$$$

    %

    &

    '''''''''''''

    =l6

    00

    2t 42 x + t43x

    2t 42 y + t43y

    t 42 x + 2t43x

    t 42 y + 2t43y

    00

    "

    #

    $$$$$$$$$$$

    %

    &

    '''''''''''

    Where the summation is only over the nodes which are on the boundary of the domain t = NI

    e

    i=1

    2

    tIe

    21

    34

    4[9] [6]

    [3]

    [7]

    t 42 =t 42 xt 42 y

    !

    "

    ##

    $

    %

    &&= 5 y2

    e( ) ! wgnxe

    nye

    !

    "

    ##

    $

    %

    &&

    t 43 =t 43xt 43y

    !

    "

    ##

    $

    %

    &&= 0

    0

    !

    "#

    $

    %&

  • Dr. Gracie, University of Waterloo 2015

    Max Normal and Shear Stress

    20

  • Dr. Gracie, University of Waterloo 2015

    Dam Example Q9

    21

    g( )yt

    y

    x

    n

    1 25

    34

    6

    7

    8 9

  • Dr. Gracie, University of Waterloo 2015

    Q9

    22

    -1 -0.5 0 0.5 10

    1

    2

    3

    4

    5Max Principal Shear Stress - Deformation x10000

    0.5

    1

    1.5

    2

    2.5

    3x 105

    -1 -0.5 0 0.5 10

    1

    2

    3

    4

    5Max Principal Stress - Deformation x10000

    0

    2

    4

    6

    8

    10

    12

    14x 104

  • Dr. Gracie, University of Waterloo 2015

    1 x Q9 vs 4 x Q4

    23

    -1 -0.5 0 0.5 10

    1

    2

    3

    4

    5Max Principal Stress - Deformation x10000

    0

    2

    4

    6

    8

    10

    12

    14x 104