25
E i t lI ti ti f Experimental Investigation of HFRP Composite Beams Authors: Hiroshi Mutsuyoshi, Nguyen Duc Hai , Kensuke Shiroki, Thi A i th All M l Thiru Aravinthan, Allan Manalo

EitlI titi fExperimental Investigation of HFRP Composite Beams · EitlI titi fExperimental Investigation of HFRP Composite Beams Authors: Hiroshi Mutsuyoshi, Nguyen DucHai, Kensuke

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • E i t l I ti ti fExperimental Investigation of HFRP Composite Beams

    Authors:Hiroshi Mutsuyoshi, Nguyen Duc Hai, Kensuke Shiroki, Thi A i th All M lThiru Aravinthan, Allan Manalo

  • Presentation Outline

    Flexural Test ofHFRP Beams

    Flexural Test of HFRP‐NSC 

    Part 1 Part 2

    Composite Beams

    P t 3

    ConclusionsFlexural Test of HFRP‐UHPFRC 

    Composite Beams

    Part 3

    Composite Beams

    2FRPRCS‐10, Tampa, Florida2011.04.02

  • Presentation Outline

    • Part 1: Flexural Test of HFRP Beams• Part 2: Flexural Test of HFRP‐NSC Composite Beams

    • Part 3: Flexural Test of HFRP‐UHPFRC Composite BeamsComposite Beams

    3FRPRCS‐10, Tampa, Florida2011.04.02

  • Flexural Test of HFRP Beams: Introduction

    R d d i i dT l b f b id i J Rust and damage in girders (Kuretsubo Bridge)

    Total number of bridges in Japan

    4FRPRCS‐10, Tampa, Florida2011.04.02

  • Flexural Test of HFRP Beams: Introduction

    High specific strength/stiffnessHigh durability

    Fiber Reinforced Polymers (FRP)

    GFRPHigh durabilityLow life‐cycle costsCorrosion resistanceLightweight

    CFRP

    Why hybrid FRP?

    Hybridization with carbon fibers of glass fiber composites is known to enhance fatigue performance and environmental resistance compared to all‐glass composites.resistance compared to all glass composites.

    The failure strain of carbon fiber appears to be greater in a hybrid than in an all‐carbon g yfiber composite structure.

    5FRPRCS‐10, Tampa, Florida2011.04.02

  • Flexural Test of HFRP Beams: Experiments

    A b f i t t d d f i t b diA number of specimen were tested under four point bending

    Beam elevation

    Flange

    CF 0GF 0/90CSMGF ±4533 plies

    (CF/GF)18 plies(GF)

    Web

    (CF/GF) (GF)

    Cross section Layer composition

    6FRPRCS‐10, Tampa, Florida2011.04.02

  • Flexural Test of HFRP Beams: Experiments

    M h i l ti f t i l

    Parameters NotationCFRP0°

    GFRP0/90°

    GFRP±45°

    GFRPCSM

    Volume fraction V (%) 55 53 53 25

    Mechanical properties of materials

    Volume fraction Vf (%) 55 53 53 25

    Young’s modulusE11 (GPa) 128.1 25.9 11.1 11.1

    E22 (GPa) 14.9 25.9 11.1 11.1

    Sh d l G 5 5 4 4 10 9 4 2Shear modulus G12 5.5 4.4 10.9 4.2

    Poisson’s ratio ν12 0.32 0.12 0.29 0.31

    Volume contentFlange (%) 33 17 41 9

    Web (%) 0 43 43 14

    Effective mechanical properties of HFRP laminates

    Parameters Flange Web

    Compressive strength (MPa) 394 299

    Tensile strength (MPa) 884 185Tensile strength (MPa) 884 185

    Young’s modulus (GPa) 49.6 17.8

    7FRPRCS‐10, Tampa, Florida2011.04.02

  • Flexural Test of HFRP Beams: Experiments

    H d li J kHydraulic Jack

    Load Cell

    Spreader Beam

    Safety rigSafety rig

    SupportSupport

    8FRPRCS‐10, Tampa, Florida2011.04.02

  • Flexural Test of HFRP Beams: Results

    250

    150

    200

    250

    oad (kN)

    150

    200

    250

    load

     (kN)

    0

    50

    100

    App

    lied l

    Exp.FEA

    0

    50

    100

    App

    lied 

    Exp. (TF)Exp. (BF)FEA (TF)FEA (BF)

    0 10 20 30 40 50 60

    Mid‐span deflection (mm)

    0

    ‐8000 ‐6000 ‐4000 ‐2000 0 2000 4000 6000 8000

    Strain in top/bottom flange at mid‐span (m)

    Crushing of fibers and delamination Closer view of delamination

    9FRPRCS‐10, Tampa, Florida2011.04.02

  • Presentation Outline

    • Part 1: Flexural Test of HFRP Beams• Part 2: Flexural Test of HFRP‐NSC Composite Beams

    • Part 3: Flexural Test of HFRP‐UHPFRC Composite BeamsComposite Beams

    10FRPRCS‐10, Tampa, Florida2011.04.02

  • Flexural Test of HFRP‐NSC Composite Beams: Introduction

    εc2Concrete slab

    εc1 Neutral Axis‐2

    Neutral Axis‐1

    εεt1εc1 ≈ εt1

    εt2εc2

  • Flexural Test of HFRP‐NSC Composite Beams: Experiments

    P/210 mm θ u-bolts spaced 150 mm o.c. between stiffeners

    P/26 mm θ ties spaced 300 mm o.c. at shear span and 150 mm o.c. between loading points

    Hydraulic jack

    1000 mm300 mm 1000 mm 300 mm1000 mm

    Length of HFRP beam: 3 6 m (clear span: 3 m)

    a. Specimen FRP-conc 3 dimensions and loading system3600 mm

    400 mmCast-in-place

    concrete deck Length of HFRP beam: 3.6 m (clear span: 3 m)Shear connectors: 10 mm diameter high strength steel u‐bolts and epoxy resinSteel u‐bolts: spaced at 150 mmNSC slab: 100 mm thick; 400 mm wideS l i f 16 di

    100 mm

    10 mm θu-bolts

    16 mm θlongitudinal bars

    d 90

    16 mm θlongitudinal bars

    spaced 90 mm o.c.

    Steel reinforcements: 16 mm diameterMean cylinder strength of NSC (14 days): 32 MPaLateral steel ties: 6 mm diameter spaced at 300 mm in the shear span and spaced at 150 mm in the flexural span95 mm

    250 mmHybrid FRP girder

    spaced 90 mm o.c.

    Draw wire displacement transducerLVDT

    p

    b. Cross section of specimen FRP-conc 3

    12FRPRCS‐10, Tampa, Florida2011.04.02

  • Flexural Test of HFRP‐NSC Composite Beams: Results

    500 427 KNFailure load

    300

    400

    KN

    196 KN

    Failure load

    200

    300

    Load

    , K

    196 KNcracking of concrete

    0

    100 FRP-1FRP-conc 3

    0 20 40 60 80 100Deflection, mm

    L d d id d fl tiLoad and mid-span deflection

    2011.04.02 13FRPRCS‐10, Tampa, Florida

  • Flexural Test of HFRP‐NSC Composite Beams: Failure Mode

    Compression failure of NSC slab Shear failure of HFRP beam

    2011.04.02 14FRPRCS‐10, Tampa, Florida

  • Presentation Outline

    • Part 1: Flexural Test of HFRP Beams• Part 2: Flexural Test of HFRP‐NSC Composite Beams

    • Part 3: Flexural Test of HFRP‐UHPFRC Composite BeamsComposite Beams

    15FRPRCS‐10, Tampa, Florida2011.04.02

  • Flexural Test of HFRP‐UHPFRC Composite Beams: Introduction

    UHPFRC = Ultra‐High Performance Fiber‐Reinforced Concrete“SUQCEM ‐ SUper High Quality CEmentitiousMaterial”

    High strengthHigh durabilityReduce weight of structure, etc

    Conventional concreteUHPFRC

    h2h h2h1

    h1

  • Flexural Test of HFRP‐UHPFRC Composite Beams: Materials

    UHPFRC

    Mix Proportions of UHPFRC (JSCE 2006)

    Air content (%)Unit quantity (kg/m3) Steel fiber

    (kg/m3)Water Premix cement Sand W.R. Ad i tAdmixture

    2.0 205 1287 898 32.2 137.4

    Mechanical properties of UHPFRC 

    Compressive strength2

    Tensile strength2

    Young Modulus 2(N/mm2) (N/mm2) (kN/mm2)

    173 14.3 48.6

    FRPRCS‐10, Tampa, Florida 172011.04.02

  • Flexural Test of HFRP‐UHPFRC Composite Beams: Test Variables

    T t i bl

    BeamShear 

    connectorEpoxy bonding

    Width of UHPFRC slab (mm)

    Thickness of UHPFRC slab (mm)

    Embedded length of bolt (mm)

    †B 135 50 Bolt M16 135 50 35

    Test variables †B = Bolts; ††SA = Slab Anchors; †††BE = Bolts and Epoxy

    †B‐135‐50 Bolt M16 ‐ 135 50 35††SA‐135‐50 Slab anchor M10 ‐ 135 50 35†††BE‐95‐50 Bolt M16 ○ 95 50 35

    †††BE‐135‐35 Bolt M16 ○ 135 35 30††††††BE‐135‐50 Bolt M16 ○ 135 50 35

    Unit: mmSpecimen layouts

    B (BE)‐135‐50 Unit: mm

    Configurations with bolts

    BE‐95‐50

    3 3

    Unit: mm

    S 3 0

    FRPRCS‐10, Tampa, Florida 18

    BE‐135‐35 Unit: mm

    Configurations with slab anchors

    SA‐135‐50

    2011.04.02

  • T t t

    Flexural Test of HFRP‐UHPFRC Composite Beams: Test Setup

    Safety RigStiffener 

    Test setup

    1000 1000 10001000 1000 1000

    FRPRCS‐10, Tampa, Florida 192011.04.02

  • Flexural Test of HFRP‐UHPFRC Composite Beams: Test Results

    400450500

    BE-135-50

    BE 95 50

    Load‐deflection relationship Failure mode

    15%

    200250300350400

    d (k

    N)

    SA-135-50

    B-135-50

    BE-95-50

    BE-135-35

    50100150200

    Loa

    Control specimen

    00 20 40 60 80

    Deflection (mm)

    Compression failure of UHPFRC slab (B/BE specimen series)

    Increase flexural strength and stiffnessHFRP UHPFRC

    HFRP flange delamination failure(SA‐135‐50)

    Increase flexural strength and stiffnessPrevent fracture of HFRP in the compressive flange

    HFRP‐UHPFRC Composite girder

    Shear connectors 

    FRPRCS‐10, Tampa, Florida 20

    combined with adhesive bonding

    Increase stiffness

    2011.04.02

  • Strain distribution at mid‐span section

    Flexural Test of HFRP‐UHPFRC Composite Beams: Test Results

    Strain distribution at mid span sectionWithout 

    epoxy bonding

    250

    300

    350m

    )100 kN

    200 kN

    300 kN 250

    300

    350

    m)

    100 kN

    200 kN

    232 kN (Failure)

    100

    150

    200

    250

    Sect

    ion

    dept

    h(m

    m

    400 kN

    437 kN (Failure)

    Headed bolts100

    150

    200

    250

    Sect

    ion

    dept

    h (m

    m ( )

    Shear anchors

    With 

    0

    50

    -6000 -3000 0 3000 6000 9000 12000Axial strain (μ)

    0

    50

    -6000 -3000 0 3000 6000 9000 12000Axial strain (μ)

    350epoxy bonding Nonlinear strain 

    distribution initiated at the bottom of the HFRP compressive fl

    Slipping at the interface between the UHPFRC slab 200

    250

    300

    350

    epth

    (mm

    )

    100 kN

    200 kN

    300 kN

    400 kN

    470 kN (failure)flange and the HFRP 

    beam

    Linear strain distribution through 

    Full composite action until the0

    50

    100

    150

    Sect

    ion

    de

    ( )

    Headed bolts

    FRPRCS‐10, Tampa, Florida 21

    the cross‐section up to failure

    action until the final failure

    0-6000 -3000 0 3000 6000 9000 12000

    Axial strain (μ)

    2011.04.02

  • St i Di t ib ti i HFRP T Fl B lt H l

    Flexural Test of HFRP‐UHPFRC Composite Beams: Test Results

    Strain gages

    St i

    Strain Distribution in HFRP Top Flange near Bolt Hole

    ‐1000

    ‐500

    0

    100kN ‐400

    ‐200

    0

    100kN

    Strain gages Strain gages

    3500

    ‐3000

    ‐2500

    ‐2000

    ‐1500

    Strain (μ

    )

    100kN

    200kN

    300kN

    400kN

    437kN‐1000

    ‐800

    ‐600

    400

    Strain (μ

    )

    100kN

    200kN

    300kN

    381kN

    ‐4500

    ‐4000

    ‐3500

    ‐6 ‐4 ‐2 0 2 4 6

    Distance from bolt hole (mm)

    ‐1400

    ‐1200

    ‐6 ‐4 ‐2 0 2 4 6

    Distance from  bolt hole (mm)

    (a) Specimen without epoxy

    ( )

    (b) Specimen with epoxy

    FRPRCS‐10, Tampa, Florida 222011.04.02

  • UHPFRC

    Flexural Test of HFRP‐UHPFRC Composite Beams: Comparisons

    UHPFRC

    s

    0.85f’ck BeamPredicted failure load, kN

    Actualfailure load, kN

    Predicted/actual failure mode

    Flexural Test Results at Failure of HFRP‐UHPFRC Composite Beam

    Compressive

     stress kN kN

    B-135-50 ⎯ 438 Compression – UHPFRC

    SA-135-50 ⎯ 232 Delamination – HFRP top flangeBE-95-50 384 382 Compression – UHPFRCBE 135 35 411 394 C i UHPFRC

    Bi‐linear relationship for UHPFRC (JSCE 2006)Strain0.85f’ck/Ec 0.0035

    600BE-95-50 (Experiment)

    BE-135-35 411 394 Compression – UHPFRCBE-135-50 481 470 Compression – UHPFRCHFRP-NSC ⎯ 427 Compression – NSC

    FlangeWeb

    fFt

    E

    HFRP

    300

    400

    500(k

    N)

    BE 95 50 (Experiment)BE-95-50 (Analysis)BE-135-35 (Experiment)BE-135-35 (Analysis)BE-135-50 (Experiment)BE-135-50 (Analysis)

    Stress

    fW

    fWt

    EW

    EF

    0

    100

    200Loa

    d (

    FRPRCS‐10, Tampa, Florida 23

    Strain 

    fFc

    fWc 00 10 20 30 40 50 60 70

    Deflection (mm)

    2011.04.02

  • Conclusions

    1) The investigated HFRP beams behave linearly under flexural load and failed suddenly without forewarning. The failure was crushing of fibers near the loading point due to load concentration followed by the d l i i f h i fl b h i f f CFRPdelamination of the compressive flange between the interface of CFRP and GFRP layers. 

    2) Composite beams consisting of HFRP beams and concrete topping slabs i ifi l i h i fl l iff d ff i l ili hsignificantly improve their flexural stiffness and effectively utilize the superior properties of the HFRP materials.

    3) The use of UHPFRC slab is more effective than NSC slab in terms of t t l tiff d i htstructural stiffness and weight.

    4) HFRP‐UHPFRC composite beams with headed bolt shear connectors provide considerable stiffness and strength increase compared with HFRP b ith t t t i l bbeams without concrete topping slab.

    5) Composite beams with epoxy bonding between the UHPFRC slab and HFRP beam top flange showed an approximately 15% increase in flexural tiff th b t d ith b lt lstiffness than beams connected with bolts only.

    FRPRCS‐10, Tampa, Florida 242011.04.02

  • FRPRCS‐10, Tampa, Florida 252011.04.02