15
Ma 221 Eigenvalues and Fourier Series Eigenvalue and Eigenfunction Examples Example  Find the eigenvalues and eigenfunctions for  y ′′  12  y  47     y    0  y0    y5    0 Solution: The characteristic equation is r 2  12r    47       0 so r   12   144 − 44 7    2    6   2 2 −   Thus we have 3 cases to deal with, 2  −     0, 2 −      0, and 2  −      0. Case I: 2 −      0. Let 2  −      2 where    0. The the general homogeneous solution is  y  x    C 1 e 62  x  C 2 e 62  x The BCs imply C 1    C 2    0 C 1 e 625  C 2 e 625  0 , Solution is:  C 2    0, C 1    0 . Thus  y    0 and there are no eigenvalues for this case. Case II:      2. Then  y  x    C 1 e 6  x  C 2  xe 6  x The BCs imply C 1   0 C 2 5 e 30 0    C 2    0 Therefore     2 is not an eigenvalue. Case III: 2 −     0. Let 2  −       2 where    0. Then  r    6   2i. The solu tion to the DE is  y  x    C 1 e 6  x sin2  x   C 2 e 6  x cos2  x The BCs imply  y0    C 2    0  y5    C 1 e 30 sin10    0 Thus 10    n,  n    1,2, or     n 10  n    1,2, and the eigenvalues are    2     2  2    n 2 2 100  n    1,2, 1

Eigenvalues Fourier Series

Embed Size (px)

Citation preview

Page 1: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 1/15

Ma 221 Eigenvalues and Fourier Series

Eigenvalue and Eigenfunction ExamplesExample   Find the eigenvalues and eigenfunctions for 

 y′′

− 12 y′

 47    y    0   y0    y5    0Solution: The characteristic equation is

r 2 − 12r    47       0

so

r   12    144 − 447   

2   6   2 2 − 

Thus we have 3 cases to deal with, 2 −     0, 2 −     0, and 2 −     0.

Case I: 2 −     0. Let 2 −     2 where   ≠  0. The the general homogeneous solution is

 y x     C 1e62 x  C 2e6−2 x

The BCs imply

C 1    C 2    0

C 1e625  C 2e6−25  0

, Solution is: C 2    0, C 1    0. Thus y    0 and there are no eigenvalues for this case.

Case II:     2. Then

 y x     C 1e6 x  C 2 xe6 x

The BCs imply

C 1    0

C 25e30  0     C 2    0

Therefore     2 is not an eigenvalue.

Case III: 2 −     0. Let 2 −     −2 where   ≠  0. Then r    6   2i. The solution to the DE is

 y x     C 1e6 x sin2 x   C 2e6 x cos2 x

The BCs imply

 y0    C 2    0

 y5    C 1e30 sin10    0

Thus

10     n,   n    1,2, …

or 

    n10

  n    1,2, …

and the eigenvalues are

   2   2  2    n22

100  n    1,2, …

1

Page 2: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 2/15

The eigenfunctions are

 yn x    Ane6 x sin   n5

  x

Example

 y′′   y    0   y     y2    0

Solution: There are 3 cases to consider.      0,    0,, and      0 .

I.     0. Let     −2 where   ≠  0. Then the differential equation becomes

 y′′ − 2 y    0

and has the general solution

 y x     c1e x  c 2e− x.

Then

 y     c1e  c 2e−  0

 y2     c1e2  c 2e−2  0

Thusc2    −c1e2

and the second equation implies

c1   e2 − 1    0

Hence c 1    0 and thus c2    0, so y    0 is the only solution. There are no negative eigenvalues.

II.     0. Then we have y ′′  0 so

 y x    c1 x   c 2

 y     c1   c 2    0

 y2    2c1   c 2    0Therefore c1     c2    0 and  y    0, so 0 is not an eigenvalue.

III.      0. Let     2 The DE becomes

 y′′  2 y    0

so

 y x     c1 sin x   c 2 cos x

The initial conditions yield 

 y    c1 sin   c 2 cos    0

 y2    c

1 sin2   c

2 cos2  

 0This system will have a non-trivial solution if and only if 

sin   cos

sin2   cos2  0

That is if and only if 

sincos2 − cossin2     sin − 2    − sin    0

2

Page 3: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 3/15

Thus we must have

   n   n    1,2,3, …

or 

    n n    1,2,3, …

Hence the eigenvalues are    2   n2 n    1,2,3, …

The two equations above for  c 1 and  c 2 become

c1 sin n   c 2 cos n    0

c1 sin2n   c 2 cos2n    0

Thus c 2    0 and  c 1 is arbitrary. The eigenfunctions are

 yn x    an sin nx

3

Page 4: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 4/15

Ma 221 Inner Products

Remark. If  u  and  v  are 2 vectors, then  u     v     u     v    0

u      x1, . . . , xn   v  y1, . . . , yn   As n   →    u     v   →  xi yi.

Definition. Let f  x, g x be two continuous functions on a, b. We define the  inner product  of  f  and  gin an interval a  ≤   x  ≤   b, denoted by    f , g   , by

  f , g    a

b f  xg xdx.

Definition. Two functions f  and  g are said to be  orthogonal on a, b if 

  f , g    0.

Example. 0

sin x cos xdx     sin2 x

2   |0

 0. Therefore sin x and cos x are orthogonal on 0,.

Definition. The set of functions   f 1, f 2, . . .  is called an  orthogonal set if 

  f i, f  j    0   i  ≠   j.

Example. 1,cos   x L

  ,cos   2 x L

  , . . . ,cos   n x L

  , . . . is an orthogonal set on 0, L, because

0

 Lcos   i

 L  x   cos

  j L

  x dx     0 for   i  ≠   j

Remark. For vectors we have the following: if  u     u1, . . . , un then the length of 

u     ‖u ‖    ∑ui2

  1

2   u    u . Motivated by this we have the following definition.

Definition. Let f  x be a continuous function on  a, b. Then the norm of  f  is defined by

‖ f ‖    f , f     a

b f 2 xdx .

Example.  0, 1

‖ x2 ‖2

  x2, x2  0

1 x4dx     x5

5  |0

1   15

  ‖ x2 ‖     1

5

.

Remark. Let y     x2

‖ x2 ‖   5 x2   ‖ y‖     5 ‖ x2 ‖   1.

Definition. If  ‖ f ‖   1, then  f  is said to be normalized .

Definition. A set of functions  1,2, . . .  is called  orthonormal if 

(1) the set is orthogonal, and 

(2) each has norm 1. Therefore  1,2, . . .  is an orthonormal set  

4

Page 5: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 5/15

 i, j    ij     0   i  ≠   j

1   i     j

Example   sinnx     sin x,sin2 x,sin3 x, . . .  on 0,  is an orthogonal set since

  sinmx,sinnx    0

sin mx sin nxdx     1

0

cosm −  n x − cosm   n xdx m  ≠  n

  12

sinm −  n xm −  n   −

  sinm   n xm −  n

0

  12

sinm −  nm −  n   −

  sinm   nm   n    0   m  ≠   n

since m  and  n  are integers.

 Now

  sin nx,sin nx    0

sin2nxdx

  12 

0

1 − cos 2nxdx

  12

  x −   sin2nx2n

  |0  

2 .

Therefore

‖sin nx‖     sin nx,sin nx   12    

2

 this set is not orthonormal. We can make an orthonormal set from these functions by dividing each

element in the original by 

2     2

  sin nx   is orthonormal set n    1,2, ....

Properties of the inner product.

1.   f , g    g, f    since   a

b f  xg xdx    

a

bg x f  xdx

2.   f    g, h         f , h       g, h     since  f    ghdx      fhdx    ghdx

3. a.   f , f    0 if  f    0

b.   f , f    0 if  f  ≠  0

Remarks. (1) It will be necessary when dealing with partial differential equations to “expand” anarbitrary function f  x in terms of an orthogonal set of functions  n.

(2) Recall that in 3 space, if  u 1     1,0,0, u 2     0,1,0, and  u 3     0,0,1 thenv     1,2,3    1u1    2u2   3u3.

 Note that

5

Page 6: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 6/15

  u 1, v     u 1   v  

  u 1,1 u 1   2 u 2    3 u 3     u 1,1 u 1     u 1,2 u 2     u 1,3 u 3  

 1     u 1, u 1   2     u 1, u 2   3     u 1, u 3    1

Also    u2

, v    2

 and     u3

, v    3

.

Suppose we are given a set of orthogonal functions n on 0, L, and we desire to expand a function f  x given on 0, L in terms of them. Then we want

 f  x   ∑n1

nn x.

Question. What does k   ?

Consider 

 k , f  x    k ,∑1

nn  

 k ,11   22     

 1    k ,1      k    k ,k   k 1    k ,k 1  

But   k , j    0 if  j  ≠   k  since the set k  is orthogonal.

 k , f  x    k    k ,k    k ‖k ‖2

Therefore

k  

0

 L f  xk  xdx

‖k ‖2

 

0

 L f  xk  xdx

0

 Lk  x

2dxk    1 ,2, . . .   ∗

∗ is the formula for the coefficients in the expansion of a function  f  x in terms of a set of orthogonalfunctions.

6

Page 7: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 7/15

Ma 221 Fourier Series

Fourier Series Formulas

Suppose we want to write a function  f  x given on 0, L as a Fourier sine series

 f  x    ∑1

k sin   k  x L

then from ∗ above

k     2 L 

0

 L f  x sin   k  x

 L  dx,

since

0

 Lk  x

2dx     L2

 .

 Note that the orthogonal functions sin   k  x L   ,   k    1,2,3, …  are the eigenfunctions of the eigenvalue problem

 y′′   y    0   y0     y L    0.

These formulas are for the Fourier  sine series for  f  x on 0     x     L.

The Fourier  sine series converges to function  F  x where

F  x     f  x   0    x     L

− f − x   − L     x    0F  x   2 L     F  x

since sine is an odd function.

Suppose that the graph of the function f  x is given by the figure below.

7

Page 8: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 8/15

Then the Fourier sine series generates a function  F  x defined on -     x     whose graph is given below.

Example   Find the Fourier sine series of 

 f  x   1 0     x  

 

2

0   2

   x    

8

Page 9: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 9/15

 Now

 f  x   ∑ n sin   n x L

   ∑1

n sin nx,

since 2 L    2     L    .

The formula above for the coefficients in the Fourier sine series implies

n     2 L 

0

 L f  x sin   n x

 L  dx     2

 0

 f  x sin nxdx

n     2 0

2 1   sin nxdx    2

   2

0   sin nxdx    − 2

cos nx

n   |0

2

 −   2n   cos   n

2  − 1

n  

2n   n odd 

−2n   −1

n2

  − 1   n even

Therefore

 f  x    ∑1

n sin nx

  2   sin x    2

2  sin2 x    1

3  sin3 x  0   sin 4 x    1

5  sin5 x    2

6  sin6 x   

 Note that our function f  x on 0  ≤  x  ≤   is extended to the following on −     x    .

9

Page 10: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 10/15

Fourier Cosine Series

We write

 f  x    0  ∑1

n cos   n x L

Proceeding as above in our derivation of the constants in the Fourier Sine series, we get for theconstants in the Fourier Cosine series

n     2 L 

0

 L f  xcos   n x

 L  dx n    1,2,3, …   0     1

 L 

0

 L f  xdx

 Note the book writes

 f  x~ a 0

2  ∑

1

an cos   n x L

and an     2

 L 

0

 L f  xcos   n x

 L  dx n − 0,1,2, …

Thus

0     a0

2

10

Page 11: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 11/15

Again the Fourier series is periodic with period 2 L. However, now f − x     f  x since cosine is an evenfunction. Here the Fourier Cosine series extends f  x which is given on 0, L to a function  F  x whichis defined on −     x     as

F  x     f  x   0     x     L

 f − x   − L     x    0F  x 

 2 L    F  x

.

If the graph of  f  x looked as below

then F  x, the even extension of  f  x, would look like

Example   (a) Find the first four nonzero terms of the Fourier  cosine series for the function

 f  x     x   on 0     x    1

Solution:

 f  x    0  ∑1

n cos   n x L

where

11

Page 12: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 12/15

0     1 L 

0

 L f  xdx and  n     2

 L 

0

 L f  xcos   n x

 L  dx n    1,2,3, …

Here L    1 so

 f  x    0  ∑1

n cos n x

0     11 

0

1 xdx     1

2

n     21 

0

1 x cos n xdx     2

n22 cos n x   n x sin n x|0

1

  2n22

 cos n − 1     2n22

 −1n − 1   n    1,2,3, …

Hence 1    −   42

 ,   2    0,   3    −   492

 ,   4    0,   5    −   4252

Therefore

 f  x     12   −   42   cos x −   492   cos3 x −   4252   cos5 x

 Note: The book gives the formulas

 f  x     0

2  ∑

1

n cos   n x L

where

n     2 L 

0

 L f  xcos   n x

 L  dx n    0,1,2,3, …

Using this formula we get

0     2

1

 0

1 xdx    1

Therefore, the first term in the book’s formula for the Fourier cosine series is  0

2    1

2 as before.

(b) Sketch the graph of the function represented by the Fourier cosine series in (a) on  −3     x    3.

 x

12

Page 13: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 13/15

-3 -2 -1 0 1 2 3

0.5

1.0

x

y

Example   (a) Find the Fourier  sine series for the function

 f  x     x   on 0     x    1

Solution:

 f  x    ∑1

k sin   k  x L

where

k     2 L 

0

 L f  xsin   k  x

 L  dx,   k    1,2,3, …

Here L    1 so

 f  x    ∑1

k sink  x

where

k    2 0

1 f  xsink  xdx,   k    1,2,3, …

Thus

k    2 0

1 x sink  xdx    2   1

k 2 sin k  x −  k  x cos k  x

0

1

 −

2   1

k   cos k      2

k  −

1k 1 k    1,2,3, …

Thus

 f  x     2 ∑

1

−1k 1

k   sink  x

(b) Sketch the graph of the function represented by the Fourier  sine series in 5 (a) on −3     x    3.

Solution:

13

Page 14: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 14/15

1

-3 -2 -1 1 2 3

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

x

y

Ma 221 Fourier Cosine Series Example

5. (a) (15 pts.) Find the first five nonzero terms of the Fourier  cosine series for the function

 f  x    2 −  x; 0     x    2

Be sure to give the Fourier series with these terms in it.

Solution:

 f  x    b0   ∑n1

bn cos  n x

 L

b0     1 L 

0

 L f  xdx bn     2

 L 

0

 L f  xcos   n x

 L  dx n    1,2, …

Here L    2 so

 f  x     b0   ∑n1

bn cos   n x2

b0     12 

0

2 f  xdx     1

0

22 −  xdx     1

2 2 x −   x2

2  0

2  1

bn     2 L 

0

 L f  xcos   n x

 L  dx     2

2

 0

22 −  xcos   n x

2

  dx n    1,2, …

so

bn       2n 2 −  x sin n x

2   −   4

n22  cos   n x

2  0

2   4n22

  −cosn  1   n    1,2, …

Thus

14

Page 15: Eigenvalues Fourier Series

8/10/2019 Eigenvalues Fourier Series

http://slidepdf.com/reader/full/eigenvalues-fourier-series 15/15

b1     42

  1  1     82

b2     442

  −1  1    0

b3

    4

92  1   1     8

92

b4     4162

  −1   1    0

b5     4252

  1  1     8252

b6     4362

  −1   1    0

b7     4492

  1  1     8492

and 

 f  x    1   82   cos

  x

2      892   cos

 3 x

2      8252   cos

 5 x

2      8492   cos

 7 x

2      

(b) (10 pts.) Sketch the graph of the function represented by the Fourier cosine series in 5 (a) on−2     x    6.

2 −  x

-2 -1 0 1 2 3 4 5 6

0.5

1.0

1.5

2.0

x

y

15