27
PO Box 30 State College, PA 16804 Efficient Modeling of Structural Vibration and Noise from Turbulent Boundary Layer Excitation W.K. Bonness, J.B. Fahnline, P.D. Lysak M.R. Shepherd Generalization of Results for Arbitrary Flow Speed Center for Acoustics and Vibration Workshop Flow-Induced Noise Session April 29, 2013

Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

PO Box 30State College, PA 16804

Efficient Modeling of Structural Vibration and Noise from Turbulent Boundary Layer Excitation

W.K. Bonness, J.B. Fahnline, P.D. Lysak

M.R. Shepherd

Generalization of Results for Arbitrary Flow Speed

Center for Acoustics and Vibration WorkshopFlow-Induced Noise Session

April 29, 2013

Page 2: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Outline

• Introduction– Problem statement and objective– Fundamental equations and transformation to modal space

• Modal Force– TBL wall pressure cross-spectrum– TBL low wavenumber approximation– Small TBL correlation length (high frequency) approximation

• Examples Comparing Solution Methods– Simple plate– Complex rib-stiffened plate

• Generalization of Results for Arbitrary Flow Speed

2

Turbulent Boundary Layer (TBL)

Page 3: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

TBL Excited Structures

Cross-spectrum of structural response due to TBL excitation:

Outputcross-spectrum

matrix

Inputcross-spectrum

matrix

Transfer Functionmatrix

Transfer Functionmatrix

[out × out] [in × in] [in × out][out × in]

*G H G HTXX FF

3

x1

0U Turbulent eddies

Area of correlated pressurex3

x2

Turbulent Boundary Layer (TBL)

Page 4: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

TBL Excited Structures

• Problem:– Modeling the TBL excitation of a large practical structure makes the

numerical problem too big

• Objective:– Identify a modeling approach which extends the numerical analysis to

higher frequencies of interest

4

Low Frequency Mid Frequency High Frequency

Page 5: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Fundamental Equations

Displacementcross-spectrum

matrix

Forcecross-spectrum

matrix

Transfer Functionmatrix

Transfer Functionmatrix

*G H G HTXX FF

5

comes from the equations of motion H

2K B M A C X Fi Stiffness Damping Mass Acoustic

couplingStructuralcoupling

FEM BEM Specified

1H 1 FXH

Page 6: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Transformation to Modal Space

6

Cast equations into modal space by assuming physical response can be written as a summation of modes

ΨxX

xψψψX NM...21

Pre and post multiply fundamental equations by and , respectively. TΨ Ψ

1 FXH

*G H G HTXX FF hΦh T*Ξ

1 fxh

Physical Space Modal Space

Φ FFG

Page 7: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Modal Force

Matrix Form(Discrete System) GT

FF

7

Scalar Form(Continuous System)

( ) ( ) ( ) ( , , )ij i j ppS S

x x r x x r dr dx

Pressurecross-spectrum

Interpolated mode shapes

Modal force cross-spectrum for modes i and j

Position (x) and separation vector (r) on surface

Representative TBL pressure cross-spectrum model , Corcos (JASA, 1963)

1 3| | | |( , , ) ( )exp exp exppp pp

c c c

iU U U

Page 8: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

cU15

-20 -10 0 10 20

0

0.2

0.4

0.6

0.8

1

xi3*kc

Nor

mal

ized

Pre

ssur

e Sp

ectr

um

-80 -60 -40 -20 0 20 40 60 80

-0.5

0

0.5

1

xi1*kc

Nor

mal

ized

Pre

ssur

e Sp

ectr

um

Correlation distance (and integration limits)

( , )pp x x r

TBL Spatial Correlation Functions

Streamwise Direction Cross-flow Direction

8

10.7 cUe

10.11 cUe

CorcosTBL Model

( , )pp x x r

CorcosTBL Model

Integration Limits

Integration Limits

cU cU

cU40 7TBL

Page 9: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

10-3 10-2 10-1 100-70

-60

-50

-40

-30

-20

-10

0

10

k1/kc

Nor

mal

ized

Pre

ssur

e Sp

ectr

um, d

B

CorcosChaseMellenKoSmolyakov

EstablishLow-wavenumber level consistent with Mellen Model

- IFT to transform low-wavenumber level and integration limit into spatial domain

- Apply “low-wavenumber” TBL model in the same manner as the full cross-spectrum approach

Low Wavenumber Approximation

9

Upper wavenumber limit at kmax = 0.1kc

,,,, 31 kkPpp

pp

kkP

,, 31Spatial FT

Page 10: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Small TBL Correlation Length Approximation

• Start with full equation for modal force

• Simplify for high frequencies

x

y

a

b

At high frequencies, pp(,,) is nearly zero outside a small region surrounding point (x,y)

( , )x yFlow

0 0( ) ( , ) ( , ) ( , , )

a b a x b y

ij i j ppx yx y x y d d dy dx

0 0( ) ( , ) ( , ) ( , , )

a b

ij i j ppx y x y dy dx d d

Assume:• Mode shape is constant over small

correlated region• Limits of separation vector can be

extended to infinity, since pp goes to zero

10

Page 11: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Evaluation ofHigh Frequency Limit

• With high frequency approximation, two area integrals become independent of each other

• In general, express the solution of the second integral as

0 0( ) ( , ) ( , ) ( , , )

a b

ij i j ppx y x y dy dx d d

Evaluate using finite element model

(frequency independent)

Evaluate analytically(gives frequency dependence)

1 3( ) ( , , ) ( ) 2 ( ) 2 ( )pp ppF d d

Point Pressure Spectrum

StreamwiseCorrelation Length

SpanwiseCorrelation Length

11

Page 12: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Examples Comparing Solution Methods

1) Full TBL Cross-spectrum Integration Method

2) TBL Low Wavenumber Approximation Methodintegrate full cross-spectrum

3) Small TBL Correlation Length Approximation Methodhigh frequency

12

Page 13: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

0 200 400 600 800 1000-40

-30

-20

-10

0

10

20

30

40

Frequency [Hz]

Acc

eler

ance

[dB

re (m

/s2 /N

)2 /Hz]

m=1m=2m=3m=4m=5

0.7m 1.0m

Analytical Model- Simply Supported- Aluminum Plate- 10 mm thick

m=1, n=1

m=2, n=1

m=1, n=2

Accuracy Check using Simple Plate

13

H

NMψψψ ...21

Page 14: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

0 10 20 30 40 50 60-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency [Hz]

Mod

al F

orce

[dB

re N

2 /Hz]

n=1n=2n=3n=4n=5

m=1

Grid: 40x28

Ko – 16.7 kts

Grid: 40x28

Analytical (Matlab) results Numerical (NASTRAN) results

m=1 n=1n=2n=3n=4n=5n=6

- Confirms numerical calculations are correct for more complex geometries

Ko – 16.7 kts

Computed Modal Force: Analytical vs Numerical

14

( ) ( ) ( ) ( , , )ij i j ppS S

x x r x x r dr dx

Page 15: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Modal ForceSimply Supported Plate

15

Numerical (NASTRAN) results

Numerical error from integrationof cross-spectrum

Page 16: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

100

101

102

103

-20

-10

0

10

20

30

40

50

60

Frequency

Rad

iate

d Po

wer

Per

Uni

t TB

L Pr

essu

re (d

B)

Simply Supported full modelSimply Supported HF limitSimply Supported low-k

Radiated PowerSimply-Supported Plate

16

Full Cross-SpectrumLow Wavenumber Approx.High Frequency Asymptote

Page 17: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Complex Rib-Stiffened PlateConvergence Test

2540 Elements 9184 Elements

19932 Elements Flow Direction

Simply-Supported BCs

~ 4” x 4” ~ 2” x 2”

~ 1.3” x 1.3”

2c

c c

kU

10 kts @ 10 Hz

12c in

convective wavelength

Valid TBL freq: 5 Hz

Valid TBL freq: 10 Hz

Valid TBL freq: 15 Hz

17

Page 18: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

First Six Mode Shapes

• The modes quickly change from being global to being localized to only a few “panels”

13.9 Hz 37.6 Hz 38.0 Hz

54.5 Hz 62.0 Hz 62.5 Hz

18

Page 19: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Results – Mode 1 Self Term

F1 = 3.0 Hz in water

Numerical error from integrationof cross-spectrum

Upper frequency

19

Flow Direction

Page 20: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Results – Mode 30 Self Term

f30 = 58.4 Hz in water

20

Flow Direction

Page 21: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Generalization of Results for Arbitrary Flow Speed

Page 22: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

4c

upperUf

L

, 2c upperkL

Maximum analysis frequency for a given mesh size and convective speed

Integration error (insufficient mesh

resolution)

Full integration can be intractable

Page 23: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

1c

m

kk

or 2

c cm m

U

Depends on the mode of interest, convective speed

and frequency

When is high frequency approximation valid?

Page 24: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

0.76c

b

kk

2.1c

b

kk

When is high frequency approximation valid?

Page 25: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

Difference is less than 1 dB when kc/kb > 7

When is high frequency approximation valid?

Page 26: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

When is high frequency approximation valid?

Page 27: Efficient Modeling of Structural Vibration and Noise from ... · April 29, 2013. Outline • Introduction ... exp exp exp ccc i UUU ... c U 15-20 -10 0 10 20 0 0.2 0.4 0.6 0.8 1 xi3*k

A hybrid approach is recommended

( ) ( ) ( ) ( , , )ij i j ppS S

x x r x x r dr dx

Full integration below kc/kb = 7

High frequency approximation for kc/kb > 7

21

21 1 3

2 21

c cij

U UC

No restriction on flow speed or finite element mesh size