108
q4(Qv+p December 1995 NREL/”-442-6472 ‘. . %,., -- ~ -__ -..___ . ’I^ ... = --. . _,. --__ ... - ... .__ C%_ ’.. . .. , ... . < . . . ., .’. z . I I . \.., : .‘ ’. . I [ - A -’.. , . . . 1 . . . . . : Effects of Surface ‘Roughness and Vortex Generators on the NACA 4415 Airfoil . . I . . . i r . . : .< , i i I i .. i i’ ,( . . . . ,.’ ,/. ,.: i , : 3 . .,.A. /’ . . ./’. _, ,>.- ,. 1 >-- .--- ..- R. L. Reuss M. J. HofEnan G. M. Gregorek The Ohio State University Columbus, Ohio National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the U.S. Department of Energy under Contract No. DE-AC36-83CH10093 3 DISTRIBUTIOM OF TfllS DOCUMEm Is UNLIMITED . ---.- -... . .- -I-- -.. . : -

Effects of Surface 'Roughness and Vortex Generators on the NACA

Embed Size (px)

Citation preview

Page 1: Effects of Surface 'Roughness and Vortex Generators on the NACA

q4(Qv+p December 1995 NREL/”-442-6472

‘. . %,., - - ~ -__ -..___

. ’I ... ’= --. . _,. --__ ... - ... .__

C%_ ’.. .. .. , ... . <. . . ..., .’.

z ’. ‘ I

I .

\.., ’:

.‘ ’. .. I

[-A - ’ . . , .

. .. 1 . .. . . .

: Effects of Surface ‘Roughness and Vortex Generators on the NACA 4415 Airfoil . . I .

. . ‘ i r . . : .< ,

i i I i .. ‘

i i’ ,( .

. . . ,.’ ,/. ,.:

i ,: 3 .

.,.A. /’ . . ./’. _,

,>.- ,. 1

>-- .--- ..- ’

R. L. Reuss M. J. HofEnan G. M. Gregorek The Ohio State University Columbus, Ohio

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the U.S. Department of Energy under Contract No. DE-AC36-83CH10093

3 DISTRIBUTIOM OF TfllS DOCUMEm Is UNLIMITED

. ---.- -... . .- -I--

-.. ..: -

Page 2: Effects of Surface 'Roughness and Vortex Generators on the NACA
Page 3: Effects of Surface 'Roughness and Vortex Generators on the NACA

NRELRP-442-6472 UC Category: 121 1 DE96000494

R. L. Reuss M. J. HofEnan G. M. Gregorek The Ohio State University Columbus, Ohio

NREL Technical Monitor: C. P. Butterfield

National Renewable Energy Laboratory 16 17 Cole Boulevard Golden, Colorado 8040 1-33 93 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the US. Department of Energy under contract No. DE-AC36-83CH10093

Prepared under Subcontract No. XF-1-11009-3

& December 1995

DlSTRIBUn0N OF THIS DOCUMENT IS UNLIMITED

Page 4: Effects of Surface 'Roughness and Vortex Generators on the NACA

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any wamnty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available to DOE and DOE contractors from: Office of Scientific and Technical Information (OSTI) P.O. Box 62 Oak Ridge, TN 37831

Prices available by calling (615) 576-8401

Available to the public from: National Technical Information Service (NTIS) U S . Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650

#* Printed on paper containing at least 50% wastepaper, including 10% postconsumer waste c:

Page 5: Effects of Surface 'Roughness and Vortex Generators on the NACA

Foreword

Airfoils for wind turbines have been selected by comparing data from different wind tunnels, tested under different conditions, making it difficult to make accurate comparisons. Most wind tunnel data sets do not contain airfoil performance in stall commonly experienced by turbines operating in the field. Wind turbines commonly experience extreme roughness for which there is very little data. Finally, recent tests have shown that dynamic stall is a common occurrence for most wind turbines operating in yawed, stall or turbulent conditions. Very little dynamic stall data exists for the airfoils of interest to a wind turbine designer. In summary, very little airfoil performance data exists which is appropriate for wind turbine design.

Recognizing the need for a wind turbine airfoil performance data base, the National Renewable Energy Laboratory (NREL), funded by the U.S. Department of Energy, awarded a contract to Ohio State University (OSU) to conduct a wind tunnel test program. Under this program, OSU tested a series of popular wind turbine airfoils. A standard test matrix was developed to assure that each airfoil was tested under the same conditions. The test matrix was developed in partnership with industry and is intended to include all of the operating conditions experienced by wind turbines. These conditions include airfoil performance at high angles of attack, rough leading edge (bug simulation), steady and unsteady angles of attack.

Special care has been taken to report as much of the test conditions and raw data as practical so that designers can make their own comparisons and focus on details of the data relevant to their design goals. Some of the airfoil Coordinates are proprietary to NREL or an industry partner. To protect the information which defines the exact shape of the airfoil, the coordinates have not been included in the report. Instructions on how to obtain these coordinates may be obtained by contacting C.P. (Sandy) Butterfield at NREL.

C. P. (Sandy) E6utteYrfield Wind Technology Division National Renewable Energy Laboratory 16 17 Cole Boulevard Golden, Colorado 80401 USA Internet Address: [email protected] Phone: 303-384-6902 FAX: 303-384-6901

Page 6: Effects of Surface 'Roughness and Vortex Generators on the NACA

Abstract

Wind turbines in the field can be subjected to many and varying wind conditions, including high winds with the rotor locked or with yaw excursions. In some cases, the rotor blades may be subjected to unusually large angles of attack that possibly result in unexpected loads and deflections. To better understand loadings at unusual angles of attack, a wind tunnel test was performed.

An 18-inch constant-chord model of the NACA 44 15 airfoil section was tested under two dimensional steady state conditions in the Ohio State University Aeronautical and Astronautical Research Laboratory 7x10 Subsonic Wind Tunnel. The objective of these tests was to document section lift and moment characteristics under various model and air flow conditions. Surface pressure data were acquired at -60' through 1-230" geometric angles of attack, at a nominal 1 million Reynolds number. Also, cases with and without leading edge grit roughness were investigated. Leading edge roughness was used to simulate blade conditions encountered on wind turbines in the field. Additionally, surface pressure data were acquired for Reynolds numbers of 1.5 and 2.0 million, with and without leading edge grit roughness, but the angle of attack was limited to a -20" to 40" range.

In general, results showed lift curve slope sensitivities to Reynolds number and roughness. The maximum lift coefficient was reduced as much as 20 % by leading edge roughness. Moment coefficient showed little sensitivity to roughness beyond 50" angle of attack, but the expected decambering effect of a thicker boundary layer with roughness did show at lower angles.

Tests were also conducted with vortex generators located at the 30% chord location on the upper surface only, at 1 and 1.5 million Reynolds numbers, with and without leading edge grit roughness. In general, with leading edge grit roughness applied, the vortex generators restored the baseline level of maximum lift coefficient but with a more sudden stall break and at a lower angle of attack than the baseline.

i v

Page 7: Effects of Surface 'Roughness and Vortex Generators on the NACA

Table of Contents

Listofsymbols .......................................................... v i i

Acknowledgements ........................................................ v i i i

Introduction ............................................................ 1

TestFacility ............................................................ 2

ModelDetails ........................................................... 3

Test Equipment and Procedures ............................................... 6 Data Acquisition .................................................... 6 DataReduction ..................................................... 7 TestMatrix ....................................................... 7

Results and Discussion ..................................................... 8

Summary ............................................................. 13

Appendix A: Model and Surface Pressure Tap Coordinates .......................... A-1

Appendix B: Integrated Coefficients and Pressure Distributions ....................... B-1

V

.......... . ..-___.. - .. ..- .-

Page 8: Effects of Surface 'Roughness and Vortex Generators on the NACA

List of Figures Page

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . OSU/AARL 7x10 Subsonic Wind Tunnel 2 2 . NACA 4415 Airfoil Section 3 3 . ModeIDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 . RoughnessPattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 . Vortex Generator Geometry 5 6 . Data Acquisition Schematic 6 7 . C, vs a, Extended Range 8 8 . C,, vs a, Extended Range 8 9 . C,, vs a, Extended Range 8 10 . C , v s a , Clean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 11 . C, vs a, LEGR, Wc=0.0019 9 12 . C,,vsa, Clean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 13 . C,, vs a, LEGR, k/c=0.0019 9 14 . C, vs a, Vortex Generators 10 15 . C,, vs a, Vortex Generators 10

10 17 . C,vsx/c, a=Oo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 18 . C,vsx/c, a=13' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 19 . C, vs x/c, a=188" 11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 . Drag Polar, Vortex Generators, C, vs Cdp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

List of Tables Page

1 . NACA 4415 Aerodynamic Parameters Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

v i

Page 9: Effects of Surface 'Roughness and Vortex Generators on the NACA

List of Symbols

AOA

CL

C

‘dmin

c,

Cpmin

k

psi

4

Re

X

Y

Angle of Attack, degrees

Angle of Attack, degrees

Chord Length, inches

Minimum Drag Coefficient

Section Pressure (Form) Drag Coefficient

Section Drag Coefficient, calculated fiom Wake momentum deficit

Section Lift Coefficient

Section Maximum Lift Coefficient

Section Pitching Moment Coefficient

Section Pitching Moment Coefficient at zero deaees anale of attack

Section Pitching Moment Coefficient about the quarter chord

Pressure Coefficient

Minimum Pressure Coefficient

Roughness element height, inches

Units of pressure, pounds per square inch

Dynamic pressure, psi

Reynolds number

Axis parallel to airfoil reference line, Coordinate in inches

Axis perpendicular to airfoil reference line, Coordinate in inches

v i i

Page 10: Effects of Surface 'Roughness and Vortex Generators on the NACA

Acknowledgements

This work was made possible by the efforts and financial support of the National Renewable Energy Laboratory which provided major funding and technical monitoring; the U.S. Department of Energy, which is credited for its funding of this document through the National Renewable Energy Laboratory under contract number DE-AC36-83CHlOO93 and U.S. Windpower Incorporated which provided funding for models and provided technical assistance. The staff of the Ohio State University Aeronautical and Astronautical Research Laboratory appreciate the contributions made by personnel from both organizations.

v i i i

Page 11: Effects of Surface 'Roughness and Vortex Generators on the NACA

Introduction

Wind turbines in the field can be subjected to many and varying wind conditions, including high winds with rotor locked or with yaw excursions. In some cases the rotor blades may be subjected to unusually large angles of attack that possibly result in unexpected loads and deflections. To better understand loadings at unusual angles of attack, a wind tunnel test was performed. An 18-inch constant chord model of the NACA 4415 airfoil section was tested under two dimensional steady state conditions in the Ohio State University Aeronautical and Astronautical Research Laboratory ( O S U / M ) 7x1 0 Subsonic Wind Tunnel (7x10). The objective of these tests was to document section lift and moment characteristics under various model and air flow conditions. These included a normal angle of attack range of -20' to +40', an extended angle of attack range of -60' to +230°, applications of leading edge grit roughness (LEGR), and use of vortex generators (VGs), all at chord Reynolds numbers as high as possible for the particular model configuration. To realistically satisfy these conditions the 7x10 offered a tunnel-height-to-model-chord ratio of 6.7, suggesting low interference effects even at the relatively high lift and drag conditions expected during the test. Significantly, it also provided chord Reynolds numbers up to 2.0 million.

Knowing the NACA 4415 model would later be run in the OSU/AARL 3x5 Subsonic Wind Tunnel (3x5), the present test setup and methods were kept as similar as possible to those for the 3x5. Later, a direct comparison could be made of data obtained in the two wind tunnels. Consequently, most of the data acquisition equipment was moved from the 3x5 to the 7x10. Minor changes were made to the system in order to adapt the equipment to the larger facility. Also, so that the NACA 4415 model could be used in both tunnels, it was specially designed to include a central 3 foot span sensing section with removable, contoured, spanwise extensions.

In all LEGR cases a "standard" grit pattern was applied. The grit pattern was developed by U.S. Windpower, OSU/AARL, and the University of Texas, Permian Basin. The VGs were provided to OSU/AARL by U.S. Windpower. Detailed discussion of the grit pattern and VGs can be found in the Section, Model Details.

Reynolds numbers of 1, 1.5, and 2 million were tested, for normal angle of attack range cases (-20' to I-40"). At 1 million Reynolds number, the model was additionally swept through the extended angle of attack range. The model would buffet at higher dynamic pressures, thus precluding higher Reynolds number data for the extended angle of attack range. However, both clean and LEGR data were taken for all useable tunnel conditions. Finally, VG effects were evaluated over the normal angle of attack range, for Reynolds numbers of 1 and 1.5 million, and for clean and LEGR cases. The VGs were tested at the 30% chord upper surface station only; any attempt at higher Reynolds numbers with VGs consistently resulted in VGs separating from the model. Scheduling constraints precluded any significant effort to alleviate the VG attachment problem.

1

Page 12: Effects of Surface 'Roughness and Vortex Generators on the NACA

Test Facility

Tests described here were performed in the OSU/AARL 7x10 subsonic wind tunnel. A schematic of the tunnel is shown in figure 1. There are two test sections in this tunnel; a 7-fOOt x 10-foot section in which these tests were conducted, and a 16-foot x 14-foot section in which very low-speed and high angle of attack testing is performed with large models. The wind tunnel is a closed-circuit, single-return, continuous flow system. A velocity range of 35 to 180 knots is developed in the 7x10 test section by a six-blade, fixed-pitch, 20-foot diameter fan directly driven by a 2000 horsepower, variable-speed motor. The tunnel's steel outer shell is water spray cooled to control internal air temperature. Its test section floor contains a rotating table which allows adjustment of the model angle of attack through a 290" range about a vertical axis. A large, long-traverse, wake survey probe was not available and, consequently, none was installed in the test section.

SCREEN / 16 x 14 l?T ITEST SECTION I

A B U I L D I N G TESTSECTION I

I I I L15B----- 1-1 1 15FT

I

WALLS

b-, 154 FT - 6 IN

Figure 1. OSU/AARL 7x10 Subsonic Wind Tunnel

2

Page 13: Effects of Surface 'Roughness and Vortex Generators on the NACA

Model Details

An 18-inch constant chord NACA 4415 airfoil model was designed by OSU/AAlU personnel and manufactured by others. Figure 2 shows the airfoil section; the section’s measured coordinates are given in Appendix A. The model was made of a carbon composite skin over a foam core. The main load bearing member is a 1 %-inch diameter steel tube which passes through the foam core at the airfoil quarter chord station. Steel and composite ribs and end plates transfer loads fiom the composite skin to the steel tube. The final surface was hand worked using templates to attain given coordinates within a tolerance of kO.01 inches.

NACA 441 5

Figure 2. NACA 4415 Airfoil Section

Since the model had to also be used in the 3x5 subsonic wind tunnel for additional tests, it was designed with a 3-fOOt span main sensing section and 2-foot extension panels for each end, shown in figure 3. The extensions, used for 7x10 tunnel testing, were fabricated with the same contour as the main section and they slid over the steel tube and fastened to the endplates of the main section. Other minor model features were included, such as an extension to the model support tube and an adaptation of the support tube end to the different angle of attack potentiometer mountings in each facility.

Page 14: Effects of Surface 'Roughness and Vortex Generators on the NACA

To minimize pressure response times, the len,ds of surface pressure tap leadout lines were made as short as possible. Although response time was not particularly important for the present test, it was important for the unsteady testing to be done later in the 3x5 wind tunnel. Therefore, a compartment was built into the model to hold the pressure scanning modules. This compartment was accessed through a panel door fitted flush with the model contour on the lower (pressure) surface.

. . . - . . ,. .. - 4 ...... . . - . . - . - . . - . - 0 , . . . - . . . . . . . . . . . . a .. .. - -

: * .

. . ...... - . . - . . . . * . . e . . , . . . . - '

For test cases involving roughness, a standard, repeatable pattern with grit as roughness elements was desired. In the past tests, grit was lightly blown into a thin layer of spray adhesive or onto a tape adhesive to obtain a roughened surface on models. For these tests, a different method was developed and used. A roughness pattern was jointly developed by OSUIAARL and U.S. Windpower personnel using a molded insect pattern taken from a wind turbine in the field by personnel at the University of Texas, Permian Basin. The resultant particle density was 32 particles per square inch in the middle of the pattern, and thinning to 8 particles per square inch at the edge of the pattern. Figure 4 shows the pattern template produced by U.S. Windpower from the above specifications. The pattern was repeatedly cut into a steel sheet 4-inches wide and 3-feet long, with holes just large enough for one piece of grit. Based on average particle size from the field specimen, standard #40 lapidary grit was chosen for the roughness elements, giving k/c=0.0019 for an 18-inch chord model.

To use the template, 4-inch wide double-tack tape was stuck to one side of the template and grit was poured and brushed from the opposite side. The tape was then removed from the template and transferred to the model. This scheme allowed the same roughness pattern to be replicated for any test.

VGs were applied to the model for some data points. U.S. Windpower provided the VGs with the geometry shown in figure 5. The VGs were pairs of right isosceles triangular shapes set on their longest sides at 30" included angle to each other and 15" to the chord line. The pairs were repeated every 1.61 inches in the spanwise direction. This VG configuration was fabricated in 1 -53-inch-wide injection molded plastic strips with a 0.036-inch base-plate thickness. For ease of installation and to minimize damage to the model surface, these strips were fastened at the 30% chord upper surface station using

4

Page 15: Effects of Surface 'Roughness and Vortex Generators on the NACA

rubber cement between the VG base-plate and model and thin tape (0.003 inch thick) over the base plate leading and trailing edges.

VORTEX GENERATOR GEOMETRY CLinear Dimensions i n Inches)

I Detai I A

Figure 5. Vortex Generator Geometry

5

Page 16: Effects of Surface 'Roughness and Vortex Generators on the NACA

Test Equipment and Procedures

Facility Pressure Transducer

Data Acquisition

PSI Pressure Sensing Modules

Data were acquired and processed from up to 60 surface pressure taps, three individual tunnel pressure transducers, and an angle of attack potentiometer. The data acquisition system included an IBM PC compatible 80386 based computer connected to a Pressure Systems Incorporated (PSI) data scanning system. The PSI system included a 780B Data Acquisition and Control Unit (DACU), 780B Pressure Calibration Unit (PCU), 81-IFC scanning module interface, two ESP-32 5-psid range pressure scanning modules (ESPs), and a 30-channel Remotely Addressed Millivolt Module (RAMM-30). Figure 6 shows the data acquisition system schematic.

I I

DATA ACQUISITION

4 Pressure Calibration Unit

PSI 780B DACU

Three individual pressure transducers read tunnel total pressure, tunnel east static pressure, and tunnel west static pressure. Before the test began, these transducers were bench calibrated using a water manometer to determine their sensitivities and offsets. Related values were entered into the data acquisition and reduction program so the transducers could be shunt resistor calibrated before each series of wind tunnel runs.

The angle of attack potentiometer was a linear rotary potentiometer and was regularly calibrated during the tunnel pressure transducers shunt calibration. The angle of attack calibration was accomplished by taking voltage readings at known values of set angle of attack. This calibration method gave angle of attack readings within k0.25" of actual over the entire angle range.

Two ESPs were calibrated simultaneously using the DACU and PCU. At the operator's request, the DACU commanded the PCU to apply known regulated pressures to the ESPs and read the output voltages

6

Page 17: Effects of Surface 'Roughness and Vortex Generators on the NACA

fiom each integrated pressure sensor. From these values, the DACU calculated the calibration coefficients and stored them internally until the coefficients were requested by the controlling computer. This calibration was done several times during a run set because the ESPs were installed inside the model and their outputs tended to drift with temperature changes during a test sequence. Frequent online calibrations minimized the effect.

Finally, at the operator's request, pressure measurements fiom the airfoil surface taps and all other channels of information were acquired and stored by the DACU and subsequently passed to the controlling computer for final processing.

Data Reduction

The data reduction routine was incorporated as-a section of the data acquisition program. This combination of data acquisition and reduction routines allowed data to be reduced online during a test. By quickly reducing selected runs, integrity checks could be made to ensure the equipment was working properly and to enable timely decisions about the test matrix.

The ambient pressure and tunnel air temperature were manually input into the computer and were updated regularly. These values, as well as the measurements fiom the tunnel pressure transducers, were used to calculate tunnel airspeed. As a continuous check of readings, both the tunnel individual pressure transducers and the ESPs, read the tunnel total and static pressures.

A typical datum point was derived by acquiring twenty data scans of all channels over a 1-second window at each angle of attack and tunnel condition. The reduction portion of the program processed each data scan to coefficient forms C,, C,, Cmx, and C,, using the measured surface pressure voltages, calibration coefkients, tap locations and wind tunnel conditions. All scan sets for a given condition were then ensemble averaged to provide one set. All data were saved in electronic form. The data were not corrected for any tunnel wall effects, etc.

Test Matrix

The test was designed to allow an extended angle of attack range of -60' to 230' and Reynolds numbers of 1, 1.5, and 2 million with and without LEGR. Tabular data in Appendix B contains the actual Reynolds number for each angle of attack. The angle of attack increment was four degrees when a<-20" or @40", two degrees when -2O'C a 40' or 20'< a <40', and one degree when lo"< a (20". All test speeds and angles of attack were set for model clean and LEGR conditions.

For some cases, VGs were mounted at the 30% chord position on the model's upper surface only. The VG strips were provided by U.S. Windpower and were the exact type used on wind turbines in the field. Test conditions while the VGs were applied included clean and LEGR data at 1 and 1.5 million Reynolds numbers over an angle of attack range of -20" to 40".

Unexpected complications during testing forced adjustments to this desired test matrix. complications and their effects are elaborated in the next section, Results and Discussion.

Those

7

Page 18: Effects of Surface 'Roughness and Vortex Generators on the NACA

Results and Discussion

The NACA 4415 airfoil model was tested at three Reynolds numbers in the 7x10. Unfortunately, due to less than expected model rigidity, the model flexed and fluttered when near perpendicular to the flow at the higher test airspeeds. The tunnel airspeed was reduced for those conditions to reduce dynamic effects and to preserve the model's structural integrity. Consequently, the Reynolds number was not constant for the entire extended angle of attack sweeps and only the nominal 1 million Reynolds number condition was obtained. Reynolds number was as low as 0.6 million during the nominal 1 million Reynolds number extended angle of attack cases. Also, no wake survey probe was available for the test; only pressure drag from surface pressure integrations is presented.

CiVERSUS (I NACA4415

1 RC-l.OxlO'.CLEAN I Re=l.OxlO'. k / c - O . W 1 9

1.6

Q 0

0.6

8 0. 0

0

0

0

%g -1.0 61

-1.2

" . 50 P O 150 200 250

e

Crn VERSUS a NACA C415

R.=l.OxlO'.CLUW Re=l .Or1 e. k / c = 0 . 0 0 1 9 B 0.6 -

Op, 40 m 6 0.4 -

E", OW 0

Figure 7. C, vs a, Extended Range Figure 8. C,, vs a, Extended Range

Figure 7 shows the lift coefficient versus angle of attack for the extended angle of attack sweeps, for the model clean and with LEGR at 1 million Reynolds Number. Increases in lift coefficient occurred when the model was in its post stall region for both positive and negative angles of attack, but the maximum lift coefficient occurred just before positive stall and is 1.47. For the clean case, this model exhibits a

CdpVERSUS a NACA 441 5

e B, B C

0 0

-00.4 - I

-100 -50 -o.2E 50 100 150 200 250 -.

Figure 9. C,, vs a, Extended Range

8

Page 19: Effects of Surface 'Roughness and Vortex Generators on the NACA

gradual trailing edge stall. Correspondingly, for the LEGR data, the maximum lift coefficient prior to stall is 1.14 and occurs at a slightly lower angle of attack in comparison with the clean case. However, the overall maximum lift of the LEGR case does not occur before stall, but beyond it near 45' angle of attack. This can be observed in figure 7. Similar magnitudes of C,= 1.4 are also apparent in the large angle of attack clean cases.

CI VERSUS a NACA 441 5 (k/c=O.O019)

CI VERSUS a NACA4415 (CLEAN)

,-1.8

1.6 1.4 1.2 1.0 0.8 0.6

0.4

ob , . * . I - 0 .

e30.2 -20 -15 -10

m o B 8 @ B s -0.6

-0.8

oi.a - 1.6 - - 1.2 - 1 .o

0.6

1.4 A o o o c

0 0

. . , , , 1 , , , , , , 25 30 35 a 4 0

A -0.6 - -0.8 -

- - - - @ @ o c

€I - - Q

-a ~

- . ! . , . 1 . . . 1 , , . ,

10 1 5 20 25 30 35 40 a

- 0 . 4 : r l R.=l Re=lSxlO .Ox1 06 - Re=2.0~10' -

Figure 10. C, vs a, Clean

0 h . 1 D t , t I -i@% -10 -5

-0.05

A m 0 SQl'0';

-0.15

-0.20

-0.25

-0.30

, 9 , * , 9 , e , 7 , . , , , I

3 5 10 15 20 25 30 35 40 -5 3 5 10 15 20 25 30 35 40

- -0.05 - a ) 8 0 a a 01

la 8 0 g8.1: - t 00:A

c, @a

6 %I - 8 A A -0.15 -

-0.20 - R - 80

0 0 0

n e -0.25 - 0% -

O O O 0 - -0.30 -

The quarter chord pitching moment results are shown in figure 8 for the lowest Reynolds number of 1 million. The pitching moment is most negative when the airfoil is at high angles of attack near 110'. This observation is consistent for both the clean and LEGR cases. The pressure drag is shown in figure 9. The highest pressure drag occurs when the model is near 90' angle of attack. There is some scatter in the data at such conditions, caused by the severely detached, unstable flow on the leeward side of the model.

Cm VERSUS a NACA 441 5 (CLEAN)

Cm VERSUS a NACA 441 5 (k/c=0.0019)

A number of test runs were made for nominal angles of attack from -20' to +40". For some of the cases there is no data shown for the highest angles of attack; these data were discounted as unreliable because the model was buffeting. Figure 10 and 11 show lift coefficients for all the test Reynolds numbers, for

9

Page 20: Effects of Surface 'Roughness and Vortex Generators on the NACA

the clean model and LEGR cases. The maximum positive lift coefficient for the clean cases is about 1.47 and the LEGR data has a Clmm about 1.2 1. For the clean cases, the negative maximum lift appears more sensitive to Reynolds number than the positive maximum. Also note that for the 1 million Reynolds number case, the model with LEGR seems to stall less abruptly than the clean airfoil. The average lift curve slope for these data is about 0.093.

Ci VERSUS a NACA 4 4 1 5 (VORTEX GENERATORS 302)

Cm VERSUS C[

NACA 4rl5 (VORTEX GENEFATORS 302)

Rc=l .Ox1 0". k / c = 0 . 0 0 1 9 R c = l S x 1 0". k / c = 0 . 0 0 1 9

.1.8 - 5 0.1 0 -

0.05 1 . 6 - 1 . 4 - 1.2 1.0 - - 2 0 - ' 1 3 B 1 0 -5 3 5 10 1 5 20 25 30 35 40

-0.05 - 0.8 : Q

0 9 -0.15 -

. f i U 0.6 - 0.4

1 , . . , . . , . , . , ,

-0.20 - -20 -1 5 p10 1 0 15 20 25 30 35 40 U D

A 0

$ 8 0 A B Re=l.SxlOO. k / c = 0 . 0 0 1 9 -0.25 -

Figure 14. C, vs a, Vortex Generators Figure 15. C,, vs a, Vortex Generators

Re=l .Ox1 0". k/c=O.O019

-0.6 Rc=l .Ox1 0". CLEAN - -0.8 0 Re=l S x 1 IY, CLEAN -0.30 - A S

4

Figure 12 shows the pitching moment about the quarter chord for the dean cases and figure 13 shows the LEGR cases. The LEGR data show a slightly more positive pitching moment near 0" angle of attack; however beyond stall, the pitching moment is slightly more negative for the model with LEGR than the clean model. The C,, about the quarter chord for the clean case is -0.096 and -0.081 for the LEGR case.

CI VERSUS Cdp NACA 441 5 (VORTEX GENERATORS 30%)

oo 0 OA

Q

0 0 A

Re=l .Ox1 ob, k/C=O 001 9

Re=l .5x1 Ob. CLE4N -1 0 ~~ ~

Figure 16. Drag Polar, Vortex Generators, C, vs C,,

VGs were fitted to the model at the 30% chord location, upper surface (suction side) only. The lift coefficient and pitching moment coefficients for the VG cases are shown in figure 14 and 1 5, respectively.

10

Page 21: Effects of Surface 'Roughness and Vortex Generators on the NACA

The maximum lift coefficient for the clean case with VGs is near 1.85 and near 1.5 for the LEGR case. This is a 19% reduction in maximum lift when the airfoil has leading edge roughness. The stall of this airfoil is more abrupt when the VGs are applied, and occurs at a slightly lower angle of attack than without VGs. The pitching moment shows slightly different characteristics with the VGs than without. The pitching moment is almost a constant -0.10, fiom -1 0" to +15" angle of attack with VGs applied, but noticeable variation exists without VGs. Figure 16 shows a pressure drag polar for the VG cases; it is included only for completeness sake. This form of drag coefficient is inherently inaccurate because it does not include fiction drag and should only be used for comparisons within the present data sets.

Cp VERSUS X/C NACA 441 5 (R.=l .Ox1 OB) - UEAN a-0.05.

-9- k/c=d.O019 a=OlC + k/c=O.O019:3OZk's. aEO.06 +- UEAN. SOZVOS. a=o.or

Symbols: Sfid-Upper Surface Gnply-Lower Surface

4.

Figure 17. Cp vs x/c, a=O"

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 Os)

----b CLEAN.a-12.96 + k/c=0.0019.a=13.06 + k/c=0.W19.x)ZvGs.rr=12.99

Symbols: SGd-Uppcr Surfcsc Emply-Lower Surface

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

0"

./e

Figure 18. C, vs dc , a=13"

Representative surface pressure distributions are for a Reynolds number of 1 million and show cases of clean, LEGR, and VGs with and without LEGR. Figure 17 shows the pressure distributions for 0" angle of attack. A trend toward reduced pressure magnitudes with LEGR can be observed. At angles of attack near stall, the trending is more apparent. For example, figure 18 shows pressure distributions for a 13" angle of attack. The data show the model has upper surface flow separation near the 40% chord station for the LEGR case. It further shows the VGs increase the pressure magnitudes for both the clean and LEGR cases. Also, the VGs have caused the separation point to move slightly aft.

C,VERSUS x/c MU4415 (Re=l .Ox1 od)

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

./e

0"

Figure 19. C, vs x/c, a=188'

11

Page 22: Effects of Surface 'Roughness and Vortex Generators on the NACA

Figure 19 shows the pressure data for the model at an angle of attack of 188", including clean and LEGR cases. Clean and LEGR pressure distributions are shown. Notice the distributions are almost identical near the trailing edge of the airfoil, and slightly different at the leading edge. This difference shows an effect of the roughness even though the leading edge is located, for this unusual case, down stream of the trailing edge.

The pressure distributions and coefficient data for other test conditions are in Appendix B.

12

Page 23: Effects of Surface 'Roughness and Vortex Generators on the NACA

Summary

Re num

A NACA 4415 model was installed in the OSU/AARJL 7x10 subsonic wind tunnel and tested at three Reynolds numbers and with model clean, roughened, and with VGs. Table 1 is a summary of the aerodynamic coefficient data for the NACA 4415.

Ch, dC,lda c m o CASE

1.0x106

1 .5x106

2.0X1O6

1.0x106

1 . 5 ~ 1 0 ~

1 .ox1 o6 1 . 5 ~ 1 O6

~~

1.14 0.088 -0.083

1.21 0.091 -0.081

1.21 0.095 -0.081

1.83 0.105 -0.095

1.87 0.109 -0.096

1.53 0.101 -0.091

1.54 0.104 -0.092

Clean

Clean

Clean

k/c=O.O019

k/c=o.o019

k/c=o.oo 19

Clean VG’s

Clean VG’s

k/c=0.0019 VG’s

k/c=0.0019 VG’s

1 . 0 ~ 1 0 ~ I 1.47 I 0.097 I -0.097 11 1 . 5 ~ 1 0 ~ I 1.45 I 0.092 I -0.096 11 2 . 0 ~ 1 0 ~ I 1.47 I 0‘.094 I -0.096 11

For the clean NACA 4415 model, Reynolds number changes fiom 1 to 2 million did not have a significant effect on the maximum positive lift or the pitching moment at zero degrees angle of attack. However, the addition of leading edge grit roughness to the model reduced the maximum lift coefficient by 18% and caused a 16% change in the pitching moment at 0’ angle of attack. Also, the lift curve slope showed increases with Reynolds number. Adding VGS on the model upper surface at the 30% chord station caused the maximum lift coefficient to increase by 29% in the clean cases and about 27% for the roughened cases. The VGs apparently energized the boundary layer sufficiently to increase the lift curve slope and to delay stall to a higher angle of attack resulting in a higher maximum lift coefficient. However, the positive stall with VGs was more abrupt than the stall without VGs.

13

Page 24: Effects of Surface 'Roughness and Vortex Generators on the NACA
Page 25: Effects of Surface 'Roughness and Vortex Generators on the NACA

Appendix A: Model and Surface Pressure Tap Coordinates

A- 1

Page 26: Effects of Surface 'Roughness and Vortex Generators on the NACA

Table A 1. NACA 44 15 Measured Model Coordinates

Chord Station (in>

0.0000

0.0018

0.0036

0.0072

0.0108

0.0198

0.0522

0.0792

0.1368

0.2160

0.3 168

0.3924

0.4806

0.6156

0.7488

0.9036

1.0548

1.1718

1.3662

1 S768

1.7424

1.9062

2.0394

2.4 192

2.97 18

3.3516

3.8106

4.2156

4.8942

5.8392

6.7266

7.5 186

8.5 176

18 inch desired chord

Upper Ordinate (in>

~~

0.0936

0.1404

0.1530

0.1764

0.1980

0.2358

0.3222

0.3708

0.45 18

0.5436

0.6426

0.7074

0.7740

0.8658

0.9468

1.0315

1.1052

1.1592

1.2420

1.3266

1.3 878

1.443 6

1.4868

1.5966

1.7262

1 .so00

1 A720

1.9242

1.9872

2.0304

2.0340

2.0 106

1.9440

Chord Station (in>

0.0000

0.0018

0.0036

0.0054

0.0108

0.0180

0.0468

0.0720

0.1332

0.2070

0.3060

0.3798

0.4680

0.6012

0.7326

0.8874

1.0368

1.1052

1.3464

1.5570

1.7226

1.8882

2.0196

2.3994

2.9520

3.3318

3.7908

4.1976

4.8780

5.8230

6.7122

7.4934

8.5068

Lower Ordinate (in>

0.0936

0.0414

0.0306

0.0144

-0.0054

-0.03 24

-0.1062

-0.1530

-0.2304

-0.2952

-0.3618

-0.4032

-0.4446

-0.4968

-0.5382

-0.5778

-0.6 102

-0.63 18

-0.6624

-0.6912

-0.7092

-0.7236

-0.7326

-0.7506

-0.7578

-0.7560

-0.7470

-0.7344

-0.7074

-0.6624

-0.6174

-0.5742

-0.5202

A- 2

Page 27: Effects of Surface 'Roughness and Vortex Generators on the NACA

Table Al. NACA 4415 Measured Model Coordinates 18 inch desired chord

Chord Station (in)

9.3708

10.3014

12.0690

13.8474

14.5332

14.9994

15.8652

16.3368

16.8300

17.173 8

17.3 862

17.5482

17.6958

17.8974

17.9478

18.0540

Upper Ordinate (in)

1.8630

1.7514

1.4778

1.1358

0.9810

0.8712

0.6498

0.5220

0.3870

0.2916

0.2304

0.1854

0.1404

0.0810

0.0648

0.0342

Chord Station

9.3618

10.2942

12.9384

13.8456

14.5368

15.00 12

15.5052

15.8688

16.3098

16.8372

17.3034

17.4636

17.6220

17.7048

17.7840

17.8362

17.9064

18.0540

(in)

End of Table AI

Lower Ordinate (in)

-0.4716

-0.4176

-0.2682

-0.2214

-0.1890

-0.1674

-0.1440

-0.1278

-0.1098

-0.0846

-0.0 648

-0.0576

-0.0486

-0.0450

-0.0414

-0.0378

-0.0342

-0.0234

A- 3

Page 28: Effects of Surface 'Roughness and Vortex Generators on the NACA

Table A2. NACA 4415 Surface Pressure Tap Lo cations

Tap Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Chord Station

1 .oooo 0.9933

0.9778

0.951 1

0.9262

0.9018

0.8781

0.853 1

0.8272

0.8008

0.7502

0.7009

0.6504

0.5994

0.5512

0.4985

0.3997

0.2953

0.2454

0.2221

0.1977

0.1727

0.1466

0.1221

0.0967

0.0702

0.0461

Ordinate

-0.0016

-0.0019

-0.0025

-0.0036

-0.0046

-0.0056

-0.0067

-0.0078

-0.0090

-0.0103

-0.0128

-0.0154

-0.0184

-0.0214

-0.0242

-0.0273

-0.0325

-0.0377

-0.0400

-0.0408

-0.0415

-0.04 19

-0.0417

-0.041 1

-0.0395

-0.0363

-0.03 18

A-4

Page 29: Effects of Surface 'Roughness and Vortex Generators on the NACA

Table A2. NACA 4415 Surface Pressure Tap

Tap Number

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Locations

Chord Station

0.0225

0.0102

0.0000

0.0140

0.0278

0.0519

0.0000

0.1037

0.1271

0.1541

0.1769

0.2036

0.2283

0.255 1

0.3050

0.3560

0.4040

0.4569

0.5057

0.5573

0.6049

0.6553

0.7074

0.7574

0.8082

0.8325

0.8568

A-5

Ordinate

-0.0236

-0.0162

0.0005

0.0321

0.0436

0.0583

0.0000

0.0796

0.0868

0.0936

0.0984

0.1031

0.1066

0.1097

0.1 127

0.1 135

0.1 123

0.1092

0.1047

0.0988

0.0923

0.0843

0.0749

0.0648

0.0536

0.0479

0.0420

Page 30: Effects of Surface 'Roughness and Vortex Generators on the NACA

Table A2. NACA 4415 Surface Pressure Tap Locations

Tap Number

55

56

57

58

59

60 I

Chord Station

0.9071

0.9341

0.9572

0.9830

0.9935

Ordinate

0.0359

0.0288

0.0212

0.0146

0.0069

0.0036

II End of Table A2 II

A- 6

Page 31: Effects of Surface 'Roughness and Vortex Generators on the NACA

Appendix B: Integrated Coefficients and Pressure Distributions

B- 1

Page 32: Effects of Surface 'Roughness and Vortex Generators on the NACA

List of Tables Page

B 1 . NACA 4415. Clean. Re = 1 million . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7 B2 . NACA 4415. Clean. Re = 1.5 million . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-11 B3 . NACA 4415. Clean. Re = 2 million . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-13 B4 . NACA 4415. LEGR Wc=0.0019, Re = 1 million . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-15 B5 . NACA 4415. LEGR Wc=0.0019, Re = 1 million. repeated runs . . . . . . . . . . . . . . . . . . . B-19 B6 . NACA 44 15. LEGR Wc=O.OO 19. Re = 1.5 million . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-20 B7 . NACA 4415. LEGR Wc=0.0019, Re = 2 million . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-22 B8 . NACA 4415. LEGR Wc=0.0019, VGs. Re = 1 million . . . . . . . . . . . . . . . . . . . . . . . . . . B-24 B9 . NACA 4415. LEGR Wc=0.0019, VGs. Re = 1.5 million . . . . . . . . . . . . . . . . . . . . . . . . B-26 B10 . NACA 4415. Clean. VGs. Re = 1 million . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-28 B 1 1 . NACA 441 5. Clean. VGs. Re = 1.5 million B-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B-2

Page 33: Effects of Surface 'Roughness and Vortex Generators on the NACA

List of Figures

Steady-State Pressure Distributions. Re = 1.0 million .............................. B-32 B1 . a=-90" .......................................................... B-33 B2 . ~ ~ - 8 6 ' .......................................................... B-33 B3 . a=-82' .......................................................... B-33 B4 . a=-78" .......................................................... B-33 B5 . a=-74' .......................................................... B-34 B6 . ~ ~ - 7 0 ' .......................................................... B-34 B7 . CY.=-66' .......................................................... B-34 B8 . ~ ~ - 6 2 ' .......................................................... B-34 B9 . a=-58" .......................................................... B-35 B10 . a=-54" ......................................................... B-35 B11 . a=-50" ......................................................... B-35 B12 . a=-46' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-35 B13 . a=-42' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-36 B14 . a=-38" ......................................................... B-36 B15 . a=-34' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-36 B16 . a=-30' ......................................................... B-36 B17 . a=-26' ......................................................... B-37 B18 . a=-22' ......................................................... B-37 B19: a=-2Oo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-37 B20 . a=-18' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-37 B21 . a=-16' ......................................................... B-38 B22 . a=-14' ......................................................... B-38 B23 . a=-12" ......................................................... B-38 B24 . a=-IO" ......................................................... B-38 B25 . ~ r = - 8 ' .......................................................... B-39 B26 . a=-6 ' .......................................................... B-39 B27 . a=-4' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-39 B28 . az -2 ' .......................................................... B-39 B29 . a=O' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-40 B30 . a = 2 ' ........................................................... B-40

B32 . a = 6 " ........................................................... B-40 B33 . a=8" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-41 B34 . a=10' .......................................................... B-41 B35 . a=11' .......................................................... B-41 B36 . a=12' .......................................................... B-41 B37 . a=13' .......................................................... B-42 B38 . a=14' .......................................................... B-42 B39 . a=15" .......................................................... B-42 B40 . a=16" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-42 I341 . a=17' .......................................................... B-43 B42 . a=18" .......................................................... B-43 B43 . a= 19' .......................................................... B-43 B44 . a=20" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-43

B31 . a=4" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-40

B-3

. . . . -...

Page 34: Effects of Surface 'Roughness and Vortex Generators on the NACA

B45 . a=22" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-44 B46 . a=24" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-44 B47 . a=26" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . €3-44 B48 . a=28" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-44 B49 . a= 30" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-45 B50 . a=32" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-45 B51 . a=34" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-45 B52 . a=36" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-45 B53 . a=38" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-46 B54 . a=40" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-46 B55 . a=44" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-46 B56 . a=48 ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-46 B57 . a= 52' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-47 B58 . a=56" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-47 B59 . a = 6 0 ° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-47 B60 . a= 64" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-47 B61 . a=68" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-48 B62 . a=72" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-48 B63 . a=76" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-48 B64 . a=80" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-48 B65 . a=84" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-49 B66 . a=88" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-49 B67 . a=92" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-49 B68 . a=96" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-49 B69 . a= 100" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-50 B70 . a= 104" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-50 B71 . a=108" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-50 B72 . a= 112" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-50 B73 . a=116' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-51 B74 . a=120" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-51 B75 . a=124" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-51 B76 . 0 ~ 1 2 8 " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-51 B77 . a= 132" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-52 B78 . a= 136" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-52

B80 . a= 144" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-52 B81 . a= 148" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-53 B82 . a= 152" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-53

B79 . a=140" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-52

B83 . a= 156" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-53 B84 . a=160" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-53 B85 . a=164' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-54 B86 . a=168" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-54 B87 . a=172' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-54

B89 . a=180° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55 B90 . a=184" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55 B91 . a=188" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55 B92 . a=192" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55

B88 . a=176" B-54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B-4

Page 35: Effects of Surface 'Roughness and Vortex Generators on the NACA

B93 . a=196" ......................................................... B94 . a=2OO0 ......................................................... B95 . a=204" ......................................................... B96 . a=208' ......................................................... B97 . a=212" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B98 . a=216' ......................................................... B99 . a=220" ......................................................... B100 . a=224' ........................................................ B101 . a = 2 2 8 " ' ........................................................ Steady-State Pressure Distributions. Re = 1.5 million .............................. B 102 . B103 . B 104 . B105 . B106 . B107 . B108 . B109 . B110 . B111 . B112 . B113 . B114 . B115 . B116 . B117 . B118 . B119 . B 120 . B121 . B122 . B123 . B124 . B125 . B126 . B127 . B 128 . B 129 . B130 . B131 . B132 . B133 . B134 . B135 . B136 .

a=-20' ........................................................ a=-18' ........................................................ a=-16' ....................................... : . . . . . . . . . . . . . . . . a=-14' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a=-12" ........................................................ a=-lo' ........................................................ a=-8" ......................................................... a=-6" ......................................................... a=-4" ......................................................... a=-2" ......................................................... a=O' .......................................................... a = 2 ' .......................................................... a = 4 ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a= 6" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a=8" .......................................................... a= 10' ......................................................... a=11" ......................................................... a= 12' ......................................................... a= 13' ......................................................... a=14' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a=15' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a= 16' ......................................................... a=17' .: ....................................................... a=18" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a=19' ......................................................... a=2O0 ......................................................... a=22" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a=24' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a=26' ......................................................... a=28" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a=30 ' ......................................................... a=32 ' ......................................................... a=34" ......................................................... a= 36" ......................................................... a=38" .........................................................

Steady-State Pressure Distributions. Re = 2.0 million ..............................

B-56 B-56 B-56 B-56 B-57 B-57 B-57 B-57 B-58

B-59 B-60 B-60 B-60 B-60 B-61 B-61 B-61 B-61 B-62 B-62 B-62 B-62 B-63 B-63 B-63 B-63 B-64 B-64 B-64 B-64 B-65 B-65 B-65 B-65 B-66 B-66 B-66 B-66 B-67 B-67 B-67 B-67 B-68 B-68 B-68

B-69

B-5

--..-. . -.--- .. . . l_ - . .. _-I-

Page 36: Effects of Surface 'Roughness and Vortex Generators on the NACA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 37: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-7

Page 38: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-8

Page 39: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-9

Page 40: Effects of Surface 'Roughness and Vortex Generators on the NACA

Table B 1. NACA 441 5, Clean, Re = 1 million

B-10

Page 41: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-11

Page 42: Effects of Surface 'Roughness and Vortex Generators on the NACA

II End of Table B2 II

B-12

Page 43: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-13

Page 44: Effects of Surface 'Roughness and Vortex Generators on the NACA

267

268

269

270

B-14

24.0 1.06 0.2943 -0.1 140 1.98

26.1 1.02 0.3585 -0.1293 1.98

28.1 0.88 0.5041 -0.1563 1-99

30.1 0.89 0.5464 -0.1622 1.97

Page 45: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-15

Page 46: Effects of Surface 'Roughness and Vortex Generators on the NACA

3 07

309

310

311

3 12

3 13

3 14

315

3 16

317

318

319

320

321

3 22

323

3 24

325

326

327

328

3 29

330

33 1

332

333

334

Table B4. NACA 4415, LEGR k/c=0.0019, Re = 1 million

40.0 1.33 1.0939 -0.3 154 0.96

44.0 1.35 1.2620 -0.3482 0.94

48.0' 1.28 1.3750 -0.3639 0.87

52.1 1.33 1.6677 -0.45 1 1 0.84

56.0 1.24 1.7629 -0.4540 0.76

59.8 1.10 1.7734 -0.4433 0.73

64.0 1.06 2.0405 -0.5140 0.71

68.1 0.96 2.2212 -0.5543 0.69

B-16

Page 47: Effects of Surface 'Roughness and Vortex Generators on the NACA

Table B4. NACA 4415, LEGR k/c=0.0019, Re = 1 million

359 168.1 -0.98 0.1049 -0.4940 1 .oo 3 60 172.1 -0.79 0.0408 -0.365 1 0.99

361 176.0 -0.45 0.0202 -0.1763 1-00

3 62 180.1 -0.42 0.0126 -0.0687 1 .oo

B-17

Page 48: Effects of Surface 'Roughness and Vortex Generators on the NACA

Table B4. NACA 4415, LEGR k/c=0.0019, Re = 1 million

1 End of Table B4

B-18

Page 49: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-19

Page 50: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-20

Page 51: Effects of Surface 'Roughness and Vortex Generators on the NACA

423 38.0 1.34 0.9942 -0.2843 1.45

End of Table B6

B-21

Page 52: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-22

Page 53: Effects of Surface 'Roughness and Vortex Generators on the NACA

II Table B7. NACA 4415, LEGR Wc=0.0019, Re = 2 million II 457

458

459

460

24.1 0.96 0.3630 -0.1233 1.99

26.0 0.98 0.4367 -0.1483 1.99

28.0 0.98 0.5049 -0.1598 1-98

29.9 1.11 0.6299 -0.2027 1.99

B-23

Page 54: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-24

Page 55: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-25

Page 56: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-26

Page 57: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-27

Page 58: Effects of Surface 'Roughness and Vortex Generators on the NACA

Table B10. NACA 4415, Clean, VGs, Re = 1 million

RUN AOA c, CdP Cm,

560 0.1 0.47 -0.0009 -0.0948

561 2.1 0.69 0.0027 -0.0960

562 I 4.0 I 0.89 I 0.0091 1 -0.0983

563 1 6.0 I 1.09 I 0.0203 1 -0.1011

564 I 8.1 I 1.27 I 0.0280 I -0.0963

565 I 9.9 I 1.45 I 0.0378 I -0.0926

566 I 11.1 I 1.53 I 0.0476 I -0.0900

567 1 12.0 I 1.61 I 0.0515 I -0.0871 ~~

568 1 13.0 I 1.68 I 0.0621 I -0.0879

569--- -1 14.1 I 1.75 I 0.0726 I -0.0863 ~ ~~~

570 15.1

571 16.0

5 72 17.1

573 18.1

574 18.9

575 20.0

576 22.1

1.83 0.0840 -0.0850

1.66 0.1424 -0.0912

1.54 0.1764 -0.0833

1.53 0.1930 -0.08 18

1.50 0.2024 -0.0825

0.84 0.3357 -0.1318

0.79 0.3646 -0.1292

Re x10"

1 .oo 1-01

1.01

1.01

1.01

0.99

0.99

0.99

1 .oo 1.01

1.00

1-00

1 .oo 1 .oo 1 .oo 1-00

1 .oo 1 .oo 1 .oo 1 .oo 1 .oo 0.99

0.98

1 .oo 1 .oo 0.99

1 .oo

B-28

Page 59: Effects of Surface 'Roughness and Vortex Generators on the NACA

584

585

B-29

38.0 1.29 1.0186 -0.2950 0.99 . 40.1 1.31 1.1088 -0.3 141 1.01

Page 60: Effects of Surface 'Roughness and Vortex Generators on the NACA

B-30

Page 61: Effects of Surface 'Roughness and Vortex Generators on the NACA

lean, VGs, Re = 1.5 million

End of Table B11

B-3 1

Page 62: Effects of Surface 'Roughness and Vortex Generators on the NACA

Steady-State Pressure Distributions

Re = 1 .O million

B-32

Page 63: Effects of Surface 'Roughness and Vortex Generators on the NACA
Page 64: Effects of Surface 'Roughness and Vortex Generators on the NACA

C, VERSUS x/c NACA 441 5 (Rc=l .Ox1 0')

-6

-5

-4

-3 0"

Symbols: Solid=Uppar Surface Emply-Lower Surioc e

- -

-

-

-6

-5

-4

-3

-2

-1

0"

-6

-5

-4

-3

0.0 0.2 0.4 0.6 0.8 1 .o x/c

-

- - -

Figure B5. a= -74" C, VERSUS x/c

NACA 441 5 (Re=l .Ox1 0')

-6

-5

-4

-3

-2 0"

Symbols: Solid=Upper Surface Empty-Lower Surface

0"

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

-+- CLEAN, a-69.95'

Symbols: Solid=Uppor Surloco Empty-Lowar Surface

X/C

Figure B7. a= -66"

Figure B6. a= -70' C, VERSUS x/c

NACA 441 5 (Re=l .Ox1 0')

-8- CLEAN, a--61 .aw -Fa- k/c-O.O019. a=-61.78' I

I I Symbols: Solid=Upper Surface

EmptymLower Surface

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B8. a= -62"

B-34

Page 65: Effects of Surface 'Roughness and Vortex Generators on the NACA

-6-

-5

-4

-3 e

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 On)

-

- -

--t- CLEAN, a=-57.86' -P- k/c-0.0019. a--60.00' --f- k/C-0.0019. am-55.89'

Symbols: Solid-Upper Surface Empty-Lower Surfaca

-6

-5

-4

-3

-2 4

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

- - - -

-

-6

-5

-4

-3 e

Figure B9. a= -58'

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 0")

- - -

-

Symbols: Solid-Uppor Surface Emply-Lower Surface

-6 -

-5

-4

-3

-2 e

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

X/C

Figure B1 1. a= -50"

- - *

-

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 0")

+ CLEAN, a=-53.93' + k/c-0.0019. a=-54.08'

Symbols: Solid=Upper Surfoco EmplynLower Surface

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B10. a= -54"

Cp VERSUS X/C NACA 441 5 (R,=l .Ox1 0")

Symbols: Solid=UpperSurfaco Empty-Lower Surface

X/C

Figure B12. a= -46"

B-3 5

Page 66: Effects of Surface 'Roughness and Vortex Generators on the NACA

-6

-5

-4

-3

-2 u"

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 0")

-

-

-

-

-

-8- CLEAN, a=-41 .BS 1 + k/c-O.O019. a--41.92'

Symbols: Solid=Upper Surface Empty-Lower Surfoce

-6

-5

-4

-3

-2 0"

0.0 0.2 0.4 0.6 0.8 1 .o x/c

-

-

-

-

-

-6

-5

-4

-3

-2 0"

Figure B13. a= -42"

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

- -

-

-

-

Symbols: Solid=Upper Surface Empty-Lower Surface

-6

-5

-4

-3

-2 u"

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

- -

-

-

-

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

-0- CLEAN, a=-37.97

Symbols: Solid=Upper Surface Emply-Lower Surface

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

Figure B14. a= -38"

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 Oa)

--5 CLEAN. a=-30.04' --C k/c=0.0019. a--30.03'

Symbols: Solid=Upper Surface Empty-Lower Surfoce

-1

0

1

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B15. a= -34" Figure B 16. a= -30'

B-36

Page 67: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

-6

-5

-4

-3

-2 0"

r

- - - -

--C CLEAN, u=-25.93'

Symbols: Solid=Upper Surface Empty-Lowdr Surface

-6

-5

-4

-3

-2 0"

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

- -

- - -

Figure B17. a= -26' Cp VERSUS x/c

NACA 441 5 (R,=1 .Ox1 06)

-6

-5

-4

-3

-2 4

- CLEAN, a=-1 9.96' + k/C=0.0019. a=-1 9.82' --+- k/C-0.0019,30ZVG'0. ~--19.83' I + CLEAN. ~ O X V G ' S , an-1 9.84'

Symbols: Solid-Uppor Surfoce Empty-Lower Surface

- - - -

-

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

0"

C p VERSUS X/C NACA 441 5 (Re=l .Ox1 0')

Symbols: Solid=Upper Surface Empty-Lower Surfoce

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

I

Figure B 18. a= -22" Cp VERSUS x/c

NACA 441 5 (Ree l .OX1 0')

--8- CLE4N. am-1 7.93'

+ k/~~0.0019,3OZVG's, UO-1 8.03' d- CLEAN, 30XVG'S. am-1 8.03'

-9- k/c=0.0019, a=-l7.95*

I I Symbols: Solld-Upper Surface

Empty-Lower Surface

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B19. a= -20' Figure B20. a= -18"

B-37

Page 68: Effects of Surface 'Roughness and Vortex Generators on the NACA

C, VERSUS x / c NACA 441 5 (Ro=l .Ox1 0')

-6

-5

-4

-3

-2 0"

C, VERSUS x / c NACA 441 5 (Ro=l .Ox1 0')

-

-

- -

-

-8- CLEAN, a=-l5.86' -B- k/c=O.O019. a=-1 5.87' -A- k/c-0.0019,30% VG's. a=-1 5.98' -+- CLEAN, 30% VG's, a=-1 5.90'

Symbols: Solld-Upper Surface Empty-Lower Surface

-1

0

I 1 I I 1

0.0 0.2 0.4 0.6 0.8 1 .o

Figure B21. a= -16"

C, VERSUS x / c NACA 441 5 (Ro=l .Ox1 0')

-6

-3

-2 0"

-6

-5

-4

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

0"

-8- CLEAN. a--1 1.99' + k/c-0.0019, a--1 1.95' f- k/c=O.0019.30% VG's. a--1 2.06' + CLEAN, SO%VG's,a--l2.05'

I I Symbols: Solid=Uppar Surface

Empty-Lower Surface

0"

Figure B23. a= -12"

-8- CLEAN, a=-l4.06' -0- k/c=O.OOi 9, a=-l4.03' -A- k/c-0.0019,30% VG's, a-1 3.94' -+- CLEAN, JO%VC's. a-1 3.90'

Empty-Lower Surface Symbols: Solid-Uppcr Surface

-1

0

I W ' , 1 1 1 1 0.0 0.2 0.4 0.6 0.8 1 .o

-5 -6 F Figure B22. a= -14"

C, VERSUS x / c NACA 441 5 (Rc=l .Ox1 OB)

-e- CLEAN, a=-9.97' --Bc k/c=0.0019. a--1 0.01' -A- k/c-O.O019,307. VG's. a-1 0.04'

Symbols: Solid=Upper Surface Emply-Lower Surfaca

1 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1 .o X/C

Figure B24. a= -10'

B-3 8

Page 69: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Rs=l .Ox1 OB)

-6

-5

-4

-3

-2 e

-0- CLEAN, a=-7.94' + k/c=O.OO19.a=-8.1 I' --A- k/c~O.OOl9.3O%VG's, a=-7.92' + CLEAN, 3O%VG's, a--7.91'

- - -

-

-

I J Symbols: Solid=UppsrSurface

Emptyplower Surface

-6

-5

-4

-3

-2 e

e

- - -

-

-

'0.0 0.2 0.4 0.6 0.8 1 .o X/C

Figure B25. a= -8"

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

-m- k/c-0.0019. a--3.99' -A- k/c=0.0019.3O%VG's.a--4.11' + CLEAN, 30%VG's, a-4.05'

Emply-Lower Surface Symbols: Solid-Upper Surfaco

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o x/c

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 Ob)

-a- CLEAN a=-5.87' ---Ip k/c=d.0019. a--6.01 --t k/c=O.OO19.3O%VG's. a=-5.84' d- CLEAN, JOXVG's, a=-5.84'

I I Symbols: Solid=Uppor Surface

Empty-Lower Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 ' 0 .4 0.6 0.8 1 .o

e

Figure B26. a= -6"

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 Ob)

-e- CLEAN, a=-l.88' + k/c=O.O019, a--l.9@ + k/c-O.OOI 9.30% VG's, a--2.00' + CLEAN, 30%VG's, a=-2.03'

I I Symbols: Solid-Upper Surface

Empty-Lower Surface

-1

0

I I I I I

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B27. a= -4' Figure B28. a= -2"

B-39

Page 70: Effects of Surface 'Roughness and Vortex Generators on the NACA

C, VERSUS x/c NACA 441 5 (R,=l .Ox1 0')

-6

-5

-4

-3

-2 0"

C, VERSUS x/c NACA 441 5 (Ra=l .Ox1 0")

- -

-

-

-

-6

-5

-4

-3

-2 0"

-0- CLEAN. a=0.05' -a- k/c-O.OOl9. a-0.1 4' d- k/c-O.O019,30Z VG's. a-0.06' -4- CLEAN, SOZVG's, a-0.07

Symbols: Solid-Uppar Surfaco Emply-Lower Surface

- - -

-

-

-1

0

-6

-5

-4

-3 s.

I I I I I

0.0 0.2 0.4 0.6 0.8 1 .o x/c

-

-

-

-

Figure B29. a= 0"

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

-8- CLEAN a=4.01' A k/c-d.0019. a-4.08' -A- k/c-0.0019.30Z VG's. ap3.9Y -+- CLEAN, 30ZVG's, a-4.01

Symbols: Solid-Upper Surfaco Empty-Lower Surface

-6

-5

-4

-3

-2

-1

0

1

0"

0.0 0.2 0.4 0.6 0.8 1 .o x/c

-0- CLEAN, a=2.15' -4- k/c-0.0019. a-2.03' -A- k/c-O.O019,30Z VG's. a-2.10' -+- CLEAN, 30Z VG's, a-2.08'

Symbols: Solid-Uppor Surfaco Empty-Lower Surface

-1

0

1 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B30. a= 2"

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

+ CLEAN. u=6.01' -ai- k/c-0.0019, a-6.1 1' -A- k/c-0.0019.30ZVG's, a-6.01' + CLEAN. ~OZVG'S, a=6.04'

Symbols: Solid=Uppar Surface Empty=Lowar Surface

-2

-1

0

1 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B3 1. a= 4" Figure B32. a= 6"

B-40

Page 71: Effects of Surface 'Roughness and Vortex Generators on the NACA

-6-

-5

-4

-3

Cp VERSUS X/C NACA 441 5 (R,=l .Ox1 0")

- -

-.

--C CLEAN a=8.31' + k/c=d.0019. aa7.93' --t- k/~-0.0019.30XVG's.a=8.09'

Symbols: Solid-Upper Surface EmptynLower Surface

'0 .o 0.2 0.4 0.6 0.8 1 .o x/c

Figure B33. a= 8'

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 Os)

-9- CLEAN, a=l 1.1 4' -0I- k/c=O.OOI 9. a=lO.98. -li- k/c-O.O019,30X VG's. a-1 1.1 7' + CLEAN, JOXVC's, a-1 1.05'

I 1 Symbols: Solid-Upper Surface

EmptymLower Surface

-6

-5

-4

-3

-2

-1

0

1 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B35. a= 11'

1.1 -4

Cp VERSUS X/C NACA 441 5 (R,=l .Ox1 On)

-0- CLEAN, a-1 0.08. d- k/c=0.0019, a=9.99' + k/c-O.O019,3OX VG's. a-1 0.1 4' + CLEAN, 30XVC's. a-9.95'

Symbols: Solid-Upper Surface Empty-Lower Surface

1 1 1 1 J

0.0 0.2 0.4 0.6 0.8 1 .o X/C

-5 -6 F - A t.4

Figure B34. a= 10"

cP VERSUS x/c NACA 441 5 (Re=l .Ox1 0")

-0- CLEAN. a 4 2.1 3' + k/c=0.0019. a 4 2.02 --t k/c-O.OOl9.30XVG's.a-l1.92' --b CLEAN. ~ O X V C ' S , a-1 2.01'

Empty-tower Surface Symbols: Solid-Upper Surfoco

x/c

Figure B36. a= 12"

B-4 1

Page 72: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (R,=l .Ox1 08)

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 OB)

0"

-8- CLEAN, a=l2.98' + k/c=0.0019, a=l3.06' d- k/c-0.0019.30% VG's. a-1 2.99' -9- CLEAN, SOX VG's, aEl2.9B

Empty-Lower Surface Symbols: Solid-Uppor Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B37. a= 13"

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

-8- CLEAN. a=l4.99' + k/c=0.0019.a=15.1 I' -h- k/c=O.0019.30% VG's. a-1 5.04' -9- CLEAN, 307:VG's, am1 5.1 (r

Symbols: Solid-Upper Surface Empty-Lower Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

0"

-8- CLEAN a=13.99' * k/c=d.0019,a=l4.lY -C- k/c-O.O019,30% VG's. awl 4.03 --O- CLEAN, 30%VC's, a-1 4.05'

Emply=Lower Surface Symbols: Solid-Uppor Surface

0"

Figure B38. a= 14"

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 0')

1 1 -8- CLEAN ~ ~ 1 6 . 0 8 ' -ci- k/c=d.0019. a=l6.0@ ---t k/c~O.O019,30~ VG's, a-16.06' --b CLEAN, SOXVG's, a-1 6.04'

Empty-Lower Surface Symbols: Solld-Upper Surface

-6

-5

-4

-3

-2

-1

0

1

0"

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B39. a= 15'

X/C

Figure B40. a= 16"

B-42

Page 73: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS X/C NACA 4415 (Ro=l .Ox1 0')

-6

-5

-4

-3

-2

-1

0

1

0"

0.0 0.2 0.4 0.6 0.8 1 .o

''A -4

-0- CLEAN a=17.1@ --P k/c=d.0019. a=l6.98' -i- k/c-O.OO19.3O~VG's. a47 .0 ; r + CLEAN,30XVG's,a-17.13'

Emply-Lowar Surfac e Symbols: Solid-Upper Surface

Figure B41. a= 17"

Cp VERSUS X / C NACA 441 5 (Ra=l .Ox1 0')

Emply-Lower Surface

0"

x/c

Figure B43. a= 19"

-4 'i Cp VERSUS X/C

NACA 4415 (Re=l .Ox1 0")

-e- CLEAN, a-i 8.07. -u-- k/c=0.0019, a=18.03* f- k/c~O.O019,30ZVG's. a-1 8.1 2' + CLEAN. 30~VG's,a-18.1Q

Empty-Lower Surface Symbols: Solid-Upper Surfaca

-2 O" -'I

-3

0" -2 .k Figure B42. a= 18"

Cp VERSUS X / C NACA 441 5 (Ro=l .Ox1 0')

-9- CLEAN, a-1 9.95' -E- k/c-0.0019. a-20.07 -t- k/c-O.O019,30Z VG's, a-1 9.98' --$- CLEAN, SOXVG'S, 4-20.01'

Emptydawor Surface

Figure B44. a= 20'

B-43

Page 74: Effects of Surface 'Roughness and Vortex Generators on the NACA

C, VERSUS x/c NACA 4 4 1 5 (Re=l .Ox1 0')

C, VERSUS x/c NACA 4 4 1 5 (R,=l .Ox1 0')

+ k/c-0.0019, a-22.1 5' --t k/c-0.0019.302VG's. a-22.05' + CLEAN, 302 VG'3, a-22.0C

Emply=Lower Surfacc Symbols: Solid=Uppor Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0 . 4 0.6 0.8 1 .o

x/c

0"

Figure B45. a= 22'

C, VERSUS x/c NACA 4 4 1 5 (R,=l .Ox1 0')

-$- CLEAN, 302 VG'3, a-26.20'

Empty=Lower Surface Symbols: Solid=Uppor Surface

-6

-5

-4

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

x/c

0"

-0-- k/c=0.0019.a-23.96' -t- k/c-O.OOl9,3OX VG'3. a-24.09' + CLEAN, 30XVG's, a-24.1 S

Empty-Lowcr Surfacc Symbols: Solid=Upper Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

X/C

0"

Figure B46. a= 24"

C, VERSUS x/c NACA 4 4 1 5 (Re=l .Ox1 0')

+ CLEAN, 302VG'3, a-28.29'

Empty-Lower Surface Symbols: Solid-Uppar Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

0"

Figure B47. a= 26" Figure B48. a= 28"

B-44

Page 75: Effects of Surface 'Roughness and Vortex Generators on the NACA

-6

-5

-4

-3

-2 0"

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 OE)

- -

- -

-

-0- CLEAN. a-30.1 5' -8- k/c=O.O019, a-30.04' -A- k/c-O.O019, ~OZVG'S, a-30.00' + CLEAN, ~OXVG'S, a-30.1 8'

EmptynLower Surface Symbols: Solid-Uppor Surface

-6-

-5

-4

-3

-2 0"

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

- - - -

-6

-5

-4

-3 L?

Figure B49. a= 30"

- -

- -

C, VERSUS x/c NACA 441 5 (R,=l .Ox1 Os)

-6

-5

-4

-3 0"

-8- CLEAN, am34.06'

Symbols: Solid-Uppor Surfoco EmptyELower Surface

- - - -

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Cp VERSUS X/C NACA 441 5 ( R o l l .Ox1 0')

-0- CLEAN a=31.9P + k/c-d.OOlS, a-32.07 -A- k/c=O.OO19.3OZVG's. a-32.04'

CLEAN, SOXVG'9, a-32.1 4'

Symbols: Solid-Uppor Surfaco Empty-Lower Surface

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B50. a= 32"

Cp VERSUS x/c NACA 441 5 (Ro=l .Ox1 0')

+ CLEAN. am36.07' + k/c-0.0019, a-36.06'

-$- CLEAN, 30ZVC's, a-36.01'

EmptynLower Surface

-A- k/c-0.0019.3OZVG's. a-36.1 W

Symbols: Solid-Uppor Surfaco

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

X/C

Figure B51. a= 34" Figure B52. a= 36"

B-45

Page 76: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Ro=l .Ox1 0')

-6

-5

-4

-3

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 On)

-

-

-

-

-6

-5

-4

-3

-2 0"

-8- CLEAN a=38.0W -5- k/c-d.0019.a-38.06' -b- k/c-O.O019,302 Vc's, a-37.94' -+- CLEAN. SOXVG's, a-37.96

Empty-Lower Surface Symbols: Solid=Upper Surface

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

x/c

Figure B53. a= 38" C, VERSUS x/c

NACA 441 5 (Re=l .Ox1 0')

-0- CLEAN a=44.14' -(I- k/c-d.0019. a-44.05

Symbols: Solid=Upper Surface Empty-Lower Surface

-6

-5

-4

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

x/c

u"

-e- CLEAN a=39.74' --Bc k/c=d.0019, a-40.04' -A- k/c=O.0019.302 VG's, a-40.07 + CLEAN, ~ O X V G ' S , a-40.0C

Empty-Lower Surface Symbols: Solid-Upper Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

0"

Figure B54. a= 40' C, VERSUS x/c

NACA 441 5 (Re=l .Ox1 0')

-0- CLEAN a=47.95 -8- k/c=d.0019. u=47.97

Symbols: Salid=Upper Surface Empty-Lower Surfac e

0" -2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B56. a= 48' Figure B55. a= 44"

B-46

Page 77: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

-6

-5

-4

-3 0"

I

-

-

-

-

-6

-3 e

-6

-5

-4

-3 e

--C CLEAN, a=52.07

Empty-Lower Surface

- -

-

*

Figure B57. a= 52"

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

Symbols: Solid=Upper Surfaco Empty=Lowor Surface

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

-4 t

Cp VERSUS X/C NACA 441 5 (R,=l .Ox1 On)

-0- CLEAN, a=56.05* -0- k/c=O.O019. a=55.99*

I Symbols: Solid=Uppcr Surface

I Emply-Lower Surface

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

e

Figure B58. a= 56" Cp VERSUS x/c

NACA 441 5 (Rc=l .Ox1 0')

Empty=Lower Surfaco

X/C

Figure B59. a= 60' Figure B60. a= 64"

B-47

Page 78: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Ro=l .Ox1 Oa)

-6

-5

-4

-3

Cp VERSUS x/c NACA 441 5 (Ra=l .Ox1 0")

- - -

-

-6

-5

-4

-3 0"

-0- CLEAN, a=67.99' -81- k/c=O.OOl9.a=68.1S

Symbols: Solid=Upper Surfaco Empty-Lower Surface

-

-

-

-

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

x/c

-6

-5

-4

-3

-

-

-

-

Figure B61. a= 68"

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 0")

Empty-Lower Surface

0" -2

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

Empty-Lower Surface

0" -2

-' Ft 0

0.0 0.2 0.4 0.6 0.8 1 .o 1

Figure B62. a= 72"

Cp VERSUS x/c NACA 441 5 (Ra=l .Ox1 0")

-0- CLEAN, a - 7 9 . W

Empty-Lower Surface

-6

-5

-4

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

0"

x/c

Figure B64. a= 80' Figure B63. a= 76"

B-48

Page 79: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 0")

-6

-5

-4

-3

1

fi

-

-

- -

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

e

Figure B65. a= 84"

Cp VERSUS x/c NACA 441 5 (Ro=l .Ox1 Oe)

-0- CLEAN, a-91.95' + k/c-O.0019.~-92.31'

Emplydower Surfoco

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

./C

9

Figure B67. a= 92'

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 00)

-o- CLEAN, a=88.00

Empty-Lower Surfoce

e -2

-I t h

Cp VERSUS X/C NACA 441 5 (Ro=l .Ox1 0")

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B66. a= 88" 1

Empty-Lower Surfoco

e -2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B68. a= 96'

B-49

Page 80: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 OB)

-6

-5

-4

-3

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 0')

-

-

-

-

-6

-5

-4

-3

-e- CLEAN, a=99.89'

Empty-Lower Surface

-

-

-

-

0" -2

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

Figure B69. a= 100"

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 0')

-4- CLEAN, a=108.14'

Empty-Lower Surface

-6

-5

-4

-3

-2

-1

0

1

0"

0.0 0.2 0.4 0.6 0.8 1 .o

Figure B71. a= 108"

-4

-0- CLEAN, a=lO4.00'

Empty-Lower Surface

-7

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B70. a= 104'

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

Empty-Lower Surface

u" -2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B72. a= 112"

B-50

Page 81: Effects of Surface 'Roughness and Vortex Generators on the NACA

C p VERSUS X/C NACA 441 5 (Re=l .Ox1 0')

-6

-5

-4

-3

C p VERSUS X/C NACA 441 5 (Re=l .Ox1 0')

- - - -

-6-

-5

-4

-3

-0- CLEAN, a 4 16.1 7' -0I- k/c=O.O019. a=l16.15'

- - -

iymbols: Solid=UppcrSurface I

Empty=Lower Surfoce

-6

-5

-4

-3

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

- - - '

-

Figure B73. a= 116"

Cp VERSUS x/c NACA 441 5 (Rc=l .Ox1 0')

-9- CLEAN, am1 24.08'

Symbols: Solid=Upper Surface Empty-Lower Surface

0" -2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

X/C

-6

-4

-7 L

--C CLEAN, a=l20.OT

Symbols: SolidrUpper Surface Empty-Lower Surface

" 0"

-2

-1

1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B74. a= 120"

C p VERSUS X/C NACA 441 5 (Re=l .Ox1 0')

Symbols: Solid=Upper Surfoce Empty-Lower Surface

0" -2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B75. a= 124'

X/C

Figure B76. a= 128'

B-5 1

Page 82: Effects of Surface 'Roughness and Vortex Generators on the NACA

C, VERSUS x/c NACA 441 5 (Re=l .OX1 0')

-6

-5

-4

-3 0"

--k CLEAN, a=l52.05'

Symbols: Solid=Upper Surface Empty-Loher Surface

-

-

-

- GI

-6

-5

-4

-3

-2

-1

0

1 0.0

0"

0.2 0.4 0.6 0.8 1 .o X/C

-6

-5

-4

-3 0"

- -

-

-

Figure B77. a= 132"

-6

-5

-4

-3 0"

C, VERSUS x/c NACA 441 5 (Ra=l .ox1 0')

-

-

-

-

Empty-Lower Surface

-2

-1

C, VERSUS x/c NACA 441 5 (Re=l .ox1 0')

EmptyPLower Surface

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B78. a= 136"

C, VERSUS x/c NACA 441 5 (Re=l .OX1 0')

Symbols: Solid=Upper Surface EmptyELower Surface

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B79. a= 140" Figure B80. a= 144"

B-52

Page 83: Effects of Surface 'Roughness and Vortex Generators on the NACA

-6-

-5

-4

-3

-2 e

Cp VERSUS X/C NACA 4 4 1 5 (Re=l .Ox1 0')

- -

- -

I --c CLEAN, a 4 4 8 . 2 4 ' ---P k/c=O.O019. a=l48.18' I -6

-5

-4

-3 e

I I Symbols: Solid=Uppar Surface

Empty=Lower Surface

- - -

-

-6

-5

-4

-3

-2 e

Figure B81. a= 148"

- -

-

-

-

C, VERSUS x/c NACA 4 4 1 5 (Re=l .Ox1 0')

-6

-5

-4

-3

-2 e

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

-

-

- -

-

-1

C, VERSUS x/c NACA 441 5 (Re=l .OX1 0')

-0- CLEAN, a-1 51 .8Y -m- k/c-0.0019. a 4 51.99'

Empty=LowerSurface,

-

1 .o 1 0.0 0.2 0.4 0.6 0.8

Figure B82. a= 152" C, VERSUS x/c

NACA 4 4 1 5 (Re=l .Ox1 0")

Empty-Lower Surface

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B83. a= 156' Figure B84. a= 160"

B-53

Page 84: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS X/C NACA 441 5 (Re=l .Ox1 0')

-6

-5

-4

-3 0"

Cp VERSUS X/C NACA 441 5 (R,=l .Ox1 On)

-

-

-

-

-6- CLEAN, a-1 64.1 2'

Empty=Lower Surface

-6

-5

-4

-3

-2 0"

-6

-5

-4

-3

-2

-1

0

1

0"

0.0 0.2 0.4 0.6 0.8 1 .o

-

-

-

-

-

Figure B85. a= 164"

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 Os)

Empty-Lower Surface

-6

-5

-4

-3

-2

-1

0

1

0"

0.0 0.2 0.4 0.6 0.8 1 .o x/c

d- CLEAN, a-1 68.1 6'

Empty-Lower Surfac e

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B86. a= 168'

Cp VERSUS x/c NACA 441 5 (Re= 1 .Ox1 0')

-0- CLEAN, a=l76.03'

Empty-Lower Surface

-1

0

I I I 0

0.0 0.2 0.4 0.6 0.8 1 .o X/C

Figure B87. a= 172' Figure B88. a= 176'

B-54

Page 85: Effects of Surface 'Roughness and Vortex Generators on the NACA

P 0

P 0

I I I I I I

0 00 d

B eo eo 4

B

Page 86: Effects of Surface 'Roughness and Vortex Generators on the NACA

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

-6

-5

-4

-3

-2 0"

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 Oe)

-

-

-

-

-

-6

-5

-4

-3

-2 0"

-0- CLEAN, a=l96.05'

Symbols: Solid=Upper Surfoce Empty-Lower Surfoc e

-

-

-

-

-

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

-6

-5

-4

-3

-2 0"

Figure B93. a= 196"

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 Oe)

-

-

- - -

-W- k/c=O.O019, a=203.87'

Symbols: Solid=Uppar Surfoco Ernpty=Lower Surface

-6

-5

-4

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

x/c

0"

-0- CLEAN, a=l99.13'

Symbols: Solid=Upper Surface Empty-Lower Surfoce

-1

0

1

0.0 0.2 0.4 0.6 0.8 1 .o X/C

Figure B94. a= 200'

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

j- k/c=0.0019. a=208.06'

Symbols: Solid=Upper Surface Ernpty=Lower Surface

-1

O X 1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B95. a= 204" Figure B96. a= 208'

B-56

Page 87: Effects of Surface 'Roughness and Vortex Generators on the NACA

-6

-5

-4

-3 e

Cp VERSUS x/c NACA 4 4 1 5 (Re=l .Ox1 0')

- -

- -

-9- k/c=O.O019, a=212.06'

Symbols: Solid=Upper Surfaco Empiy=Lower Surface

-5

-4

-3

-2

-1

- -

-

Figure B97. a= 212" C, VERSUS x/c

NACA 4 4 1 5 (R,=l .Ox1 0')

-m- k/c=O.OOlQ. ax21 9.90'

Symbols: Solid=Uppor Surface Empty=Lowor Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

e

Cp VERSUS x/c NACA 441 5 (Re=l .Ox1 0')

--C k/c=O.O019, a=215.97'

Symbols: Solid=Upper Surfaco Empty=Lower Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

e

Figure B98. a= 216"

Cp VERSUS x/c NACA 4 4 1 5 (Rc=l .Ox1 0')

-t- k/c=0.0019, ~ ~ 2 2 4 . 0 6 '

Symbols: SoliddJppar Surfaco Empty=Lower Surface

e

Figure B99. a= 220' Figure B 100. a= 224"

B-57

Page 88: Effects of Surface 'Roughness and Vortex Generators on the NACA

-6

-5

-4

-3

-2

-

-

-

-

C, VERSUS x/c NACA 441 5 (Re=l .Ox1 0")

--C k/c=0.0019. a=227.97'

Symbols: Solid=Uppcr Surface EmptyFLowcr Surlac c

-'? 0

0.0 0.2 0.4 0.6 0.8 1 .o 1

X/C

Figure B101. a= 228"

3

B-58

Page 89: Effects of Surface 'Roughness and Vortex Generators on the NACA

Steady-State Pressure Distributions

Re = 1.5 million

B-59

Page 90: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Rc=l .5x108)

-6

-5

-4

-3

-2 0"

-

-

-

-

-

C, VERSUS x/c NACA 441 5 (Rc=l .5x106)

-9- CLEAN. a--20.27' -0- k/c-O.0019, a=-20.04' --P k/c.-O.0019,30%VG's.a--19.88' + CLEAN, 30%VG'$, tr--20.08

Empty=Lower Surface Symbols: Solid=Uppor Surface

Figure B 102. a= -20"

C, VERSUS x/c NACA 441 5 (Re=l .5x108)

-9- CLEAN, a=-1 5.87'

-A- k/c-0.0019,30% VG's. a--1 6.00' -$- CLEAN, 30ZVG's, a--1 6.00'

Empty-Lower Surfaco

+ k/c-0.0019. tr--l5.95'

Symbols: Solid=Uppor Surfaco

0"

-9- CLEAN. a--1 7.70' -0- k/c-0.0019, a--1 8.01' + k/c-0.0019,30% VG's. a--1 8.02' + CLEAN, 30%VG's, a--l7.94'

Symbols: Solid=Upper Surface Empty-Lower Surface

-6

-5

-4

-3

-2

-1

0

1

0"

1 .o 0.0 0.2 0.4 0.6 0.8

x/c

-6

-3

-2 0"

Figure B103. a= -18"

Cp VERSUS x/c NACA 441 5 (Ro=l .5x106)

-9- CLEAN, a=-1 3.85' -e- k/c=0.0019. a=-1 4.04' --A- k/c=0.0019,30% VG's. a=-1 3.91'

Symbols: Solid-Uppor Surfaco Empty-Lower Surface

-1

0

1 1 .o 0.0 0.2 0.4 0.6 0.8

x/c

Figure B104. a= -16' Figure B105. a= -14"

B-60

Page 91: Effects of Surface 'Roughness and Vortex Generators on the NACA

-3

e -2 !'1 Cp VERSUS X/C

NACA 441 5 (Re=1.5x1 0")

-o- C L W . a=-1 1.99' + k/c=0.0019. a=-1 2.01' -A- k/c-0.0019.3O;ZVG's.a=-l2.03* I -4- CLEAN, ~OZVG'S, a=-1 2.0V

Symbols: Solid=Upper Surface Empty-Lower Surface

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

Figure B106. a= -12" Cp VERSUS X/C

NACA 441 5 ( R c ~ l . 5 ~ 1 Os)

Symbols: Solld=Upper Surface Empty-Lower Surface

Figure B108. a= -8"

-6 -5 F Cp VERSUS X/C

NACA 441 5 (Re=l.5x10e)

-8- CLEAN, ~=-9.96'

Symbols: Solld=Upper Surface Empty=Lower Surface

~~~

0.2 0.4 0.6 0.8 1 .o 1 k 0.0

-6

-3 0"

x/c

Figure B107. a= -10"

Cp VERSUS X/C NACA 441 5 ( R e = l . 5 ~ 1 0 ~ )

-9- CLEAN, a--5.88

--P k/c=O.OOlD, 302VG's, a=-5.83' + k/c-0.0019, am-5.84'

-$- CLEAN, 30): VG'S. ~(=-5.78'

Symbols: Solid4pper Surface Emptydower Surface

-2

-1

0

I I I I .I 0.0 0.2 0.4 0.6 0.8 1 .o

X/C

Figure B109. a= -6"

B-6 1

Page 92: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Ro=l .5x1 Os)

-6

-5

-4

-3

-2 0"

C, VERSUS x/c NACA 441 5 (Ro=l.5~1 Os)

r

-

- -

-

-6

-5

-4

-3

-2 0"

-+- CLEAN, a--4.04' --B- k/c-0.0019. a--4.03' -+-- k/c-0.0019.30%VG's. a--3.89' + CLEAN, 30%VG's, ~= -4 .0$

Symbols: Solid=Uppcr Surfoce Empty-Lower Surface

- -

-

-

-

-1

0

-6

-5

-4

-3

-2 ,0"

I I , I I

0.0 0.2 0.4 0.6 0.8 1 .o x/c

- -

-

-

- .

-6

-5

-4

-3

-2 0"

Figure B110. a= -4"

Cp VERSUS x/c NACA 441 5 (Ro=l .5x1 Os)

-

-

-

- -

-9- CLEAN. a-O.OS + k/c-0.0019. a-0.1 1' --k k/c-O.O019,3O%VG's. a-0.1 1' + CLEAN, 30% VG's, u=O.O8'

Symbols: Solid=Upper Surface Empty-Lower Surface

-1

0

I 8 I I I

0.0 0.2 0.4 0.6 0.8 1 .o X/C

\

-9- CLEAN. a--1.98' -8- k/c-0.0019,a--2.00' -A- k/c-0.0019.30%VG's. a--l.99' 1 + CLEAN, 30Z VG'S, ~ = - 2 . 0 0 '

Symbols: Solid=Uppcr Surface Emply-Lower Surface

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B 1 1 1 . a= -2"

C, VERSUS x/c NACA 441 5 (Re=l.5~1 06)

--Bc k/c-0.0019. a-2.1 4' -t- k/c=0.0019. 3O%VG's, a=2.15' 4 CLEAN, 30% VG's. a=2.06'

Symbols: Solid=Uppor Surface Empty-Lower Surface

-1

0

I I I 0 I

0.0 0.2 0.4 0.6 0.8 1 .o 14

x/c

Figure B112. a= 0" Figure B113. a= 2"

B-62

Page 93: Effects of Surface 'Roughness and Vortex Generators on the NACA

-6

-5

-4

-3 0"

C, VERSUS x/c NACA 441 5 (Re=l.5~10~)

- - - -

-0- CLEAN.a-4.2W -R- k/c=0.0019,a-3.97' -t- k/c=O.OO19.3OXVG's. a.=3.99' -+- CLEAN, 3071 VG's. a=4.01

-6

-5

-4

-3

-2 0"

I I Symbols: Solid=Upper Surface

Empty-Lowersurface .

- - -

-

- -1

0

-5

-4

0.0 0.2 0.4 0.6 0.8 1 .o X/C

1 ~~~

- -

Figure B114. a= 4' C, VERSUS x/c

NACA 441 5 (Ro=l 5 x 1 0")

-a- CLEAN, a-8.06' -6- k/c=O.O019 am8.11' -A- k/c-0.0019: 3071 VG's. a-8.1 0' -+- CLEAN. 3071VG's, a-8.1 1'

Symbols: Solid-Upper Surface Empty-Lower Surface

x/c

Figure B116. a= 8"

C, VERSUS x/c NACA 441 5 (Re=l.5~1 Os)

-e- CLEAN.a-5.90 -a- k/c-O.O019, a-6.06. -i- k/c=O.O019,30XVG'o. a=5.99' -4- CLEAN, 3OXVG's. a=6.02'

Symbols: Soi id4ppor Surface Empty-Lower Surface

-1

0

1 1 1 1 1

'0.0 0.2 0.4 0.6 0.8 1 .o X/C

Figure B115. a= 6" C, VERSUS x/c

NACA 441 5 (Ro=l.5x1 Oe)

-0- CLEAN. a=l 0.1 2' + k/c=0.0019 a=l0.1 C -A- k/c-0.0019: 3071 VG's, a-10.1 9' + CLEAN, JOXVG's, a-1 0.1 7'

Symbols: Solid-Upper Surfaco Emply-Lower Surface

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.a 1 .o 1

0"

Figure B117. a= 10"

B-63

Page 94: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Re=l 5 x 1 0')

-4

C, VERSUS x/c NACA 441 5 (Ro=l.5x1 OB)

-4- CLEAN a=l 1.1 5' -6- k/c=d.0019. a=lO.94' d- k/c-O.O019,30X VG's. a-1 0.9Z + CLEAN, ~ O X V G ' S , am! 0.89'

Emply-Lower Surfoce Symbols: Solid=Upper Surfoce

0"

I I I I I

'0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B118. a= 11'

Cp VERSUS x/c NACA 441 5 (Re=l .5x10B)

-U- k/c=0.0019.a=13.01' d- k/c=0.0019.3OX VG's. a-1 3.27 + CLEAN. 3OXVC's. a-1 2.68'

Empty-Lower Surface Symbols: Solid-Upper Surface

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8

0"

1 .o x/c

Figure B120. a= 13'

"h -4

-0- CLEAN, a=l2.16' -i#- k/c=0.0019, a i l 2.0Y -h- k/c-O.0019.3OXVG's.a-ll.91' + CLEAN, SOXVG's, a-1 2.07

Emply=Lower Surfoce Symbols: Solld=Upper Surface

0"

I - , I I I I

0.2 0.4 0.6 0.8 1 .o x/c

0

0.2

Figure B119. a= 12"

Cp VERSUS X/C NACA 441 5 (Re=l 5 x 1 OB)

I I -0- CLEAN, a=l3.99' * k/c=0.0019, a=l4.0Y + k/c-O.O019,307: VG's. an1 3.99' --b CLEAN, 3OXVG's. a-1 4.04'

ErnptyELower Surface ,ymbols: Solid-Upper Surfoce

-6

-5

-4

-3

-2

-1

0

1 0.0

0"

0.4 0.6

x/c

0.8 1 .o

Figure B121. a= 14'

B-64

Page 95: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS X/C NACA 441 5 (Re=l.5x10e)

-5 -l -0- CLEAN, a-1 5.00 + k/c-O.OOl9.a-15.06' + k/c-0.0019.307,VG's.a-l5.OS -4- CLEAN, JOZVG's, a-1 5.09'

I I

Symbols: Solid=Uppor Surface Empty-Lower Surface

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

-5 -6 E le

\.

Figure B122. a= 15"

Cp VERSUS x/c NACA 441 5 (Re=l .5x1 Oe)

-0- CLEAN, a 4 7.06 -m- k/c-O.O019, a-1 7.1 0' -A- k/c-O.O019,30Z VG's. a-1 7.06' --b CLEAN, JOZVG's, a-1 7.1 4'

I I Symbols: Solid=Uppor Surfoco

Empty-Lower Surface -4

-3

-2

-1

0

0"

1 k '0.6 - 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B124. a= 17"

-5 -6k Cp VERSUS X/C

NACA 441 5 (Re=l 5 x 1 Oe)

-0- CLEAN. a 4 6.02' -0- k/c=0.0019. am1 6.06' -A- k/c-0.0019.30ZVG's.a=16.06'

Symbols: Solid=Upper Surface Empty-Lower Surface

0 "

I I I I

lo!?%=- 0.2 I 0.4 0.6 0.8 1 .o x/c

-6

-5 F. -4 tk

Figure B123. a= 16'

Cp VERSUS X/C NACA 441 5 (Re=l .5x1 Oe)

-0- CLEAN a48.14' -t- -si- k/c-0.0019.3OZ k/c-d.0019, a-1 VG's, 8.1 3' a i l 7.91'

d- CLEAN, JOZVG's, a-1 7.92

Empty-Lower Surface Symbols: Solid=Uppor Surface

I I I I

0.0 0.2 0.4 0.6 0.8 1 .o ./c

Figure B125. a= 18'

B-65

Page 96: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Ro=l 5x1 0')

Cp VERSUS x/c NACA 441 5 (Ro=l .5x10")

0"

-5 -6 F $

-4

-3

-2

-0- CLEAN a-19.1C + k/c=d.0019. a-18.9T --1c k/c-O.O019,30Z VG's, 0-1 8.95' --b CLEAN, 30Z VG's. a-1 9-09'

Symbols: Solid=Upper Surface Empty-Lower Surface

I , I J

'0.0 0.2 0.4 0.6 0.8 1 .o x/c

-5 -6 a Figure B126. a= 19"

Cp VERSUS x/c NACA 441 5 (Ro=l .5x106)

+ CLEAN, a=21.95' + k/c-0.0019. a-22.OC -2- k/c=0.0019.3OZVG's. a-22.05' + CLEAN, 307: VG's, a-22.0F

Empty-Lower Surface Symbols: Solid-Upper Surface

0"

0.0 0.2 0.4 0.6 0.8 1 .o

-4 ipn. 0"

X/C

Figure B128. a= 22"

--8- CLEAN, a-20.04' A k/c-0.0019, a-1 9.99' -li- k/c=0.0019.307: VG's, am1 9.99' d- CLEAN. 30ZVG's, a-1 9.99'

Emply=Lower Surface Symbols: Solid=Upper Surface -4

-3

-2

-1

0

0"

1

'0.6- - 0.2 0.4 0.6 0.8 1 .o x/c

Figure B127. a= 20"

Cp VERSUS x/c NACA 441 5 (Re=l.5~1 0')

--9- CLEAN a=24.01' -8- k/c=d.0019. a-24.1 I ' + k/c-0.0019.30Z VG's. a-24.1 T

Symbols: Solid=Upper Surface Empty-Lower Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

0"

x/c

Figure B129. a= 24"

B-66

Page 97: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS X/C NACA 441 5 (Re=l.5x1 0")

-3

0" -2 I -0- CLEAN, a=26.06'

Symbols: Solid-Upper Surfoce Empty-Lower Surface

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

-6

-5

-4

-3

-2 0"

-1

0

1 C

Figure B130. a= 26"

Cp VERSUS X/C NACA 441 5 (Re=l.5~10")

-m- k/c=0.0019. a-30.01' -A- k/c-O.O019,30ZVG's, a-30.25' d- CLEAN, 301: VG's, a-30.03'

Empty-lower Surface Symbols: Solid=Uppar Surface

0.2 0.4 0.6 0.8 1 .o x/c

-6

-5

-4

-3

-2

-1

0

1 C

0"

-6

-5

-4

-3

-2 0"

Cp VERSUS X/C NACA 441 5 (RO=l.5x1 0")

Symbols: Solid=UpperSurface Empty-Lower Surface

0.2 0.4 0.6 0.8 1 .o

Figure B131. a= 28"

Cp VERSUS x/c NACA 441 5 (Re=l.5x106)

-0- C L W , a 4 1 . 6 9 ' -0- k/c=O.O019, a ~ 3 2 . 1 5 ' -i- k/c-0.0019. ~OZVG'S, a-31.99 -0- CLEAN, ~ O Z V G ' S , a-32.09'

1 Symbols: Solid-Uppar Surface

Empty-Lower Surface

Figure B132. a= 30" Figure B133. a= 32"

B-67

Page 98: Effects of Surface 'Roughness and Vortex Generators on the NACA

-6

-5

-4

-3 0"

C, VERSUS x/c NACA 441 5 (Ro=l .5x1 06)

- - -

-

-u- k/c=O.OOl9, a=34.07' -t- k/c=O.0019,307: VG's. a=33.95'

Symbols: Solid-Upper Surface Empty-Lower Surface

-6

-5

-4

-3

-2 0"

-1

- -

-

-

'

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B134. a= 34"

C, VERSUS x/c NACA 441 5 (Re=l .5x10')

+ k/c=0.0019, a=38.01'

Symbols: Solid-Upper Surface Emply-Lower Surface

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

0"

C, VERSUS x/c NACA 441 5 (Ro=l .5x1 Oe)

-41- k/c=0.0019, a-35.94'

Symbols: Solid-Upper Surface Emply-Lower Surface

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B135. a= 36"

Figure B136. a= 38"

B-68

Page 99: Effects of Surface 'Roughness and Vortex Generators on the NACA

Steady-State Pressure Distributions

Re = 2.0 million

B-69

Page 100: Effects of Surface 'Roughness and Vortex Generators on the NACA

-6

-5

-4

-3

-2 0"

Cp VERSUS X/C NACA 4 4 1 5 (Re=2.0x1 0")

- -

-

-

-

Symbols: Solid-Upper Surfoco EmptyPLower Surhce

-6

-5

-4

-3

-2 u"

-1

0

- -

-

-

-

I I I I I

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B137. a= -20"

C, VERSUS x/c NACA 441 5 (Re=2.0X108)

--8- CLEAN, a=-1 5.89'

Symbols: Solid-Upper Surfoce Emply-Lower Surfoce

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

0"

Cp VERSUS X/C NACA 4 4 1 5 (Re=2.0x1 0")

Symbols: SolidnUpper Surfoce Empty-Lower Surloce

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

I I I I I

-6

-3

0" -2 'I Figure B138. a= -18"

Cp VERSUS X/C NACA 441 5 ( R e z 2 . 0 ~ 1 OB)

+ CLEAN, a=-l4.00'

Symbols: Solid-Upper Surface Empty-Lower Surfoce

-1

0

1 I I I I I

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B139. a= -16' Figure B140. a= -14"

B-70

Page 101: Effects of Surface 'Roughness and Vortex Generators on the NACA

C, VERSUS x/c NACA 441 5 ( R ~ 2 . 0 ~ 1 On)

-6

-5

-4

-3 cp

Cp VERSUS X/C NACA 441 5 ( R ~ 2 . 0 ~ 1 0 ~ )

- - - -

-4 lr: --b CLEAN, a--l1.91'

Symbols: Solid-Upper Surface EmptynLower Surface

-2 -3k\ -1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

-4

4 -3k -2

Figure B141. a= -12" C, VERSUS x/c

NACA 441 5 (Rs=2.0xl 0')

-6- CLEAN, a--8.06*

Symbols: Solid-Upper Surface Empty-Lower Surface

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B143. a= -8'

Symbols: Solid-Upper Surface Empty-Lower Surface

-6

-5

-4

-3

-2

-1

0

1

cp

0.0 0.2 0.4 0.6 0.8 1 .o

Figure B142. a= -10" C, VERSUS x/c

NACA 441 5 (Ro=2.0xl 0')

Symbols: Solid=Upper Surface Empty-Lower Surface

-2

-1

0

1 I I I I 1

0.0 0.2 0.4 0.6 0.8 1 .o X/C

Figure B144. a= -6"

B-71

Page 102: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS x/c NACA 441 5 (Rc=2.0x1 06)

-6

-5

-4

-3

-2 0"

Cp VERSUS X/C NACA 441 5 (Re=2.0x1 0')

-

-

-

-

-

-6

-5

-4

-3

-2 0"

-6- CLEAN, a=-3.98'

Symbols: Solid-Upper Surface Emply=Lower Surface

- -

-

-

-

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

-6

-5

-4

-3

-2 0"

-

-

-

-

-

Figure B 145. a= -4"

-6

-5

-4

-3

-2 0"

C, VERSUS x/c NACA 441 5 (Re=2.0x1 0')

- -

-

-

-

Symbols: Solid-Upper Surface Emply-Lower Surfac e

-1

0

a I 8 I I

0.0 0.2 0.4 0.6 0.8 1 .o x/c

-9- CLEAN, ~ = - l . 9 3 '

Symbols: Solid-Upper Surface Emply-Lower Surface

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o X/C

Figure B146. a= -2" Cp VERSUS x/c

NACA 441 5 (Re=2.0x1 0')

Symbols: Salid-Upper Surface Emply-Lower Surface

-1

0

. - 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B147. a= 0' Figure B148. a= 2'

B-72

Page 103: Effects of Surface 'Roughness and Vortex Generators on the NACA

Cp VERSUS X/C NACA 441 5 (Ra=IZ.OxlO')

-6

-5

-4

-3

-2 0"

C, VERSUS x/c NACA 441 5 (Re=P.OxlO')

,-

- - - -

I

-6-

-5

-4

-3 0"

- - -

-0- CLEAN, a=4.12'

Symbols: Solid-Upper Sudaco Empty-Lower Surface

-6

-5

-4

-3

-1

0

- - -

-

I I I I I

0.0 0.2 0.4 0.6 0.8 1 .o

Figure B149. a= 4"

C, VERSUS x/c NACA 441 5 (Ro=2.0X1O6)

Symbols: Solid=Uppor Surface Empty-Lower Surface

0" -2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

-8- CLEAN, a=6.14' -a- k/c-O.O019. u=6.01'

Symbols: Solid=Upper Surfoco Empty-Lower Surfaco

-1

0

I 1 1 1 1

0.2 0.4 0.6 0.8 1 .o

Figure B150. a= 6"

Cp VERSUS x/c NACA 441 5 (Re=2.0x1 0')

Symbols: Solid-Uppor Surface EmptypLowor Surfoco

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

0"

Figure B151. a= 8'

x/c

Figure B152. a= 10'

B-73

Page 104: Effects of Surface 'Roughness and Vortex Generators on the NACA

C, VERSUS x/c NACA 441 5 (Re=2.0x1 0')

C, VERSUS x/c NACA 441 5 (Re=2.0x1 0")

-6

-4

-0- CLEAN, a=lO.99'

Symbols: Solid-Uppar Surface Emply-Lower Surfoce

I I I , I

0.0 0.2 0.4 0.6 0.8 1 .o X/C

-6

-4

Figure B153. a= 11" C, VERSUS x/c

NACA 441 5 (Re=2.0x1 0")

-8- CLEAN, a=l3.1 (r

Symbols: Solid-Upper Surfoce Empty-Lower Surfoc e

I a I I 1

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B155. a= 13"

--8- CLEAN, a=l2.04'

Symbols: Solid-Upper Surface Emply-Lower Surfoc e

-6

-5

-4

-3

-2

-1

0

1 0.0 0.2 0.4 0.6 0.8 1 .o

X/C

9

Figure B154. a= 12"

C, VERSUS x/c NACA 441 5 (Re=2.0x1 On)

Symbols: Solid=Upper Surface Emply-Lower Surfoc e

-6

-5

-4

-3

-2

-1

0

0.0 0.2 0.4 0.6 0.8 1 .o 1

9

x/c

Figure B156. a= 14'

B-74

Page 105: Effects of Surface 'Roughness and Vortex Generators on the NACA

5

5

9

b

5

00 d

a 9

9

Page 106: Effects of Surface 'Roughness and Vortex Generators on the NACA

-5 -6 i- Cp VERSUS X/C

NACA 441 5 (Ro=2.0x1 0')

-e- CLEAN, a-1 9.06

Symbols: Solid-Upper Surface Empty-Lower Surface -4

-3

-2

-1

0

1

rp

0.0 0.2 0.4 0.6 0.8 1 .o

-4

-3

-2

-1

0

1

rp

0.0 0.2 0.4 0.6 0.8 1 .o

-4 Ik Figure B161. a= 19"

Cp VERSUS x/c NACA 441 5 (Re=2.0x108)

Symbols: Solid-Upper Surface Empty-Lower Surface

- 3 k \\

I I 0 I 1

0.0 0.2 0.4 0.6 0.8 1 .o X/C

Figure B 163. a= 22'

-6 -.R Cp VERSUS X/C

NACA 441 5 (Re=2.0x1 0')

Symbols: Solid-Upper Surface Empty-Lower Surface

1 1 1 0.0 0.2 0.4 0.6 0.8 1 .o

x/c

Figure B162. a= 20" Cp VERSUS X/C

NACA 441 5 (Re=2.0x1 08)

Symbols: Solid4pper Surface Empty-Lower Surfoc e

-6

-5

-4

-3

-2

-1

rp

t Q - I 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1 .o x/c

Figure B164. a= 24'

B-76

Page 107: Effects of Surface 'Roughness and Vortex Generators on the NACA

I

-6

-5

-4

-3

-2 4

' i

- - - - - n

-3

4 -2 li Cp VERSUS X/C

NACA 441 5 (Re=2.0x108)

+ CLEAN, a-26.06

Symbols: Solid-Upper Surface Empty=Lowor Surfac e

Figure B165. a= 26"

Cp VERSUS X/C NACA 441 5 (Re=Z.Oxl On)

-8- CLEAN, a-30.1 1'

Symbols: Solid-Upper Surface Empty-Lower Surface

-6

-5

-4

-3

-2

-1

4

. o

1 0.0 0.2 0.4 0.6 0.8 1 .o

Cp VERSUS X/C NACA 441 5 (Re=2.0x1 On)

-e- CLEAN. a-28.1 S

Symbols: Solid-Upper Surface

k/c-O.O019.a-28.01'

Empty-Lower Surface

Figure B166. a= 28"

X/C

Figure B167. a= 30"

B-77

Page 108: Effects of Surface 'Roughness and Vortex Generators on the NACA

Form Approved OMB NO. 0704-0188 REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per r q o n s e , including the time for reviewing instructions, searching existing data

, December 1995 Subcontract Report

4. TITLE AND SUBTITLE Effects of Surface Roughness and Vortex Generators on the NACA 441 5 Airfoil

6. AUMOR(S) R. L. Reuss, M. J. Hoffmann, G. M. Gregorek

17. SECURITY CLASSIFICATION OF REPORT Unclassified

~~ ~~~~ ____ ____

7. PERFORMING ORGANIZATION NAME(S1 AND ADDRESS(ES1 Dr. Gerald Gregorek The Ohio State University Aero & Astronautical Research 2300 West Case Road Columbus, Ohio 43220 (614) 292-5491

~~

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION OF THIS PAGE OF ABSTRACT Unclassified Unclassified

9. SPONSORlNG/MONlTORlNG AGENCY NAME(S) AND ADDRESS(ES1

National Renewable Energy Laboratory 161 7 Cole Blvd. Golden, CO 80401 -3393

11. SUPPLEMENTARY NOTES

NREL Technical Monitor: C. P. Butterfield

5. FUNDING NUMBERS

C:

TA: WE61 81 20

8. PERFORMING ORGANIZATION REPORT NUMBER

10. SPONSORING/MONITORlNG AGENCY REPORT NUMBER

TP-442-6472 DE96000494

1 2a. DISTRlBUTlONlAVAltABlLlTY STATE-MENT National Technical Information Service U.S. Department o f Commerce 5285 Port Royal Road Springfield, V A 221 61

13. ABSTRACT (Maximum 200 words)

I

Wind turbines in the field can be subjected t o many and varying wind conditions, including high winds with rotor locked or with yaw excursions. In some cases the rotor blades may be subjected t o unusually large angles of attack that possibly result in unexpected loads and deflections. To better understand loadings at unusual angles of attack, a wind tunnel test was performed. A n 18-inch constant chord model of the NACA 441 5 airfoil section was tested under two dimensional steady state conditions in the Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 7x1 0 Subsonic Wind Tunnel (7x1 0). The objective of these tests was t o document section lift and moment characteristics under various model and air f low conditions. These included a normal angle of attack range of -20" t o +40", an extended angle o f attack range of -60" t o +230", applications of leading edge grit roughness (LEGR), and use of vortex generators (VGs), all at chord Reynolds numbers as high as possible for the particular model configuration. To realistically satisfy these conditions the 7x1 0 offered a tunnel-height-to-model-chord ratio o f 6.7, suggesting low interference effects even at the relatively high lift and drag conditions expected during the test. Significantly, it also provided chord Reynolds numbers up t o 2.0 million. I

14. SUBJECT TERMS

wind energy; horizontal-axis wind turbine; wind tunnel test data; wind turbine airfoil

~~~~ ~~

15. NUMBER OF PAGES

~

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 2 9 8 (Rev. 2-89 Prescribed by ANSI Std. 239-

298-11