10
© copyright Faculty of Engineering Hunedoara, University POLITEHNICA Timisoara 343 | Fascicule 4 ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering Tome XII [2014] – Fascicule 4 [November] ISSN: 15842673 [CDRom, online] a freeaccess multidisciplinary publication of the Faculty of Engineering Hunedoara 1,2. F. O. ARAMIDE, 1,2. K. K. ALANEME, 3. P.A. OLUBAMBI, 1,2. J.O. BORODE EFFECTS OF 0.2Y9.8ZrO2 ADDITION ON THE MECHANICAL PROPERTIES AND PHASE DEVELOPMENT OF SINTERED CERAMIC PRODUCED FROM IPETUMODU CLAY 1. Department of Metallurgical and Materials Engineering, Federal University of Technology, P.M.B. 704, Akure, NIGERIA 2. African Materials Science and Engineering Network, (AMSEN) a Subsidiary of Regional Initiative for Science Education (RISE) 3. Applied Microscopy and Triboelectrochemical Research Laboratory, Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria, SOUTH AFRICA Abstract: The effects of the addition of yttria stabilized zirconia and sintering temperatures on the phases developed and the mechanical properties of sintered ceramic produced from Ipetumodu clay was investigated. The clay of known mineralogical compositions was thoroughly blended with 2% (vol) yttria, 8% (vol) zirconia. From this and the raw clay standard samples were prepared, fired at 1200 o C and 1300 o C. The sintered samples were then characterized for the developed phases using xray diffractometry analysis, microstructural morphology using ultrahigh resolution field emission scanning electron microscope (UHRFEGSEM) and various mechanical properties. It was observed that primary mullite and sillimanite were developed in the samples produced. The samples produced solely from the raw clay could not withstand 1300 o C due to stress induced by the transformation from one silica phase to another. This phase transformation also adversely affected the mechanical properties of the sintered raw clay. The additive improved on the mechanical properties of the samples by the consumption of the silica phases to form zircon phase in addition with the other phases and the excess zirconia. It was concluded that the sample fired at 1300 o C have the optimum mechanical properties. Keywords: yttria stabilized zirconia; sintering temperatures; phases developed; clay; sintered ceramic 1. INTRODUCTION The word ceramics is a broad name which is applicable in many products. They possess good corrosion resistance and ability to preserve their properties at a high temperature up to 1200 o C. Other useful properties that make the ceramic attractive for engineering applications include excellent hightemperature strength and creep resistance, good thermal and chemical stability, low thermalexpansion coefficient, low true density, wear resistance and good dielectric properties [16]. Recently, many researchers have focused their investigations on how to improve the properties of ceramics for various applications. Zum Gahr [7], demonstrated that modification of the microstructure could reduce the friction and the wear of alumina. Likewise in 1996, he showed that reducing the grain size of alumina and zirconia will significantly decrease the wear [8]. Furthermore Dong et al [9], specified the effect of both single additives (MgO, SiO2, Fe2O3 and ZrO2) and compound additives on the mechanical and thermal properties of aluminum titanate ceramics, and finally pointed out that the compound additives of MgO and Fe2O3 have an excellent improvement on the stability of aluminum titanate. Jiang et al [10], also demonstrated that the role of additives can be rationalized in terms of promotion of sintering process, formation of new phases and influence on lattice constant of aluminum titanate ceramics. Ebadzadeh and Ghasemi [11], observed that the addition of TiO2 to mulliteZrO2 composites prepared from different alumina sources results into change of reaction sintering, densification and microstructure which can alternately alter the formation temperature and retention of tZrO2

EFFECTS OF 0.2Y‐9.8ZrO2 ADDITION ON THE MECHANICAL PROPERTIES AND PHASE DEVELOPMENT OF SINTERED CERAMIC PRODUCED FROM IPETUMODU CLAY

Embed Size (px)

DESCRIPTION

The effects of the addition of yttria stabilized zirconia and sintering temperatures on the phasesdeveloped and the mechanical properties of sintered ceramic produced from Ipetumodu clay wasinvestigated. The clay of known mineralogical compositions was thoroughly blended with 2% (vol) yttria,8% (vol) zirconia. From this and the raw clay standard samples were prepared, fired at 1200oC and 1300oC.The sintered samples were then characterized for the developed phases using x‐ray diffractometry analysis,microstructural morphology using ultra‐high resolution field emission scanning electron microscope (UHRFEGSEM)and various mechanical properties. It was observed that primary mullite and sillimanite weredeveloped in the samples produced. The samples produced solely from the raw clay could not withstand1300oC due to stress induced by the transformation from one silica phase to another. This phasetransformation also adversely affected the mechanical properties of the sintered raw clay. The additiveimproved on the mechanical properties of the samples by the consumption of the silica phases to form zirconphase in addition with the other phases and the excess zirconia. It was concluded that the sample fired at1300oC have the optimum mechanical properties.

Citation preview

  • copyrightFacultyofEngineeringHunedoara,UniversityPOLITEHNICATimisoara 343 | Fascicule 4

    ANNALSofFacultyEngineeringHunedoaraInternationalJournalofEngineering

    TomeXII[2014]Fascicule4[November]

    ISSN:15842673[CDRom,online]afreeaccessmultidisciplinarypublication oftheFacultyofEngineeringHunedoara

    1,2.F.O.ARAMIDE,1,2.K.K.ALANEME,3.P.A.OLUBAMBI,1,2.J.O.BORODE

    EFFECTSOF0.2Y9.8ZrO2ADDITIONONTHEMECHANICALPROPERTIESANDPHASEDEVELOPMENTOFSINTEREDCERAMICPRODUCEDFROMIPETUMODUCLAY1.Department ofMetallurgical andMaterialsEngineering, FederalUniversity ofTechnology,P.M.B. 704,Akure,NIGERIA2.AfricanMaterials Science and EngineeringNetwork, (AMSEN) a Subsidiary of Regional Initiative forScienceEducation(RISE)3. Applied Microscopy and Triboelectrochemical Research Laboratory, Department of Chemical andMetallurgicalEngineering,TshwaneUniversityofTechnology,Pretoria,SOUTHAFRICAAbstract:Theeffectsof theadditionofyttriastabilizedzirconiaandsintering temperatureson thephasesdeveloped and the mechanical properties of sintered ceramic produced from Ipetumodu clay wasinvestigated.Theclayofknownmineralogicalcompositionswas thoroughlyblendedwith2% (vol)yttria,8%(vol)zirconia.Fromthisandtherawclaystandardsampleswereprepared,firedat1200oCand1300oC.Thesinteredsampleswerethencharacterizedforthedevelopedphasesusingxraydiffractometryanalysis,microstructuralmorphologyusingultrahighresolutionfieldemissionscanningelectronmicroscope(UHRFEGSEM) and variousmechanicalproperties. Itwas observed thatprimarymullite and sillimaniteweredeveloped in thesamplesproduced.Thesamplesproducedsolely from therawclaycouldnotwithstand1300oC due to stress induced by the transformation from one silica phase to another. This phasetransformation also adversely affected themechanical properties of the sintered raw clay. The additiveimprovedonthemechanicalpropertiesofthesamplesbytheconsumptionofthesilicaphasestoformzirconphase inadditionwiththeotherphasesandtheexcesszirconia.Itwasconcludedthatthesamplefiredat1300oChavetheoptimummechanicalproperties.Keywords:yttriastabilizedzirconia;sinteringtemperatures;phasesdeveloped;clay;sinteredceramic

    1.INTRODUCTIONTheword ceramics is abroadnamewhich is applicable inmanyproducts.Theypossessgoodcorrosionresistanceandabilitytopreservetheirpropertiesatahightemperatureupto1200oC.Other useful properties that make the ceramic attractive for engineering applications includeexcellenthightemperaturestrengthandcreepresistance,goodthermalandchemicalstability,lowthermalexpansioncoefficient,lowtruedensity,wearresistanceandgooddielectricproperties[16].Recently,manyresearchershavefocusedtheirinvestigationsonhowtoimprovethepropertiesof ceramics for various applications. Zum Gahr [7], demonstrated that modification of themicrostructure could reduce the frictionand thewearofalumina.Likewise in1996,he showedthatreducingthegrainsizeofaluminaandzirconiawillsignificantlydecreasethewear[8].FurthermoreDong et al [9], specified the effect of both single additives (MgO, SiO2, Fe2O3 andZrO2)and compoundadditiveson themechanicaland thermalpropertiesofaluminum titanateceramics,andfinallypointedoutthatthecompoundadditivesofMgOandFe2O3haveanexcellentimprovementonthestabilityofaluminumtitanate.Jiangetal[10],alsodemonstratedthattheroleof additives can be rationalized in terms of promotion of sintering process, formation of newphasesandinfluenceonlatticeconstantofaluminumtitanateceramics.Ebadzadeh and Ghasemi [11], observed that the addition of TiO2 to mulliteZrO2 compositesprepared fromdifferent alumina sources results into change of reaction sintering,densificationandmicrostructurewhichcanalternatelyaltertheformationtemperatureandretentionoftZrO2

  • ISSN: 1584-2673 [CD-Rom, online]

    344 | Fascicule 4

    phase in these composites. Moya et al. [12] demonstrated that the microstructure of mullitezirconiaandaluminazirconiacompositescanbemodifiedbyadditiveslikeCaOandMgO.Ipetumodu isa town inOsunState, in thesouthwesternpartofNigeria.Thesizeof the town is64km2(25sqmi).ThetownistheheadquartersofIfeNorthlocalgovernmentArea.Itislocatedatanelevationof227metersabovesea leveland itspopulationamountsto164,172.Itscoordinatesare7310Nand4270E.Variousresearchershaveinvestigatedthepropertiesofthisclaydepositforindustrialapplications[1316].Butthereisnorecordoftheinvestigationoftheeffectsoftheconcernedadditivesonthemechanicalpropertiesandphasedevelopmentofthesinteredceramicproducedfromclaysourcedfromthedeposit.2.MATERIALSANDMETHODS2.1.MaterialsClaySamplesused inthisworkweresourcedfromIpetumodu,OsunState in thesouthwesternpartofNigeria.HighpurityoxidessuchaszirconiaandyttriaweresuppliedbyF.J.BODMANN&CO,L.L.C.(TheThermalSprayMaterialsandTechnologiesSource).OakmereBusinessPark,2072SussexStreet,Harvey,LA70058.2.2.RawClayPreparationTheclaysampleswerefirstsoakedinwaterforthreedaystodissolvethedeleteriousmaterialsinthemandat the same time to form slurry.The slurrieswere then sieved to removedeleteriousmaterialsandotherforeignsubstances. Thesievedslurrieswerethenallowedtosettledownforthreedaysafterwhich the clear floatingwaterwasdecanted.Thedispersed fine clays inwater(clayslurries)werethenpouredintoplasterofParis(P.O.P)mouldsandleftundisturbedforthreedaysinordertoallowtheremainingwaterpresenttodrainoutcompletely.Theresultingplasticclaymassesweresundriedandsubsequentlydriedinalaboratoryovenat110oCfor24hours.TheresultingdriedclaysampleswerecrushedandmilledinaRawwleySussexgrindertoanaverageparticlesizeof300m.2.3.ChemicalandMineralogicalCompositionofRawClaySamplesThe compounds present in the samplesweredetermined by xray fluorescence (XRF). Theresultsobtainedarepresented inTable1.Themineralogical phases present in the sampleswere also determined using xraydiffractometry (XRD). The phases present arereportedinFigure1andTable2.Thechemicalcomposition of the clay samples weredeterminedusing atomic absorption spectroscopy (AAS).The results obtained arepresented in

    Table3.Ultrahighresolution fieldemissionscanningelectronmicroscope (UHRFEGSEM) equippedwith energydispersivespectroscopy(EDS)wasusedtoexaminethemicrostructureofthe clay samples.TheobservedmicrostructuresarepresentedinFigures2,3,4and5.

    Table2:XRDResultoftheRawClaySamplesShowingtheQuantityofDifferentPhasesPresent

    Phases Weight(%)Kaolinite 23.74Microcline 26.12

    Muscovite/Illite 15.02Plagioclase/Albite 11.28

    Quartz 23.84

    P o s i ti o n [2 T h e ta ]

    1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

    0

    1 0 0

    2 0 0

    Al (

    O H

    )3

    Al (

    O H

    )3;

    Si O

    2

    Ti O

    2

    Si O

    2

    Ti O

    2; A

    l ( O

    H )

    3

    Ti O

    2; A

    l ( O

    H )

    3

    Ti O

    2; S

    i O2

    Ti O

    2; S

    i O2

    Si O

    2

    IP E T U .R D

    Figure1:XRayDiffractionPattern(PhaseAnalysis)of

    IpetumoduClaySample

    Table1:XRFSemiquantitativeanalysisoftheelementsofraw

    claysamples(weight%)PhasesAl2O3SiO2Fe2O3K2OMgOCaONa2OTiO2Zr

    Total

    Amount(%)25.0357.4829.2261.2590.910.7630.3721.5120.10397.1

  • ANNALS of Faculty Engineering Hunedoara International Journal of Engineering

    345 | Fascicule 4

    Table3.ChemicalCompositionofRawClaySamples(%)Samples SiO2 Al2O3 Fe2O3 TiO2 CaO MgO Na2O K2O LOIRawClay 54.82 25.90 1.44 2.08 0.12 0.15 0.2 1.57 11.64

    Table4.XRDResultoftheSinteredCeramicSamplesRT1,FT1andFT2ShowingtheQuantityofDifferentPhasesPresent

    Samples

    Qua

    rtz

    Hem

    atite

    Mullite

    Silliman

    ite

    Pseu

    dob

    rook

    ite

    Iron

    (III)

    Niobium

    Oxide

    (1/1/4)

    Rutile

    Aluminium

    Niobate(V)

    Zircon

    mZrO

    2

    Cristob

    alite

    RT1 14.1 9.26 42.51 6.63 4.63 0 0.54 0 0 0 22.3FT1 8.16 4.72 7.37 16.07 1.26 0.42 0.45 1.91 4.12 42 13.52FT2 1.96 3.96 10.97 18.38 1.12 0.78 1.39 2.53 23.19 28.8 6.92

    2.4.PreliminaryTestingofSinteredRawClayTheclaysamplefromIpetumoduwasfirstmilled inahighenergyplanetaryballmillat300rev/minfor4hour to obtain average particle size of 75m.Standard dimensions test samples were producedfrom the milled clay; for phase analysis andSEM/EDS analysis and mechanical properties bycompacting inastainlesssteelmoldusinga loadof750 MPa. The green compact were then sintered(fired)at1200oCand1300oC(T1andT2respectively)heldforanhour, inanelectricfurnace.Thesampleswere designated as R The sample sintered at1200oC were subjected to various tests such asdeterminationofthephasesdevelopedinthesampledue to sintering using XRD and bulk density,apparentporosity,coldcrushingstrengthmodulusof

    elasticity,andabsorbedenergy.The resultsobtainedare shown inTables4and5 forXRDandmechanicalpropertiesrespectively.

    (a) (b)Figure3.TypicalSEMmicrographsofSampleRT1showingitsmorphologyandcracks(a)BackScattered

    Imageand(b)SecondaryElectronImage

    (a) (b)Figure4.TypicalSEMmicrographsofSampleFT1showingitsmorphology(a)BackScatteredImageand(b)

    SecondaryElectronImageX=PhasewithZrO2,whileZ=phasesofsinteredclay

    Figure2.TypicalSEM/EDSmicrographsof

    RawClaySampleshowingthemorphologyofthemineralanditschemicalcomposition

    X

    Z

  • ISSN: 1584-2673 [CD-Rom, online]

    346 | Fascicule 4

    (a) (b)Figure5.TypicalSEMmicrographs(BackScatteredImage)ofSampleFT2showingitsmorphology(a)BackScatteredImageand(b)SecondaryElectronImage.X=PhasewithZrO2,Y=Zirconphase,whileZ=phasesof

    sinteredclay2.5.PowderBlendingThemasspercentofthecompositionbelowwascomputedusingEquations(1)and(2)usingthedensities in Table M2 and the individual powders volume fraction in each composition. Thepowderswereweighedperbatchof50.00gonasensitiveelectronicweighingbalancetofive(5)decimalplaces.Theindividual(batch)compositionwasthoroughlymixedinaTurbulaMixerfor18hoursataspeedof72rev/min.ThecompositionsoftheblendedsampleswereshowninTableM1.

    TableM1.TheCompositionsofSamplesproducedfromblendedpowdersusedfortheExperimentalInvestigationsDesignation RawClay(Vol.%)

    Zirconia(ZrO2)(Vol.%)

    Yttria(Y2O3)(Vol.%)

    F 90 9.8 0.2

    TableM2.DensitiesofVariousComponentsused

    Oxide/Clay Claya ZrO2b Y2O3bDensity(g/cm3) 1.20 5.68 5.01

    IfMt=Vclcl+VZrzr+VYY (1)

    whereVcl,VZr,andVYarerespectivelythevolumefractionofclay,ZrO2andY2O3,cl,ZrandYarerespectivelythevolumefractionofclay,ZrO2andY2O3,andMtisthetotalmasscontributionofallthecomponents.AndifMisthemassofeachbatch,thenthemasscontributionofeachcomponentcouldbecalculatedfrom:

    Mc=t

    cQc

    MxMV (2)

    Mcisthemasscontributionofacomponentinabatch(clayorZrO2orY2O3),Vc,ctherespectivevolumefractionanddensityofthecomponent.The resulting homogenous powdermixtureswere compacted uniaxially into standard sampledimensions for cold crushing strength,bulkdensity,porositymeasurementsand thermal shockresistance. The sampleswere compressed uniaxially using 750Mpa compaction load inside astandard stainless steel die. The resulting green compactswere fired at 1200oC (for FT1) and1300oC(forFT2) inanelectricfurnace.Thesinteredsampleswere thencharacterizedforvariousmechanicalpropertiesasdescribedbelow:aDeterminedinthelaboratorybProvidedbythesupplier2.6.Testing2.6.1.ApparentPorosityTest samples from each of the ceramic compositeswere dried for 12 hours at 110C. The dryweightofeachfiredsamplewastakenandrecordedasD.Eachsamplewasimmersedinwaterfor6hrstosoakandweighedwhilebeensuspended inair.TheweightwasrecordedasW.Finally,the specimen was weighed when immersed in water. This was recorded as S. The apparentporositywasthencalculatedfromtheexpression:

    p= %)-()-(100x

    SWDW (3)

    TheresultsobtainedarepresentedinTable5.

    Z

    Y

    X

  • ANNALS of Faculty Engineering Hunedoara International Journal of Engineering

    347 | Fascicule 4

    Table5:MechanicalPropertiesofSamplesRT1,FT1andFT2

    SamplesThermalShockResistance(cycles)

    ApparentPorosity(%)

    BulkDensity(g/cm3)

    ColdCrushingStrength(N/mm2)

    AbsorbedEnergy(J)

    YoungsModulusE(N/mm2)

    RT1 +30 22.70 1.95 1833.3 0.4320 21363FT1 +30 17.50 1.87 4409.00 1.2919 55208FT2 +30 15.40 2.06 8447.00 4.1753 64994

    2.6.2.ColdCompressionStrength,ModulusofElasticityandAbsorbedEnergyColdcompressionstrengthtestistodeterminethecompressionstrengthtofailureofeachsample,anindicationofitsprobableperformanceunderload.Thestandardceramicsamplesweredriedinan oven at a temperature of 110C, allowed to cool.The cold compression strength testswereperformedonINSTRON1195atafixedcrossheadspeedof10mmmin1.Sampleswerepreparedaccording to ASTM C13397 (ASTM C13397, 2003) and cold crushing strength, modulus ofelasticity and absorbed energy of standard and conditioned sampleswere calculated from theequation:

    CCS=aOfSampleSurfaceAre

    tureLoadToFrac (4)

    TheresultsobtainedarepresentedinTable5.2.6.3.BulkDensityThetestspecimensweredriedat110Cfor12hourstoensuretotalwaterloss.Theirdryweightsweremeasuredandrecorded.Theywereallowedtocoolandthenimmersedinabeakerofwater.Bubbleswereobservedastheporesinthespecimenswerefilledwithwater.Theirsoakedweightsweremeasuredandrecorded.Theywerethensuspended inabeakeroneaftertheotherusingaslingandtheirrespectivesuspendedweightsweremeasuredandrecorded.Bulkdensitiesofthesampleswerecalculatedusingtheformulabelow:

    bulkdensity=)-( SW

    D (5)

    where:D=Weightofdriedspecimen,S=Weightofdriedspecimensuspendedinwater,andW=Weightofsoakedspecimensuspendedinair.TheresultsofthisarepresentedinTable5.2.6.4.ThermalShockResistanceEachsampleoftheclay/sawdustblendwasplacedinanelectricallyheatedfurnacetoattainthetesttemperatureof1000Cforover3hours.Eachsamplewasthenwithdrawnfromthefurnaceandheldfor10minutes.Theprocedurewasrepeateduntilanappearanceofacrackwasvisible.Thenumberofcyclesnecessarytocauseacrackwasrecordedforeachofthesamplesandtakenasameasureofitsthermalshockresistance.2.7.Analysis2.7.1.QualitativeandQuantitativeXRDThesampleswerepreparedforXRDanalysisusingabackloadingpreparationmethod.Theywereanalysed using a PANalytical XPert Pro powder diffractometerwith XCelerator detector andvariable divergence and receiving slits with Fe filtered CoK radiation. The phases wereidentifiedusingXPertHighscoreplussoftware.Graphicalrepresentationsofthequalitativeresultfollowbelow.Therelativephaseamounts(weights%)wereestimatedusingtheRietveldmethod(Autoquan Program). Amorphous phases, if presentwere not taken into consideration in thequantification.TheresultsobtainedarepresentedinFigure2andTables2and4.2.7.2.ScanningElectronMicroscopy Morphologyandmicroanalysisof theclayandcompositesamplesweredeterminedusingultrahigh resolution field emission scanning electron microscope (UHRFEGSEM) equipped withenergydispersive spectroscopy (EDS).Thepulverized clay samples/sintered ceramic compositesampleswerepreviouslygoldcoated.Thesampleswerestudiedusingultrahighresolutionfieldemission scanning electron microscope (UHRFEGSEM) equipped with energy dispersivespectroscopy (EDS). Particle images were obtained with a secondary electron detector. The

  • ISSN: 1584-2673 [CD-Rom, online]

    348 | Fascicule 4

    SEM/EDSmicrographsofthepowderclayandthevarioussinteredceramicsamplesareshowninFigures2to5.2.7.3.ChemicalAnalysis(a)XRayFluorescence(XRF)ThemajorelementsweredeterminedbyXrayfluorescencewithanARL9800XPspectrometer.Thepulverizedclaysamplesweremixedwithlithiumtetraborateforchemicalanalysis.Theignitionlosswasmeasuredbycalcinationsat1000C.TheXRFresultisshowninTable1.(b)AtomicAbsorptionSpectroscopy(AAS)Thechemicalanalysisoftheclaysampleswasalsocarried outusing atomic absorption spectrophotometry (AAS)methodwith SpectraAA 220FSMachine.ThepercentagecompositionsofthevariousconstituentswerethenrecordedinTable3.3.RESULTSANDDISCUSSION3.1.PhaseDevelopmentandMechanicalPropertiesoftheSinteredRawIpetumoduClayTables4and5shows respectively thephasesdeveloped in thesamplesRT1/1,FT1/1andFT2/1andthemechanicalpropertiesofsamplesRT1/1,FT1/1andFT2/1.Figure3showsthemicrographsofthesampleRT1/1.3.1.1.PhaseDevelopmentintheSinteredRawIpetumoduClayFromTable4thephasesdevelopedintheceramicsampleproducedfromtherawIpetumoduclayandsinteredat1200oC(RT1/1)areclearlyshown.ComparingthiswiththeXRDresultsshowninTable2thetotalsilica(quartz)intheclayis23.84%,butinthefiredsample,thetotalsilica(quartzandcristobalite)is36.4%.Theexcess/extrasilicacomesfromthemullitizationprocess.Moreover,itisobservedthatthesampleRT1/1containsmulliteandsillimaniteaslistedabove,comparingthesewithTable2,itisobservedthattheclaysamplecontains23.73%kaoliniteandabove37%feldspar.Whenkaolinite is fired, the following transformationsoccur in itsstructure:Thedehydrationofkaolinite completes by ~150oC, followed by dehydoxylation at ~420660C and its structuralbreakdown occurs in the temperature range ~800900oC, depending upon the particle size andamount and type of the impurities present. The kaolinite in the Ipetumodu clay (Table 2)containing 23.84% quartz, 15.02%muscovite/illite (and about 37% feldspars) dehydroxylates tometakaoliniteat~420660Cdependingonthetypeandamountofimpuritiespresent[17,18,19]via

    Si2Al2O5(OH)4420660CAl2O3*2SiO2+2H2O(6)which involves the combination of two OH groups to formH2O and oxygenwhich remainsincorporated inmetakolin.Atabout900C,metakaolinitedecomposestoamorphousSiO2andAl2O3typespinelvia

    Al2O3.2SiO2900CAl2O3+2SiO2 (7)Al2O3typespinelandSiO2recrystallizeintomulliteattemperaturesabove1100Cvia

    3Al2O3+2SiO2>1100C3Al2O3.2SiO2 (8)Srikrishna,etal[20],reportedtheformationofasinglephase(withcompositionclosetomullite)andexcessSiO2at900C.Thus the formationofmullitebeginsat temperatures>900Cand theprocesscontinuestill1000CFromtheTable4,itisobservedthattheamountofmullitedevelopedintheRT1is42.51%.Thisisnotunconnectedwith thepresenceofhematiteand rutile in the raw clayononehandand thepresenceoffeldsparontheotherhand.DifferentauthorshavedemonstratedthatmullitizationcanbeincreasedbycatalyticionssuchasFe3+andTi4+[21,22].ThesemetallicionshelpinmulliteformationbyreplacingtheAl3+ionsintheglassstructureduringfiring.ThepresenceofsmallamountsofFe3+andTi4+inkaolinmodifiesthechemical compositionof the ceramicbodies and therefore the sinteringbehaviourwhich in thecaseofporcelainischaracterizedbymullitization.ItcanbeobservedfromTable3thatthesinteredsampleRT1contains4.63%pseudobrookiteand0.54%rutilewhichareoxidesofironandtitanium.Thephenomenonofmullitization isalso influencedby thegradeof feldsparwhichparticularly

  • ANNALS of Faculty Engineering Hunedoara International Journal of Engineering

    349 | Fascicule 4

    affectstheformationofsecondarymullite.Thequalityoffeldsparisdeterminedbytheamountoforthoclase and albite. Nowadays, mixed feldspars are considered suitable fluxing agents forporcelain manufacture since they develop a very viscous liquid phase that embeds the newforming crystals and part of the residual crystals present in themicrostructure, enhancing thedensification process [23, 24].However, from the SEM images of the sample RT1, themulliteneedles couldnotbe seen (Figure2).Themullite in theRT1as seen theTable3 is theprimarymulliteasexplainedinthefollowingparagraphs.Mulliteformedfromkaolinclayaloneistermedprimarymullitewhereas that formed from reactionwith an alkali flux is termed secondary. Invitrifiedtriaxialporcelainsoftheclayfeldsparflintcomposition,mullitecrystalsoftwoorthreedistinctivemorphologieshavebeenreported[2531].Apartfromtheshape,thecrystalscanalsobedifferentiatedbytheirsizeandaspectratio[31],andbythechemicalcompositionthatchangesfromthenonstoichiometric2:1ofprimarymullitetothestoichiometric 3:2 of secondaymullite [29] on heating to temperatures higher than 1400C intriaxialcompositions.Primary mullite of composition close to 2:1, forms only from clay relicts of mostly kaolinite(Al2O3.2SiO2.2H2O)at11001150Cas small crystalsof

  • ISSN: 1584-2673 [CD-Rom, online]

    350 | Fascicule 4

    ZrO2(s)+SiO2(s)ZrSiO4(s) (9)Thisaccountsfor thereduction in thequartz,cristobaliteandmZrO2phasesandthe increase inthezirconphaseasstatedabove.Thechangesobservedintheotherphasescouldbeexplainedasduetothecontributionoftheproductofthesolidstatereactionofequation(9)intheweight(%)ofthe sample. From theTable 3, the totalweight percent consumed as a result of the solid statereaction is26%but theweightpercent increaseobserved in thezircon is just19.07%.There isadeficitof6.93%whichwillleadtochangeinthepercentagecontentsofotherphases.3.3.MechanicalPropertiesoftheSinteredSamplesFT1andFT2Table5showsthemechanicalpropertiesofthesinteredsamples.Itisobservedthattheapparentporosity of the sample at 1200oC (FT1), is 17.50%.As the sintering temperature is increased to1300oC(FT2),theapparentporosityreducedto15.40%.Thiscouldbeexplainedthatincreaseinthesinteringtemperatureallowedformoredensificationtotakeplacetherebyallowingmoreporestobefilledbytheliquidphasepresentattheconcernedtemperaturetherebyreducingtheporosityofthesample.Itisalsoobservedthatthebulkdensityofthesampleat1200oC(FT1),is1.87g/cm3,asthesinteringtemperatureisincreasedto1300oC(FT2),theapparentporosityreducedto2.06g/cm3.Thisbehaviorisalsoduetothereducedporosityofthesampleasexplainedabovewhichleadtoincrease in theamountofmatter in the sampleperunitvolume.Furthermore, it isobservedat1200oC(FT1)thatthecoldcrushingstrength(CCS),absorbedenergyandtheYoungsmodulusarerespectively 4409N/mm2, 1.2919 J and 55208N/mm2.Moreover, as the sintering temperature isincreasedto1300oC(FT2),thecoldcrushingstrength(CCS)increasedto8447N/mm2,theabsorbedenergyalso increased to4.1753Jsimilarly, theYoungsmodulusalso increased to64994N/mm2.Thereasonforthisisthatthebulkdensityofthesampleincreasedwiththesinteringtemperature(consequent to reduction in the apparent porosity of the samples with increased sinteringtemperature),whichmeansthattheremorematterinthesampletobeartheappliedload[13,19,36].Similarly,fromFigures4(b)and5(b),itisclearlyobservedthatthecracksobservedinsampleFT1(Figure4a)duetothephasetransformationfromonesilicaphasetoanother,werecompletelysealedoffbythezirconphaseinsampleFT2(Figure5b).Thisisalsoresponsiblefortheimprovedmechanical property of FT2 when compared with FT1. The thermal shock resistances of thesampleswereobserved tobemore than30cycles.This isdue to the fact that thesampleswereearliersinteredathighertemperaturethanthetemperatureatwhichthetestwascarriedout.3.4.ComparisonoftheMechanicalPropertiesofSinteredSampleRT1/1withFT1/1andFT2/1Comparing themechanicalpropertiesofsampleRT1/1with thoseof theFT1/1andFT2/1, itwasobserved that theadditionof10%volumeofyttria stabilizedzirconia improved themechanicalpropertiesof the sample. It isnoted fromTable4 that sampleRT1/1 contains14.1%quartzand22.3%cristobalite,FT1/1contains8.16%quartzand13.52%cristobalitewhileFT2/1contains1.96%quartzand6.92%cristobalite.Thesephaseshavemarkeddifferences in their thermalexpansioncoefficients and the glass matrix. During cooling from the sintering temperature to roomtemperature, themarked differences in thermal expansion results in internal residual stresseswhichadverselyaffectsthestrengthofthesample[37].SampleRT1/1hasthehighestamountofquartzandcristobalite, followedbyFT1/1while the leastamountof thementionedphaseswereobserved inFT2/1.ThisexplainedwhythesampleRT1/1hasvery lowstrength,whencomparedwiththeothertwosamplesandwhythestrengthofFT1/1isabouthalfofthatofFT2/1.ThisisalsothereasonwhythesampleRT2/1cracked/failedandcouldnotbefurtherworkupon.4.CONCLUSIONItcanbeconcludedthat:9 DuetophasetransformationofthesilicacontentoftheIpetumoduclayfromonesilicaphaseto

    anotherduringsintering,themechanicalpropertiesoftheceramicproducedfromitsinteredat1200oCisverylowandcouldnotwithstandafiringtemperatureof1300oC;

  • ANNALS of Faculty Engineering Hunedoara International Journal of Engineering

    351 | Fascicule 4

    9 Additionof2% (vol)yttria,and8% (vol)zirconia resulted intodepletionof thesilicaphases,formationofzirconphaseandexcesszirconia inadditionwithotherphases improvedon themechanicalpropertiesofthesamplesfiredat1200oCand1300oC

    9 Theoptimummechanicalpropertiesisobtainedinthesamplesfiredat1300oCAcknowledgementsTheauthorswishtoacknowledgethefollowingorganizationsfortheirsupport.TheyareRegionalInitiativeinScienceEducation(RISE),ScienceInitiativeGroup(SIG)andAfricanMaterialsScienceandEngineeringNetwork(AMSEN).Reference[1.] Aksay,I.A;Dabbs,D.MandSarikaya,M.Mulliteforstructural,electronic,andopticalapplication.J.

    Am.Ceram.Soc.,1991,74(10),23432358.[2.] Kanzaki, S; Tabata, H; Kumazawa, T. and Ohta, S. Sintering and mechanical properties of

    stoichmiometricmullite.J.Am.Ceram.Soc.,1985,68(1),C6.[3.] Dokko, P. C; Pack, J. A. and Mazdiyasni, K. S. High temperature mechanical of mullite under

    compression.J.Am.Ceram.Soc.,1977,60(34),150155.[4.] Schneider,H.andEberhand,E.,Thermalexpansionofmullite. J.Am.Ceram.Soc.,1990,73(7),2073

    2076.[5.] R.F.DovisandJ.A.Posk,DiffusionandreactionstudiesinthesystemAl2O3SiO2.J.Am.Ceram.Soc.,

    1972,5(10),525531.[6.] Aksay,I.A.andPask,J.A.StableandmetastableequilibriainthesystemSiO2Al2O3.J. Am.Ceram.

    Soc.,1975,58(1112),507512.[7.] ZumGahr,K.H.Effectofgrain sizeon frictionand slidingwearofoxide ceramics,Wear162164

    (1993)269279.[8.] Zum Gahr, K.H. Modeling and microstructural modification of alumina ceramic for improved

    tribologicalproperties,Wear200(1996)215224.[9.] DongXiuzhen,WangYiming,LiYue.Additiveseffectonaluminium titanateceramics [J].China

    Ceramics,2008,44(1):710.[10.] JiangLan,ChenXiaoyan,HanGuoming,MengYuEffectofadditivesonpropertiesof aluminium

    titanateceramics,Trans.NonferousMet.Soc.China,2011,21,15741579[11.] Ebadzadeh, T. andGhasemi, E. Effect of TiO2 addition on the stability of tZrO2 inmulliteZrO2

    compositespreparedfromvariousstartingmaterials,CeramicsInternational,2002,28,447450.[12.] Moya,J.S;Miranzo,P.andOsendi,M.I.Influenceofadditivesonthemicrostructuraldevelopmentof

    mulliteZrO2andaluminaZrO2,MaterialsScienceandEngineering,1989,AI09,139145.[13.] Aramide, F.O. Effect of Firing Temperature on Mechanical Properties of Fired Masonry Bricks

    ProducedfromIpetumoduClay,LeonardoJournalofSciences,2012,Issue21,7082.[14.] Durotoye,B;Ige,A.andAwojide,P.O.SmallscaleminingofclaydepositatIpetumodu,nearIleIfe,

    OyoState,JournalofMiningandGeology,1988,24(l&2),p.6569.[15.] Ibitoye, S.A andAfonja,A.A.Adaptation of Ipetumodupotters clay to foundryuse: 1.Moulding

    propertiesofasminedandsilicamixedpottersclay,IfeJournalofTechnology,1997,7(1),p.1722.[16.] Ibitoye,S.AandAfonja,A.A.AdaptationofIpetumodupottersclaytofoundryuse:2.Development

    ofpottersclayboundsyntheticmouldingsand,IfeJournalofTechnology,1997,7(1),p.3945.[17.] Qiu,G; Jiang, T; Li,G; Fan, X. andHuang, Z.Activation and removal of silicon inKaolinite by

    thermochemicalprocess,Scan.J.Metallurgy,33,(2004),121128.[18.] Aramide,F.O.ProductionandCharacterizationofPorousInsulatingFiredBricksfromIfonClaywith

    VariedSawdustAdmixture.JournalofMineralsandMaterialsCharacterizationandEngineering,2012,11,970975.

    [19.] Aramide,F.O.andSeidu,S.O.ProductionofRefractoryLiningforDieselFiredRotaryFurnace,fromLocally Sourced Kaolin and Potters Clay, Journal of Minerals and Materials Characterization andEngineering, 2013, 1, 7579 doi:10.4236/jmmce.2013.13014 Published Online May 2013(http://www.scirp.org/journal/jmmce)

    [20.] Srikrishna,K;Thomas,G;Martinez,R;Corral,M.P;Aza,S.D.andMoya,J.S.KaoliniteMullitereactionseries:ATEMstudy,J.Mater.Sci.,25,(1990),607612.

    [21.] Kausik,D;Sukhen,D.andSwapan,K.D.EffectofsubstitutionofflyashforquartzinTriaxialkaolinquartzfeldsparsystem,J.Eur.Ceram.Soc.24,(2004),31693175.

    [22.] Omani, H; Hamidouche, M; Madjoubi, M.A; Louci, K; Bouaouadja, N. and Etude, de laTransformationdetroisnuancesdekaolinenfonctiondelatemperature,SilicateIndustriel,65(1112),2000,119124.

    [23.] Chatterjee,A;Chitwadgi,S;Kulkarni,M.andKaviraj,A.K.EffectofsodiumandPotassiumfeldsparratioonthephasedevelopmentandmicrostructureoffiredporcelaintiles,IndianCeram.2001,44(1),1114.

    [24.] Esposito,L;Salem,A;Tucci,A;Gualtieri,A.andJazayeri,S.H.Theuseofnephelinesyeniteinabodymixforporcelainstonewaretiles,Ceram.Int.2005,31(2),233240.

    [25.] Carty,W.M.andSenapati,U.PorcelainRawMaterials,Processing,PhaseEvolution,andMechanicalBehavior,J.Am.Ceram.Soc.1998,81(1),320.

    [26.] Lundin,S.T.ElectronMicroscopyofWhitewareBodies,Trans.Int.Ceram.Congr.,4,(1954),383390.[27.] Schuller,K.H.ReactionsbetweenMulliteandGlassyPhaseinPorcelains,Trans.Br.Ceram.Soc.,63

    (2),1964,10217.[28.] Lundin,S.T.MicrostructureofPorcelain,Natl.Bur.Stand.(U.S.)Misc.Publ.,257,(1964),93106.[29.] Iqbal,Y.andLee,W.E.FiredPorcelainMicrostructuresRevisited,J.Am.Ceram.Soc.,1999,82(12),

    338490.

  • ISSN: 1584-2673 [CD-Rom, online]

    352 | Fascicule 4

    [30.] Iqbal,Y. andLee,W.E. MicrostructuralEvolution inTriaxialPorcelain, J.Am.Ceram. Soc., 2000,83(12),31213127.

    [31.] Iqbal,Y.andLee,W.E.InfluenceofMixingonMulliteFormationinPorcelain,J. Eur.Ceram.Soc.,2001,21(14),258386.

    [32.] Comer,J.J.ElectronMicroscopyofMulliteDevelopmentinFiredKaolinite,J.Am.Ceram.Soc.,1960,43(7),378384.

    [33.] Castelein,O;Guinebretire,R.;Bonnet,J.P.andBlanchart,P.Shape,sizeandcompositionofmullitenanocrystalfromarapidlysinteredkaolin,J.Eur.Ceram.Soc.,(2001),21,23692376.

    [34.] Schuller,K.H.andKromer,H.(1976)PrimaryMulliteasaPseudomorphafterKaolinite,533538,inProceedingsof the InternationalClayConference (MexicoCity,1975).EditedbyS.W.Bailey.AppliedPublishing,Wilmette,IL.

    [35.] Chen,Y.F;Wang,M.C.andHon,M.H.SecondaryMulliteFormationinKaolinAl2O3Ceramics,J.Mater.Res.,2004,19(3),806814.

    [36.] Norton,F.H.,(1968)Refractories,4thEdition,McGrawHill,NewYork.[37.] Akwilapo, D. L. andWiik, K. Ceramic Properties of Pugu Kaolin Clays. Part 2: Effect of Phase

    CompositiononFlexuralStrength,Bull.Chem.Soc.Ethiop.2004,18(1),716.

    ANNALSofFacultyEngineeringHunedoaraInternationalJournalofEngineering

    copyrightUNIVERSITYPOLITEHNICATIMISOARA,FACULTYOFENGINEERINGHUNEDOARA,

    5,REVOLUTIEI,331128,HUNEDOARA,ROMANIAhttp://annals.fih.upt.ro