28
Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011 Effect of Flow Structures on the Performance of Vertical River Kinetic Turbines University of Manitoba, Mechanical and Manufacturing Engineering Dr. Eric Bibeau Dr. Vijay Chatoorgoon Amir Hossein Birjandi Ph.D. Candidate

Effect of Flow Structures on the Performance of Vertical ...home.cc.umanitoba.ca/~bibeauel/research/lunchbag/Amir.pdf · Title: Microsoft PowerPoint - Summer presentation.pptx Author:

Embed Size (px)

Citation preview

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Effect of Flow Structures on the Performance of Vertical River Kinetic Turbines

University of Manitoba, Mechanical and Manufacturing Engineering

Dr. Eric Bibeau

Dr. Vijay Chatoorgoon

Amir Hossein Birjandi

Ph.D. Candidate

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

• Fossil Fuels • Why Hydro• Vertical Turbine• Problem• Field Measurement• Model Turbine • Instrumentation• Performance parameters• Free‐Wheeling• Complete Power Diagram • Number of Blades• Blades’ Pitch Angle• Surface Effect• Upstream Turbulence• Future Works

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

1- Schindler, J. & Zittel, W., Crude oil – The Supply Outlook. Energy Watch Group, Ottobrunn, Germany, 2008.2- U.S. Energy Information Administration , independent Statistics and Analysis, 2010.

U.S. field production of crude oil, 1920-2010 [2]

World crude oil production, 1920-2010 [1][2]

Main Advantages

•High energy density

•Easy to transport

Main Disadvantages

•Greenhouse gases emission

•Pollution

•Limited resources

•Long term replacement cycle

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

80 km

40 km800 MW

250 W/m2 500 W/m2

Typical wind velocity of 10 m/s

4000 W/m2

Typical current velocity of 2 m/s

•Low environmental impact

•High power density

•Highly Predictable

•Low coast

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

•Low manufacturing and maintenance cost

•Easy maintenance and transporting

•Operating irrespective of the flow direction

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Problem:Turbulent inflow– Upstream structures– Upstream turbines (in turbine farms)– Shear layer

Causes: – Dynamic stall– Highly dynamic load conditions [2] (Sutherland, NREL, 2001)

Results:– Higher levels of fatigue damage [1] (Hand, NREL, 1995) – Uncertain power output 

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

[1] H.J. Sutherland, “FATIGUE DAMAGE ESTIMATE COMPARISONS FOR NORTHERN EUROPEAN AND U.S. WIND FARM LOADING ENVIRONMENTS,” 1995.[2] M.M. Hand, D.A. Simms, L.J. Fingersh, D.W. Jager, J.R. Cotrell, S. Schreck, and S.M. Larwood, “Unsteady Aerodynamics Experiment Phase VI : Wind Tunnel Test Configurations and Available Data Campaigns Unsteady Aerodynamics Experiment Phase VI : Wind Tunnel Test Configurations and Available Data Campaigns,” Data Processing, 2001

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Test-1 Test-2

Stopped turbineRunning turbine

Stopped turbineRunning turbine

Turbulence Intensity

2.5% 15.6% 2.4% 15.4%

Test-1 Test-2

Stopped turbine Running turbine Stopped turbineRunning turbine

Integral time scale (s)

0.441 0.057 0.192 0.053

Integral length scale (m)

6.41 0.11 0.47 0.11

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Blade Chord: 0.05 mSolidity: 0.66, 1.33Number of Blades: 2 or 4Profile Shape: NACA-0021

Aspect Ratio: 6Top and Bottom PlatesNo Supporting ArmNo Central Shaft

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Gear Motor

Position Indicator

Non‐contact Torque Transducer

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi May 30, 2011

•Free Stream velocity (U)

•Rotational speed (ω)

•Chord length (C)

•Radius of the turbine (r)

•Length of the blades (h)

•Viscosity of the flow (µ)

•Density of the flow (ρ)

•Number of blades (N)

•Profile shape

•Pitch angle

•Flow condition

rh

2

rcΠ 1

Ur 3

Ur

4

N5

6Π Profile shape

Pitch angle

Flow condition

ch'

1

22

Ur 3

Uc' 414

rNc' 511

6 Profile shape

Pitch angle

Flow condition

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Naca‐0021 stall angle of attack in laminar flow is 16 degrees 

Copyright ©2011 Amir Hossein Birjandi May 30, 2011

V∞(m/s) ω (rad/s) λ Re Rerel max Rerel min αmax (deg)

1.07 25.33 3.55 5.33e4 2.43e5 1.36e5 16.4

1.02 24.24 3.56 5.08e4 2.32e5 1.30e5 16.3

0.95 22.6 3.57 4.73e4 2.16e5 1.22e5 16.3

0.87 20.38 3.51 4.33e4 1.96e5 1.09e5 16.5

0.78 17.62 3.39 3.88e4 1.70e5 9.28e4 17.2

0.68 15.07 3.32 3.39e4 1.46e5 7.87e4 17.5

0.58 12.09 3.13 2.89e4 1.19e5 6.14e4 18.7

0.47 9.18 2.93 2.34e4 9.20e4 4.52e4 20.0

0.39 0.78 0.30 1.94e4 2.52e4 1.36e4 180

0.29 0.47 0.24 1.44e4 1.80e4 1.09e4 180

0.19 0.07 0.06 9.46e3 9.99e3 8.94e3 180

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Methods to extract the power diagram:• Using a generator [1] (Bahaj, Renewable Energy , 2007)

• Using a friction brake– Readings over the whole of the low tip‐speed ratio range could not be 

obtained, since the rotor tended to stall [2] (Whelan, JFM, 2009).

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

[1] A.S., Bahaj, A.F., Molland, J.R., Chaplin, and W.M.J., Batten, “Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank,” Renewable Energy, vol. 32, Mar. 2007, pp. 407‐426.[2] J.I. Whelan, J.M.R. Graham, and J. Peiró, “A free‐surface and blockage correction for tidal turbines,” Journal of Fluid Mechanics, vol. 624, Mar. 2009, p. 281.

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Higher Solidity

• Higher blockage ratio• Higher power coefficient• Maximum power at lower TSR

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Higher Solidity

• More small fluctuations • Lower deviation

2‐blade turbine was chosen

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Pitch angle = 2.5 degrees was chosen for the turbine

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Water level = 6 cm Was chosen

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

In a recent wind tunnel study of the wake flowcharacteristics behind a two bladed wind turbine,Medici et al. [1] observed a clear indication of largescale vortex shedding similar to the well known vonKarman vortex street experienced behind two‐dimensional cylinders (Medici, Wind Energy,2006).

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

[1] D. Medici and P.H. Alfredsson, “Measurements on a Wind Turbine Vortex Shedding,” Wind Energy, vol. 9, 2006, pp. 219‐236

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

U

Water Tunnel condition 

UwU

Ut

U

U

U

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

Towing tank condition

U’=0Ut=U U’w

U’=0

U’=0

U’=0

U’=0

Vertical Turbine and Flow Structures InteractionVertical Turbine and Flow Structures Interaction

Copyright ©2011 Amir Hossein Birjandi Jun 8, 2011

1. A‐B: Ut‐Uw=U‐U’w

2. B‐C: U‐Uw=U’w

1+2: Ut=2Uw

U’=0Ut=U U’w

U’=0

U’=0

U’=0

U’=0

UwU

Ut

U

U

U

U

AA B B

C C