31
ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Lecture 3 Intelligent Energy Intelligent Energy Systems: Systems: Control and Monitoring Control and Monitoring Basics Basics Dimitry Gorinevsky Seminar Course 392N Spring2011

Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Embed Size (px)

Citation preview

Page 1: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 1

Lecture 3 Lecture 3 Intelligent Energy Systems:Intelligent Energy Systems:

Control and MonitoringControl and MonitoringBasicsBasics

Dimitry Gorinevsky

Seminar Course 392N ● Spring2011

Page 2: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Traditional Grid

• Worlds Largest Machine!– 3300 utilities

– 15,000 generators, 14,000 TX substations

– 211,000 mi of HV lines (>230kV)

• A variety of interacting control systems

ee392n - Spring 2011 Stanford University

22Intelligent Energy Systems

Page 3: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Smart Energy Grid

3

Conventional Electric Grid

Generation

Transmission

Distribution

Load

Intelligent Energy Network

Load IPS

Source IPS

energy subnet

Intelligent Power Switch

Conventional Internetee392n - Spring 2011 Stanford University

Intelligent Energy Systems

Page 4: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Business LogicBusiness Logic

Intelligent Energy Applications

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 4

Database

Presentation LayerPresentation Layer

Computer

Tablet Smartphone

InternetCommunications

Energy Application

Application Logic(Intelligent Functions)

Application Logic(Intelligent Functions)

Page 5: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 5

Control Function

• Control function in a systems perspective

Physical system

Measurement System Sensors

Control Logic

Control Handles

Actuators

Plant

Page 6: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 6

Analysis of Control Function

• Control analysis perspective• Goal: verification of control logic

– Simulation of the closed-loop behavior

– Theoretical analysis

Control Logic

System Model

Control Handle Model

Measurement Model

Page 7: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Key Control Methods

• Control Methods – Design patterns

– Analysis templates

• P (proportional) control• I (integral) control• Switching control• Optimization • Cascaded control design

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 7

Page 8: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Generation Frequency Control

• Example

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 8

Controller

Turbine /Generator

sensor measurements

control command

Load

disturbance

Page 9: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Generation Frequency Control• Simplified classic grid frequency control model

– Dynamics and Control of Electric Power Systems, G. Andersson, ETH Zurich, 2010

http://www.eeh.ee.ethz.ch/en/eeh/education/courses/viewcourse/227-0528-00l.html

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 9

em PPI Swing equation:

dux

loade PP

dIP

uIP

x

e

m

/

/

Page 10: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

P-control• P (proportional) feedback control

• Closed –loop dynamics

• Steady state error

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 10

dux xku P

dxkx p

)1(1

0tk

p

tk pp edk

exx

pss kdx /frequency droop

0 2 400.20.40.60.8

1

x(t)

Step response

frequency droop

x+0

u

Page 11: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

AGC Control Example

• AGC = Automated Generation Control• AGC frequency control

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 11Load

disturbance

AGCgeneration command

frequency measurement

Page 12: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

AGC Frequency Control• Frequency control model

– x is frequency error

– cl is frequency droop for load l

– u is the generation command

• Control logic

– I (integral) feedback control

• This is simplified analysis

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 12

,lcugx

xku I

Page 13: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 13

P and I control• P control of an integrator

• I control of a gain system. The same feedback loop

dbux

xku P

g

-k I

cl

xxku I

,lcugx

-k p

bd

x

Page 14: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 14

outer loop

Cascade (Nested) Loops

• Inner loop has faster time scale than outer loop

• In the outer loop time scale, consider the inner loop as a gain system that follows its setpoint input

inner loop

-

inner loop setpoint

output Plant

Inner Loop Control

Outer Loop Control-

outer loop setpoint

(command)

Page 15: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 15

Switching (On-Off) Control

• State machine model – Hides the continuous-time dynamics – Continuous-time conditions for switching

• Simulation analysis– Stateflow by Mathworks

off on70x

71x

69x

passivecooling

furnaceheatingsetpoint

Page 16: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Optimization-based Control

• Is used in many energy applications, e.g., EMS• Typically, LP or QP problem is solved

– Embedded logic: at each step get new data and compute new solution

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 16

Optimization Problem Formulation

Embedded Optimizer Solver

MeasuredData

ControlVariables

PlantSensors Actuators

Page 17: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Cascade (Hierarchical) Control

• Hierarchical decomposition– Cascade loop design

– Time scale separation

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 17

Page 18: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Hierarchical Control Examples

• Frequency control – I (AGC) P (Generator)

• ADR – Automated Demand Response– Optimization Switching

• Energy flow control in EMS– Optimization PI

• Building control: – PI Switching

– Optimization

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 18

Page 19: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Power Generation Time Scales

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 19

Power Supply Scheduling

• Power generation and distribution • Energy supply side

Time (s)1/10 10 10001 100http://www.eeh.ee.ethz.ch/en/eeh/education/courses/viewcourse/227-0528-00l.html

Page 20: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Power Demand Time Scales

• Power consumption– DR, Homes, Buildings, Plants

• Demand side

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 20

Demand Response

Home Thermostat

Building HVAC

Enterprise Demand Scheduling

Time (s)100 1,000 10,000

Page 21: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Research Topics: Control

• Potential topics for the term paper.• Distribution system control and optimization

– Voltage and frequency stability

– Distributed control for Distributed Generation

– Distribution Management System: energy optimization, DR

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 21

Page 22: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 22

Monitoring & Decision Support

Physical system

Monitoring & Decision

Support

Physical system

Measurement System Sensors

Data Presentation

• Open-loop functions- Data presentation to a user

Page 23: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 23

Monitoring Goals

• Situational awareness – Anomaly detection– State estimation

• Health management – Fault isolation– Condition based maintenances

Page 24: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 24

Condition Based Maintenance

• CBM+ Initiative

Page 25: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 25

SPC: Shewhart Control Chart• W.Shewhart, Bell Labs, 1924• Statistical Process Control (SPC) • UCL = mean + 3· • LCL = mean - 3·

Walter Shewhart (1891-1967)

sample3 6 9 1212 15

mean

qua

lity

varia

ble

Lower Control Limit

Upper Control Limit

Page 26: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 26

Multivariable SPC

• Two correlated univariate processes y1(t) and y2(t)

cov(y1,y2) = Q, Q-1= LTL

• Uncorrelated linear combinations

z(t) = L·[y(t)-]

• Declare fault (anomaly) if

22

12~ yQyz T

2

1

y

yy

2

1

21 cyQy T

Page 27: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 27

Multivariate SPC - Hotelling's T2

• Empirical parameter estimates

ytytyn

Q

XEtyn

Tn

t

T

n

t

cov))()()((1ˆ

)(1

ˆ

1

1

• Hotelling's T2 statistics is

• T2 can be trended as a univariate SPC variable

)(ˆ)( 12 tyQtyT T

Harold Hotelling(1895-1973)

Page 28: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Advanced Monitoring Methods

• Estimation is dual to control– SPC is a counterpart of switching control

• Predictive estimation – forecasting, prognostics – Feedback update of estimates (P feedback EWMA)

• Cascaded design – Hierarchy of monitoring loops at different time scales

• Optimization-based methods – Optimal estimation

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 28

Page 29: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Research Topics: Monitoring

• Potential topics for the term paper.• Asset monitoring

– Transformers

• Electric power circuit state monitoring – Using phasor measurements

– Next chart

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 29

Page 30: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

Optimization Problem

Measurements:• Currents • Voltages• Breakers, relays

State estimate • Fault isolationElectric

Power System

model

Electric Power Circuit Monitoring

vDfCxy

wBfAx

0

ee392n - Spring 2011 Stanford University

30Intelligent Energy Systems

ACC, 2009

Page 31: Ee392n - Spring 2011 Stanford University Intelligent Energy Systems 1 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky

End of Lecture 3

ee392n - Spring 2011 Stanford University

Intelligent Energy Systems 31