EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

Embed Size (px)

Citation preview

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    1/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    CHAPTER 6FREQUENCY RESPONSE,BODE PLOTS, ANDRESONANCE

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    2/43

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    3/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    00

    1 t idt t v L

    t i

    dt di

     Lt v  

     Inductor

    90)2

    exp(     L j L L j Z        L

    LLL  I  Z V   

      0cosrmsrmsavg       LY    I V  P 

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    4/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292 5.3 Complex Impedance

    9011 C C  j

     Z   

    C

    90   L L j Z      L

    0   R R Z L R

    C

     L

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    5/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    t vvdt t iC t  Ri

    dt t di L  sC 

      010

    Second Order Circuit:RLC serial circuits

    Second Order Circuit:RLC parallel circuits

    t iidt t v Ldt 

    t dvC  R

    t v s

      01

    0

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    6/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    SECOND-ORDER CIRCUIT EQUATION ANALYSIS

    t vvdt t iC t  Ridt 

    t di

     L  sC 

      01

    0

     L

     R

    2

     

     LC 

    10   

    t   f  t idt 

    t di

    dt 

    t id 

      2

    02

    2

    2     

       

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    7/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    t   f  t i

    dt 

    t di

    dt 

    t id    2

    02

    2

    2     

    2

    0

    2

    1          s  2022          s

      t  st  sc   e K e K t  x   21 21  

    nn   j s j s          21  and

    220         n

    t e K t e K t  x nt 

    n

    c          sincos 21

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    8/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    The short segment of a music waveform shown in (a) is thesum of the sinusoidal components shown in (b).

    6.1 Fourier Analysis, Filters andTransfer functions

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    9/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292Figure 6.2 A square wave and some of itscomponents.

     All real-worldsignals are sums

    of sinusoidal

    componentshaving various

    frequencies,

    amplitudes, andphases.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    10/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    Filters and Transfer Functions Filters process the sinusoid components of an input signal differently

    depending of the frequency of each component. Often, the goal of the filter

    is to retain the components in certain frequency ranges and to rejectcomponents in other ranges.

    The transfer function H(f ) of the two-port filter is defined to be the ratio

    of the phasor output voltage to the phasor input voltage as a function of

    frequency:

    in

    out

    V

    V  f   H 

    The magnitude of the transfer function shows how the amplitude of each

    frequency component is affected by the filter. Similarly, the phase of the

    transfer function shows how the phase of each

    frequency component is affected by the filter.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    11/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    When an input signal vin(t ) is applied to the input port of a filter, some componentsare passed to the output port while others are not, depending on their frequencies.

    Thus, vout(t ) contains some of the components of vin(t ) , but not others. Usually, theamplitudes and phases of the components are altered in passing through the filter.

    Two-Port Network

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    12/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    Filters behave as if they separate theinput into components, modify theamplitudes and phases of thecomponents, and add the alteredcomponents to produce the output.

    The transfer functionof a filter.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    13/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    To measure the transfer function we apply a sinusoidal input signal, measure theamplitudes and phases of input and output in steady state, and then divide the phasoroutput by the phasor input. The procedure is repeated for each frequency of interest.

    1. Determine the frequency and phasor representation for each input component.

    2. Determine the (complex) value of the transfer function for each component.3. Obtain the phasor for each output component by multiplying the phasor for each inputcomponent by the corresponding transfer-function value.4. Convert the phasors for the output components into time functions of various frequencies. Addthese time functions to produce the output.

    Determining the output of a filter for an input withmultiple components:

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    14/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292 Figure PA6.1 Active Noise Cancellation

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    15/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    A first-order lowpass filter.

    6.2 First-Order Lowpass Filters

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    16/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    Figure 6.8 Magnitude and phase of

    the first-order lowpass transfer function versus frequency.

     RC 

      f   B

     2

    1

     B  f    f   j

      f   H 

    1

    1

    21

    1

     B

      f    f    f   H 

     

      

     

     B  f  

      f    f   H    arctan

    Characteristics of First-Order Lowpass Filters

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    17/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292Figure 6.10 Another first-order lowpass filter;see Exercise 6.4.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    18/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    Table 6.2 Transfer-

    Function Magnitudes andTheir Decibel Equivalents

      f   H   f   H    log20dB 

    6.3 DECIBELS, THE CASCADE CONNECTION,AND LOGARITHMIC FREQUENCY SCALES

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    19/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    Figure 6.12 Stop-band transfer-function magnitude ofa notch filter used to reduce hum in audio signals.

    Notch Filters

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    20/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    Cascaded Two-Port Networks 

      f   H   f   H   f   H  21  

    dB2dB1dB

      f   H   f   H   f   H   

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    21/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292Figure 6.13 Cascade connection of two two-port circuits.

     f   H  f   H  f   H  21  

    dB2dB1dB

      f   H   f   H   f   H   

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    22/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

     A Bode plot shows the magnitude of a network function in

    decibels versus frequency using a logarithmic scale forfrequency.

     B  f    f   j  f   H  1

    1

     

      

     

    2

    dB   1log10 B  f    f    f   H 

    6.4 Bode Plot

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    23/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292 Logarithmic frequency scale.

     

     

     

     

    1

    2

    logdecadesof number   f  

      f    

     

     

     

     

     

     

     

     

     

    2log

    loglogoctavesof number 12

    1

    22

      f    f  

      f  

      f  

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    24/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292Figure 6.15 Magnitude Bode plot for the first-order lowpass filter.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    25/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292Figure 6.16 Phase Bode plot for the first-orderlowpass filter.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    26/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292Figure 6.17 Circuit for Exercise 6.11.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    27/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292 Figure 6.18 Answers for Exercise 6.11.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    28/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292 6.5 Highpass filter.

    Ref: Lowpass filter

    Highpass filter

     

     B

     B

      f    f   j

      f    f   j  f   H 

    1in

    out

    V

    V

     RC   f   B

     2

    1

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    29/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292Figure 6.20 Magnitude and phase for the first-order highpass transfer function.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    30/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    Table 6.4 Values of the

    Approximate ExpressionGiven in Equation 6.26 forSelected Frequencies

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    31/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292Figure 6.21 Bode plots for the first-orderhighpass filter.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    32/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292 Figure 6.22 Circuit for Exercise 6.13.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    33/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292 6.6 The series resonant circuit.

    C

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    34/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    AC Power Review 

     cosrmsrms I V  P  

     cosPF 

    iv          sinrmsrms I V Q 

    Power“Effective Power”

    “Real Power” 

    Power Factor  

    Power Angle 

    Reactive power  

    rmsrms I V  P  Apparent power   [VA] 

    [W] 

    [VAR] 

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    35/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    Phasor / Power Analysis for Resonance

    0 or,,0sinrmsrms        I V Reactive power  

    Series Circuit Phasor diagram

    0

    1

    C  j L j Z  Z C    L

    C  L

      

      1

     LC 

    10  Resonance

    Frequency 

     LC   f  

     2

    10  

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    36/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    Figure 6.24 Plots of normalized magnitudeand phase for the impedance of the seriesresonant circuit versus frequency.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    37/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292Figure 6.25 Plots of the transfer-functionmagnitude |V R / Vs| for the series resonantbandpass-filter circuit.

     LC   f    2

    10  

     

     

      

       f  

      f  

      f  

      f   jQ R  f   Z   s s

    0

    0

    1

    CR  f  Q s

    021

     

     R

     L  f  Q s

    02 

    Quality Factor  

      f    f    f    f   jQ s s R

    0011

    V

    V

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    38/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292The bandwidth B is equal to the differencebetween the half-power frequencies.

     L H    f    f   B  

    20

     B  f    f   H   

    20

     B  f    f   L  

     sQ

      f   B   0

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    39/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292 6.7 The parallel resonant circuit.

    Resonance is a phenomenon that can be

    observed in mechanical systems andelectrical circuits.

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    40/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292 Phasor / Power Analysis for Resonance

    Parallel Circuit Phasor diagram reactive

    power = 0

    0

    111

      C  j L j Z  Z    C    L

    C  L

      

      1

     LC 1

    0    ResonanceFrequency 

      fL j  fC  j R Z  p

         2121

    1

     LC   f  

     2

    10  

    i 6 30 l h ll l

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    41/43

    Electrical Engineering: Principles and Applications, 6eAllan R. Hambley

    Copyright ©2014 by Pearson Education, Inc.All rights reserved.

    EE292

    Figure 6.30 Voltage across the parallelresonant circuit for a constant-amplitudevariable-frequency current source.

      f    f    f    f   jQ

     R Z 

     p

     p

    001  

    CR  f  Q p   02 

     L  f  

     R

    Q p02 

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    42/43

  • 8/18/2019 EE292 Ch06 Filter Part1 Signals Part 2 Filters Em v2

    43/43

    EE292 Summary

    • Phasor approach suitable for steady state

     AC circuit analysis

    • Phasor approach simplifies circuit analysis

    • Connection to AC Power formulation

    • Mastering R, L, C complex impedances

    facilitates further understanding of many

    circuit characteristics