12
xlab.me.berkeley.edu xlab.me.berkeley.edu Xlab Confidential – Internal Only EE235 Carbon Nanotube FET Volker Sorger

EE235 Carbon Nanotube FET

  • Upload
    zander

  • View
    56

  • Download
    0

Embed Size (px)

DESCRIPTION

EE235 Carbon Nanotube FET. Volker Sorger. CNT-FET. SBFET. gate. source. drain. Gate. metal. metal. i or p -. 8nm HfO 2. Pd. Pd. CNT. SiO 2. p++ Si. Schottky Barrier (SB) CNT FET Transistor. “Carbon nanotubes as Schottky barrier transistors” - PowerPoint PPT Presentation

Citation preview

Page 1: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.eduXlab Confidential – Internal Only

EE235Carbon Nanotube FET

Volker Sorger

Page 2: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu2 Xlab Confidential – Internal Only

CNT-FET

Page 3: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu3 Xlab Confidential – Internal Only

metal metali or p-

gatesource drain

SBFET

Schottky Barrier (SB) CNT FET Transistor

“Carbon nanotubes as Schottky barrier transistors” Heinze et al., PRL, 89, 106801, 2002 Appenzeller et al., PRL, 89, 126801, 2002

Tunneling limited current. Gate electrostatics will

control the tunneling barrier.

Gate 8nm HfO2

SiO2

p++ Si

PdPd CNT

Javey, et al., Nano Letters, 4, 1319, 2004

Page 4: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu4 Xlab Confidential – Internal Only

n+ n+i or p-

gatesource drain

MOSFET

MOS CNT FET Transistor

Electrons do not see any tunneling barrier in the “on” state.

Gate electrostatics control the top-of-the-barrier.

Appenzeller et al., IEDM, 2004

Javey et al., Nano Letters, 5,2, 2005

Page 5: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu5 Xlab Confidential – Internal Only

CNTs: Best Case Scenario Current

CNT array FET

Iper tube ~ VDD/ 6.5Kohms

~150uA (@VDD = 1V)

Take d = S = 1nm;

Iper gate width ~ 500 X 150uA/um

~ 75mA/um (+non-idealities)

Isilicon ~ 1mA/um

Capacitance

COXIDE

CSEMI

Physics: Low DOS makes band pinning difficult.

Intuitively: Not enough electrons to screen the gate E-field.

Circuits: COXIDE >~ CSEMI

Cper tube <~ 1-5 aF (@Length=50nm)

Cper gate width ~ 500 X 2aF/um ~ 1fF/um

Csilicon ~ 1fF/um

Cinterconnect ~ 0.3fF/um (does not scale)

C (per unit micron of width) = 1X

I (per unit micron of width) = 50X

TDELAY (for same transistor width) = 0.02X ON

DDD I

CVT

Page 6: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu6 Xlab Confidential – Internal Only

Work function Engineering for SB-FETs

What device can we What device can we built with this finding now?!built with this finding now?!M. H. Yang, W. I. MilneM. H. Yang, W. I. Milne , APL, 2005 , APL, 2005

Work function: 5.12eVWork function: 5.12eV 4.33eV 4.33eV ~3.9eV ~3.9eV

EcEc

EvEvEfEf

ssEcEc

EvEvEfEf

ssEcEc

EvEvEfEf

ss

P-typeP-type intrinsicintrinsic N-typeN-type

Page 7: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu7 Xlab Confidential – Internal Only

SB Diode

Page 8: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu8 Xlab Confidential – Internal Only

1-D Device Basics

What we want!

– High Ion speed

– Low Ioff less leakage

– Steep switching small Subthreshold swing, SS

– High mobility, How can we archive this?

– Ion: Ohmic contacts + big tube

– Ioff: high quality tox, small tube

– SS: good gate coupling = small tox

rhrox Ln

LC

202 tgtotal

D

DD VV

L

C

V

Ig

2

111 qmoxtotal CCC

=4pF/cm=4pF/cm

Hole mobility

Si 480

Ge 1900

GaAs 400

CNT ~3000

Page 9: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu9 Xlab Confidential – Internal Only

Intrinsic Gate Delay CV/I for PMOS

R. Chau, IEEE Nanotechnology, 2005 R. Chau, IEEE Nanotechnology, 2005

ON

DDD I

CVT

Page 10: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu10 Xlab Confidential – Internal Only

CV/I versus Ion/Ioff Ratio

Page 11: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu11 Xlab Confidential – Internal Only

Conclusion

CNT have potential

Devices can keep up with state-of-the-art Si

Still 3 major challenges to overcome (Integration)

~~~ Thank you for you attention ~~~~~~ Thank you for you attention ~~~

Page 12: EE235 Carbon Nanotube FET

xlab.me.berkeley.eduxlab.me.berkeley.edu12 Xlab Confidential – Internal Only

CNT-FET Benchmarking

Intrinsic Speed: CV/I vs. Lg

SS vs. Lg

Speed vs. Ion/Ioff Metrology

– I=Ion (@ Vg = Vt + 2/3 VDS)

– I=Ion (@ Vg = Vt – 1/3 VDS)

– V=Vcc=Vg=|VDS|

– Device width = 2R

– Vt from standard peak conductance

R. Chau, IEEE Nanotechnology, 2005 R. Chau, IEEE Nanotechnology, 2005