5
青色/緑色半導体レーザー技術の最前線 太田 裕朗,中村 修二 カリフォルニア大学 サンタバーバラ校 材料物性工学部 Technology Frontier of Blue and Green Semiconductor Lasers Hiroaki OHTA and Shuji NAKAMURA Materials department, University of California, Santa Barbara Received September 5, 2010Green laser diodes (LDs) have been realized using InGaN-based nitride semiconductors. Although the basic structure of green LDs is essentially same as that of violet LDs, it took around 15 years to establish the technology to grow high-quality active regions for green emission since the rst demonstration of nitride LDs. In this paper, we review present and future subjects of InGaN-based green LDs as well as technologies of matured red/blue LDs and topics of nonpolar/semipolar GaN materials. Key Words: Green laser, Semiconductor laser, InGaN, Nonpolar and semipolar GaN, Display Fig. 1 Color range when using three 460/530/630 nm la- ser optical sources plotted on the CIE 1931 color space chromaticity diagram. レーザー研究 2010 10 738 光ファイバ通信やDVDの光ピックアップが主戦場で あった半導体レーザーは,最近になって,ディスプレイ への応用が期待されるようになってきている.レーザー 特有の極めて細い波長スペクトルをもつ赤//緑色の三 原色光源を組み合わせた場合,理論的には,従来のディ スプレイを上回る性能が可能となる.たとえば,Fig. 1 に 示 さ れ る よ う に, 半 値 幅1 nm以下の460530630 nmの光源を組み合わせた場合,色再現可能領域は ほとんどの自然色を包含する.また,従来の液晶ディス プレイテレビに比べて,プロジェクター(投影型)は,液 晶によって遮断される無駄な光がないため,消費電力を 大幅に削減できる可能性を秘めている.実際,2008に,三菱電機は赤//青色それぞれ7.6/6.0/9.7 Wという 高出力レーザーを用いて,消費電力がわずか135 Wとい 65型のレーザーテレビを商用化した 1.テレビのよう なアプリケーションでは,レーザーは高出力,高い電力 変換効率,そして十分な信頼性が必須である.さらに, 手のひらサイズの小型プロジェクターの場合,小型化の 要請から,複雑な機構をもつデバイスよりも,シンプル な半導体レーザーが好ましい. 赤色半導体レーザーについては,ソニーにより,波長 635.1 nmにおいて7.2 Wという高出力半導体レーザーア レイが実現されている 2.ここには,25個のAlGaInPファブリ・ペロー型レーザーが集積されており,一つの レーザー導波路からは約300 mWの出力が放射される. 電力変換効率としては,23 %程度である.644 nmの出 7 Wの場合では,プロジェクタの白色光源に使われる UHPランプの典型的な寿命である5000時間を上回る 10000時間の信頼性が確認されている 3AlInGaP材料系 では,端面損傷(COD)を防ぐための光子密度制御(幅広 の導波路の使用)や高出力駆動を可能にするための放熱 技術などが重要となる. 青色半導体レーザーでは,GaN系材料(III族窒化物半 導体)がスタンダードの地位を獲得した.基本的には, 青色(440-460 nm)でも,それより長波の緑色領域でも, ブルーレイ用ピックアップ光源である青紫色(405 nm

青色 緑色半導体レーザー技術の最前線 - LSJ › laser › oshirase › Nobel_Prize › 3810(2010)dr...青色/緑色半導体レーザー技術の最前線 太田 裕朗,中村

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 青色 緑色半導体レーザー技術の最前線 - LSJ › laser › oshirase › Nobel_Prize › 3810(2010)dr...青色/緑色半導体レーザー技術の最前線 太田 裕朗,中村

青色/緑色半導体レーザー技術の最前線

Technology Frontier of Blue and Green Semiconductor Lasers

Hiroaki OHTA and Shuji NAKAMURAMaterials department, University of California, Santa Barbara

Received September 5, 2010

Green laser diodes (LDs) have been realized using InGaN-based nitride semiconductors. Although the basic structure of green LDs is essentially same as that of violet LDs, it took around 15 years to establish the technology to grow high-quality active regions for green emission since the fi rst demonstration of nitride LDs. In this paper, we review present and future subjects of InGaN-based green LDs as well as technologies of matured red/blue LDs and topics of nonpolar/semipolar GaN materials.

Key Words: Green laser, Semiconductor laser, InGaN, Nonpolar and semipolar GaN, Display

������� �� ���

� �� ���������

������� �� ���

� �� ���������

������� �� ���

� �� ���������

Fig. 1 Color range when using three 460/530/630 nm la-ser optical sources plotted on the CIE 1931 color space chromaticity diagram.

2010 10738

DVD

/ /

Fig. 1

1 nm 460 530

630 nm

2008

/ / 7.6/6.0/9.7 W

135 W

65 1

635.1 nm 7.2 W2 25 AlGaInP

300 mW

23 % 644 nm

7 W

UHP 5000

10000 3 AlInGaP

COD

GaN III

440-460 nm

405 nm

Page 2: 青色 緑色半導体レーザー技術の最前線 - LSJ › laser › oshirase › Nobel_Prize › 3810(2010)dr...青色/緑色半導体レーザー技術の最前線 太田 裕朗,中村

Fig. 2 (a) Maximum output power per single emitter un-der pulsed or cw operation as a function of wave-length. (b) wall-plug effi ciencies at the maximum output powers corresponding to (a). Note that var-ious active region widths are used. Diamond, tri-angle, and rectangle points correspond to InGaN LDs, SHG pumped by IR LDs, and AlGaInP LDs, respectively.

38 10 / 739

4

InGaN In

In 30 %

GaN

InGaN

GaN AlGaN 1000

In InGaN 800

c GaN

5

/6 445 nm

1.4 W 3 W

c GaN7 1 W

COD

1.2 W 24 % 1 A

1 W

30000

m 8 c

GaN

c

In

Fig. 2 c GaN

AlGaInP

αm/ αm α i η d

/

αm α i η d

9 7 W

644 nm = 1.9 eV 1.2 W

445 nm = 2.8 eV

2.35 V and 4.8 V 3,7

10 % 99 % αm = 23 cm 1 α i =

10 cm 1 η d 100 %

40-60 %

/

SHG

1060 nm

1,10 Corning

InGaAs 1060 nm

PPMgLN periodic-poled MgO-doped lithium nio-

bate 530 nm

10 Corning

15

10.8 W 304 mW

304 mW 72.9 % 10

15-20 % /

2009

GaN11 c GaN

c

LED DVD 4

400 nm

15 510 nm12 15 In

InGaN

GaN

c

5,6 In

Page 3: 青色 緑色半導体レーザー技術の最前線 - LSJ › laser › oshirase › Nobel_Prize › 3810(2010)dr...青色/緑色半導体レーザー技術の最前線 太田 裕朗,中村

Fig. 3 Top fi gure: Spontaneous emission and lasing spec-tra of 516 nm green LD developed by UCSB re-search group. Bottom fi gure: L-I and V-I curves of the same green LD.37

Fig. 4 The relative LED output powers for m m- and the (2021) plane according to the UCSB after Lin et al.37

2010 10740

GaN

c GaN

LED

GaN LED

510-515 nm 8 mW12

520-524 nm 50 mW 13,14

524 nm

50 mW

2.3 %

13

c

c 90

c

6

16 18 c

m GaN 19,20

m

500 nm 21 27 490-

500 nm

0.5-4 % c

24 In 520-

530-nm

28 m

UCSB

1122 29

32 30

33

2009 m 15 2021

531 nm 34,35

2.5 mW

0.22 % Fig. 3 UCSB

Al GaN

2021 516 nm36 38 Fig. 4 m 2021 LED

500 nm 202137

/ GaN

525 nm39 522 nm 30 mW

0.8 %

/ GaN

32,40

20,41 m

c40

Page 4: 青色 緑色半導体レーザー技術の最前線 - LSJ › laser › oshirase › Nobel_Prize › 3810(2010)dr...青色/緑色半導体レーザー技術の最前線 太田 裕朗,中村

Table 1 Summary of the typical device performance of InGaN-based green LDs. The parameters λ , Lmax, Ith, Jth, and Vth are the lasing wavelength, maximum output power, threshold current, threshold current density, and threshold voltage, re-spectively.

38 10 / 741

1122

1123 m

32 2021

101434

GaN8

GaN

2021

Fig. 2 /

LED

Table 1 2009

2010

c /

3

InGaN

3

9

gΓ αm α i

g Γ

I

s t Itr g I ≈ η i s I Itrt

Ith = { αm α i /sη iΓ}1/t Itr

η i

1 η i

η i Ith

αm α i ∝ η i αm α i = xη i

25,34

q

100 %

αm α i = xη i P ∝

xη i α i η d/η i

η d

42

η i 30 %

2009

40 %

100 % Fig. 2

LED

LED 30 %43 c LED

/

In 30 %

InGaN

Fig. 4

UCSB Al

Page 5: 青色 緑色半導体レーザー技術の最前線 - LSJ › laser › oshirase › Nobel_Prize › 3810(2010)dr...青色/緑色半導体レーザー技術の最前線 太田 裕朗,中村

2010 10742

37

SHG

LED 2

In

InGaN

参考文献

1 Y. Hirano, T. Sasagawa, T. Yanagisawa, S. Yamamoto, A. Nakamura, T. Yagi, and H. Sugiura: International Quantum Elec-tronics Conference (2009) PThA3.

2 SONY Corporation, News Release on Aug 21 in the web-site (2008) (Web-address: http://www.sony.net/SonyInfo/News/Press/200808/08-099E/index.html).

3 D. Imanishi, Y. Sato, K. Naganuma, S. Ito, and S. Hirata: Elec-tron. Lett. 41 (2005) 1172.

4 S. Nakamura, S. Pearton, and G. Fasol: The Blue Laser Diode: The Complete Story 2nd ed (Springer, Berlin, 2000).

5 J. S. Speck and S. F. Chichibu: MRS Bulletin 34 (2009) 304. 6 H. Ohta and K. Okamoto: MRS Bulletin 34 (2009) 324. 7 A. Michiue, T. Miyoshi, T. Yamamoto, T. Kozaki, S. nagahama, Y.

Narukawa, T. Yamada, and T. Mukai: Proc. SPIE 7216 (2009) 72161Z-1.

8 T. Kamikawa, Y. Kawaguchi, P. O. Vaccaro, S. Ito, and H. Kawanishi: Appl. Phys. Lett. 95 (2009) 031106.

9 S. L. Chuang: Physics of Optoelectronic devices (John Wiley & Spns, Inc., New York, 1995).

10 H. K. Nguyen, M. H. Hu, Y. Li, K. Song, N. J. Visovsky, S. Coleman, and C.-E. Zah: Proc. SPIE 6890 (2008) 68900I-1.

11 S. Nakamura and M. Riorden: Scientific American Magazine (2009).

12 T. Miyoshi, S. Takeshi, T. Yamamoto, T. Kozaki, S. Nagahama, and T. Mukai: Appl. Phys. Express 2 (2009) 062201.

13 S. Lutgen, A. Avramescu, T. Lermer, M. Schillgalies, D. Queren, J. Müller, D. Dini, A. Breidenassel, and U. Strauss: Phys. Status Solidi A (2010).

14 A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss: Appl. Phys. Express 3 (2010) 061003.

15 S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto: Jpn. J. Appl. Phys. 35 (1996) L74.

16 M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai: Jpn. J. Appl. Phys. 45 (2006) L659.

17 K. Okamoto, H. Ohta, D. Nakagawa, M. Sonobe, J. Ichihara, and H. Takasu: Jpn. J. Appl. Phys. 45 (2006) L1197.

18 K. Fujito, S. Kubo, and I. Fujimura: MRS Bulle. 34 (2009) 313.19 M. C. Schmidt, K. C. Kim, R. M. Farrell, D. F. Feezell, D. A.

Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura: Jpn. J. Appl. Phys. 46 (2007) L190.

20 K. Okamoto, H. Ohta, S. F. Chichibu, J. Ichihara, and H. Takasu: Jpn. J. Appl. Phys. 46 (2007) L187.

21 K. Okamoto, T. Tanaka, M. Kubota, and H. Ohta: Jpn. J. Appl. Phys. 46 (2007) L820.

22 M. Kubota, K. Okamoto, T. Tanaka, and H. Ohta: Appl. Phys. Ex-press 1 (2008) 011102.

23 Y. Tsuda, M. Ohta, P. O. Vaccaro, S. Ito, S. Hirukawa, Y. Kawaguchi, Y. Fujishiro, Y. Takahira, Y. Ueta, T. Takakura, and T. Yuasa: Appl. Phys. Express 1 (2008) 011104.

24 K. Okamoto, T. Tanaka, and M. Kubota: Appl. Phys. Express 1 (2008) 072201.

25 K. Okamoto, J. Kashiwagi, T. Tanaka, and M. Kubota: Appl. Phys. Lett. 94 (2009) 071105.

26 K. M. Kelchner, Y. D. Lin, M. T. Hardy, C. Y. Huang, P. S. Hsu, R. M. Farrell, D. A. Haeger, H. C. Kuo, F. Wu, K. Fujito, D. A. Cohen, A. Chakraborty, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars: Appl. Phys. Express 2 (2009) 071003.

27 Y. D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C. Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura: Appl. Phys. Express 2 (2009) 082102.

28 F. Wu, Y. D. Lin, A. Chakraborty, H. Ohta, S. P. DenBaars, S. Nakamura, and J. S. Speck: Appl. Phys. Lett. 96 (2010) (to be published).

29 A. Tyagi, Y. D. Lin, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura: Appl. Phys. Express 1 (2008) 091103.

30 H. Asamizu, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura: Appl. Phys. Express 1 (2008) 091102.

31 H. Asamizu, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura: Appl. Phys. Express 2 (2009) 021002.

32 D. S. Sizov, R. Bhat, J. Napierala, C. Gallinat, K. Song, and C. Zah: Appl. Phys. Express 2 (2009) 071001.

33 A. Tyagi, F. Wu, E. C. Young, A. Chakraborty, H. Ohta, R. Bhat, K. Fujito, S. P. DenBaars, S. Nakamura, and J. S. Speck: Appl. Phys. Lett. 95 (2009) 251905.

34 Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura: Appl. Phys. Express 2 (2009) 082101.

35 Y. Yoshizumi, M. Adachi, Y. Enya, T. Kyono, S. Tokuyama, T. Sumitomo, K. Akita, T. Ikegami, K. Katayama, and T. Nakamura: Appl. Phys. Express 2 (2009) 092101.

36 A. Tyagi, R. M. Farrell, K. M. Kelchner, C. Y. Huang, P. S. Hsu, D. A. Haeger, M. T. Hardy, C. Holder, K. Fujito, D. A. Cohen, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura: Appl. Phys. Express 3 (2010) 011002.

37 Y. D. Lin, S. Yamamoto, C. Y. Huang, C. L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura: Appl. Phys. Express 3 (2010) 082001.

38 Y.-D. Lin: Ph.D dissertation in University of California, Santa Barabara (2010).

39 J. W. Raring, E. M. Hall, M. C. Schmidt, C. Poblenz, N. Pfi ster, D. Kebort, Y.-C. Chang, D. F. Feezell, R. Craig, J. S. Speck, S. P. DenBaars, and S. Nakamura: SPIE Defense, Security, and Sens-ing Symposium 2010, 7686-18 (2010); and Private communica-tion with J. W. Raring in Kaai, Inc.

40 T. Onuma, K. Okatomo, H. Ohta, and S. F. Chichibu: Appl. Phys. Lett. 93 (2008) 091112-1.

41 T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama, and T. Nakamura: Appl. Phys. Express 3 (2010) 011003.

42 P. Smowton and P. Blood: IEEE J. Sel. Top. Quantum Electron. 3 (1997) 491.

43 M. Peter, A. Laubsch, W. Bergbauer, T. Meyer, M. Sabathil, J. Baur, and B. Hahn: phys. Stat. solidi (a) 206 (2009) 1125.