18
1 EE C245 : Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 1 EE C245 – ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 25 : Sensing Circuits EE C245 : Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 2 Lecture Outline Reading: Senturia Chpts. 6, 14 (op amp parts), 19 Lecture Topics: Sensing Circuits Ideal Op Amps Velocity Sensing Circuits Position Sensing Circuits Non-Ideal Op Amps MEMS/Transistor Integration

EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

1

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 1

EE C245 – ME C218Introduction to MEMS Design

Fall 2007

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer SciencesUniversity of California at Berkeley

Berkeley, CA 94720

Lecture 25: Sensing Circuits

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 2

Lecture Outline

• Reading: Senturia Chpts. 6, 14 (op amp parts), 19• Lecture Topics:

Sensing CircuitsIdeal Op AmpsVelocity Sensing CircuitsPosition Sensing CircuitsNon-Ideal Op Amps

MEMS/Transistor Integration

Page 2: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

2

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 3

Complete Electrical-Port Equiv. Circuit

V1

VP

Fd1

d1 d2

Elec

trod

e 2

Elec

trod

e 1

I1C1 C2

k

x

m

b

ηe2:1cxlx rx

Co1

1:ηe1

Co2

V2

I2

+

-V1

I1

+

-V2

I2

x

mlx =

kcx

1=

brx =

1

111 d

CVxCV o

PPe =∂∂

2

222 d

CVx

CV oPPe =

∂∂

Static electrode-to-mass overlap

capacitance

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 4

Condensed Equiv. Circuit (Symmetrical)

ηe:1cxlx rx

Co1

1:ηe

Co2

+

-V1

I1

+

-V2

I2

x

CxLx Rx

Co1 Co2

+

-V1

I1

+

-V2

I2

2e

xmLη

=

kC e

x

2η=

2e

xbRη

=

If ηe1 = ηe2, then …

where

Holds for the symmetrical case, where port 1 and

port 2 are identical

Holds for the symmetrical case, where port 1 and

port 2 are identical

Page 3: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

3

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 5

Phasings of Signals

• Below: plots of resonance electrical and mechanical signals vs. time, showing the phasings between them

V1

VP

Fd1

d1 d2

Elec

trod

e 2

Elec

trod

e 1

I1C1 C2

k

x

m

b

V2

I2

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 6

Port 1 to 2 TransG Across the Circuit

ηe2:1cxlx rx

Co1

1:ηe1

Co2

+

-V1

I1

+

-V2

I2

x

•What is the transconductance from port 1 to port 2 with port 2 shorted to ground?

Page 4: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

4

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 7

Port 1 to 2 vi-to-io Transfer Function

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 8

Sensing Circuits

Page 5: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

5

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 9

Sense Electrodes

Tuning Electrodes

Sense Electrodes

Tuning Electrodes

Drive Electrode

zΩr

Drive

Sense

[Zaman, Ayazi, et al, MEMS’06]

Drive Voltage Signal

(-) Sense Output Current

(+) Sense Output Current

Drive Oscillation Sustaining Amplifier

Differential TransRSense

Amplifier

MEMS-Based Tuning Fork Gyroscope

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 10

Detecting Velocity Versus Position

• Transfer Function:

• Detect position when the output is varying slowly, i.e., at low frequencies

Position(i.e., displacement)

22

2

)(1

)()(

oo

o

d sQsksFsX

ωωω

++=

ω

)()(

sFsX

dLowpassBiquad

ωo

Velocity

• Transfer Function:

• Detect velocity when the output is at resonance or when a bandpass response is required

22

2

)(1

)()(

oo

o

d sQss

ksFs

ωωωυ

++=

ω

)()(sFs

d

υ

ωo

BandpassBiquad

Page 6: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

6

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 11

Detecting Velocity Versus Position

• Transfer Function:

Position(i.e., displacement)

22

2

)(1

)()(

oo

o

d sQsksFsX

ωωω

++=

Velocity

• Transfer Function:

22

2

)(1

)()(

oo

o

d sQss

ksFs

ωωωυ

++=

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 12

Output Current Measures Velocity

ηe2:1cxlx rx

Co1

1:ηe1

Co2

+

-V1

I1

+

-V2

I2

x

• Relationship between output current and velocity:

• To turn current into voltage (for a voltage output), send the current into a resistor RD

• To get position, must integrate → send the current into a capacitor CD

xi eo &2η= Output current is proportional to velocity, and thus, directly measures velocity

Page 7: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

7

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 13

Velocity-to-Voltage Conversion

• To convert velocity to a voltage, use a resistive load

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 14

Position-to-Voltage Conversion

• To sense position (i.e., displacement), use a capacitive load

Page 8: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

8

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 15

Ideal Operational Amplifiers

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 16

Ideal Op Amp

• Equivalent Circuit of an Ideal Op Amp:

• Properties of Ideal Op Amps:

01 =i1v

-

+02 =i

( )−+ − vvA

0R

( )−+ −= vvAv0

( )12 vvA −=

2v

inR

+-

+-+-+v

−v

Voltage-Controlled Voltage Source (VCVS)

Single-ended outputDifferential input

∞=inR00 =R∞=A

1.2.3.

0== −+ ii

finite assuming , 0 == −+ vvv

4.

5. Why?

Page 9: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

9

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 17

Ideal Op Amp (cont)

∞=inR00 =R∞=A

1.2.3.

0== −+ ii

finite assuming , 0 == −+ vvv

−+−+ =→=−∴ vvvv 0

ground) (virtualcircuit short virtual 0 ⇒∞v

4.

5.

( ) finite 0 ==−∞ −+ vvv

Why? Because for

( )finite 0 =v

• Properties of Ideal Op Amps:

• Big assumption!• How can we assume this? We can assume this only when there is an appropriate negative feedback path!

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 18

Negative Feedback

0

0

SSSaSS

i βε

ε

−==

[ ] finite! 10 ==≈⇒∞→ββa

aSSa

i

finite! 10 ==∴ iSS

β

Where S could be a current, voltage, displacement, etc.,…

Negative feedback acts to oppose or subtract from input.

( )

( )β

β

β

aa

SSaSaS

SSaS

ii

i

+=→=+

−=

1 1 0

0

00

Overall transfer function.

(When there is negative FB around the amplifier.)

↑Δ βS

↑Δ iS↑Δ εS

εS+ a

β

↓Δ εS

↑Δ 0S0SiS

12

5

4

3

+-

Page 10: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

10

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 19

Negative Feedback

• Comments:1. Negative FB can insure S0 = finite even with a = ∞.2. Overall gain dependent (or overall T.F.) dependent only

on external components. (e.g., β).3. Overall (Closed-loop) gain (So/Si) is independent of

amplifier gain a.→ Very important, since amplifiers using transistors

can be designed to have large gain, but it’s hard to get an exact gain. i.e., if you’re shooting for a = 50,000, you might get 47,000 or 60,000 instead.

→ Comment 3 makes this less consequential.

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 20

Positive Feedback

• Contrast with Positive Feedback:

• But for a bounded, controllable function, need negative FB around the op amp

↑Δ βS

↑Δ iS ↑↑Δ SS+ a

β

↑↑Δ 0S0SiS

+

+Output blows up!

(for aβ > 1)

Will be the case for a = ∞.

If β is a bandpassbiquad transfer function → get oscillation at the

resonance frequency ωωο

β

Page 11: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

11

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 21

Inverting Amplifier

0viv-

++- 1i 0=−i

2i1R

2R

Virtual ground

OV

1. Verify that there is negative FB.2. node attached to (-) terminal is virtual

ground.3.

→=→=∴ −+ finite 0 vvv

21 0 iii =∴=−

22220

211

1

0

0

RiRiv

iRv

Rvi ii

−=−=

==−

=

1

20

1

22

10

RR

vvv

RRR

Rvv

ii

i −=∴−=⎟⎟⎠

⎞⎜⎜⎝

⎛−=⇒

NOTE: Gain dependent only on R1 & R2 (external components), not on the op amp gain.

Benefit: Any shunt C at this node will be grounded out.

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 22

• Put the feedback around the (+) terminal and see what happens

• This is not (-) FBCannot analyze using the ideal op amp methodCircuit will “rail out”

Flip the Op Amp Around

2R

0viv +

-

1R

−+ ≠≠∴ vvv finite, 0

( ) −+ →−= Lv

( ) ++ →+= Lv

conditions initialon depending or 0−+= LLv

Page 12: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

12

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 23

Transresistance Amplifier

1. Verify that there is neg. FB → yes, since same FB as inverting amplifier

2. Thus, vo = finite → v+ = v- → (-) terminal is virtual ground3. i- = 0 → i1 = i2

0vii-

+

1i

0=−i

2i

2R

Virtual ground

OV

2220 RiRiv i−=−= ⇒ 20 R

iv

i−=

An inverting amplifier is just a transresistanceamplifier with an R1 to

convert voltage to current!

• Take R1 away

Again, shunt C at this node will be grounded out.

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 24

Velocity Sensing Circuits

Page 13: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

13

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 25

Problems With Purely Resistive Sensing

v1

VP

Fd1

d1 d2

Elec

trod

e 2

Elec

trod

e 1

io

i1 C1 C2

k

mCp

x b

vo

RD

Includes Co, line C, bond pad C, and next stage C

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 26

Problems With Purely Resistive Sensing

v1

VP

Fd1

d1 d2

Elec

trod

e 2

Elec

trod

e 1

io

i1 C1 C2

k

mCp

x b

vo

RD

• In general, the sensor output must be connected to the inputs of further signal conditioning circuits → input Riof these circuits can load RD

Ri

Dx

iD

i

o

ss

RRR

svv

ω+⋅Θ⋅=1

1)()(( ) piDD CRR

1=ω

Now:

,

These change w/ hook-up → not good.

Page 14: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

14

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 27

The TransR Amplifier Advantage

0v-

+

2i

2R

• The virtual ground provided by the ideal op amp eliminates the parasitic capacitance Cp and Ri

v1

VP

Fd1

d1 d2

Elec

trod

e 2

Elec

trod

e 1

i2

i1 C1 C2

k

m Cp

x b

• The zero output resistance of the (ideal) op amp can drive virtually anything

Ω= 0oR

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 28

Position Sensing Circuits

Page 15: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

15

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 29

Integrator

1. Verify that there is neg. FB → need a large resistor R2 to DC connect the output and (-) terminal

2. With R2, vo = finite → v+ = v- → (-) terminal = virtual gnd3. i- = 0 → i1 = i2

0vii-

+

1i

0=−i

2i

Virtual ground

OV

22

20 sC

isCiv i−=−= ⇒

2

0 1 sCi

v

i−=

• Replace R2 with C2

Again, shunt elements at this node will be grounded out.

C2

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 30

Problems With Pure-C Position Sensing

v1

VP

Fd1

d1 d2

Elec

trod

e 2

Elec

trod

e 1

io

i1 C1 C2

k

mCp

x b

vo

CD

Page 16: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

16

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 31

The Op Amp Integrator Advantage

• The virtual ground provided by the ideal op amp eliminates the parasitic capacitance Cp

v1

VP

Fd1

d1 d2

Elec

trod

e 2

Elec

trod

e 1 io

i1 C1 C2

k

mCp

x b

0v-

+

C2

R2

(for biasing)2

21

sCR >>

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 32

Non-Inverting Amplifier

2R1R

+

- 0v

iv1i

0=−i

2i

iv

21 0 iii =∴=−

21

1 iRvi i ==

Again, gain depends only on R1 & R2(external or ratioedcomponents), not on the op amp gain.

1. Verify that there is negative FB → same feedback circuit as for inverting amplifier, so neg. FB

−+ =→=∴ vvv finite 02.3. Analysis:

( )211

22110 RRRvRiRiv i +=+= 1

20 1 RR

vv

i+=

Page 17: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

17

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 33

Unity Gain Buffer

+

- 0v

iv

0=−iiv

1

20 1 RR

vv

i+=

2R1R

+

- 0v

iv1i

0=−i

2i

iv

1 0 =iv

v

R1=∞R2=0

Non-Inverting Amplifier

Unity Gain Buffer

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 34

Differential Position Sensing

Page 18: EE C245 – ME C218 Introduction to MEMS Design Fall 2007gamescrafters.berkeley.edu/~ee245/fa07/lectures/Lec25.SensingCkt… · Lecture 25: Sensing Circuits EE C245: Introduction

18

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 35

Differential Position Sensing

Suspension Beam in Tension

Proof Mass

Sense Finger

C2

Fixed Electrodes

Tethers with fixed ends

C1

C2

C1Vo

VP

-VP

• Example: ADXL-50

EE C245: Introduction to MEMS Design Lecture 25 C. Nguyen 11/19/07 36

Buffer-Bootstrapped Position Sensing

+VP

-VP

+

-0v

Unity Gain Buffer

Cp

Includes capacitance from interconnects, bond pads, and Cgs of the op amp

Cgd

0v

0v

Cgd = gate-to-drain capacitance of the input MOS transistor

• Bootstrap the ground lines around the interconnect and bond pads

No voltage across CpIt’s effectively not there!

InterconnectGround Plane