38
Starting the Study of Economic Evolution with Nelson–Winter-like Models Version: 12th April 2002 Esben Sloth Andersen [email protected] http://www.business.auc.dk/evolution/esa/ DRUID, Aalborg University 1

Economics Evolution

Embed Size (px)

DESCRIPTION

Economics Evolution

Citation preview

StartingtheStudyofEconomicEvolutionwithNelsonWinter-likeModelsVersion: 12th April [email protected]://www.business.auc.dk/evolution/esa/DRUID,AalborgUniversity1OverviewPurposesof the lecture and the slidesIntroductiontoNelsonWintermodelswhich has a pioneering statusin evolutionary modellingIntroductiontoevolutionarymodellingby constructing from scratcha family of NelsonWinter-like modelsIntroductiontoevolutionarysimulationin relation toNelsonWinter-like modelsCompendiumof Andersen and Valente (2002), Andersen (2001) andtosome extentValente and Andersen (2002). ReferencesarefoundonthelastslideContents of the slides andto some extentthe lectureTheNelsonWinterbook: background, main models and problemsThestandardNelsonWintermodel of industrial dynamics (memberof theAKmodel family)TheNelsonWinter-likeALmodelswith only labour and knowledge(theAL model family)TheALMarkImodel withxedproductivitiesandreplicatordynamicsincludingdeductionsandsimulationsTheALMarkIImodels withendogenouschangeofproductivitiesTheALMarkIIImodels withemergingmarketsforintermediategoodsandR&DspecialisationTheartofsimulationin relation to evolutionary models and theLaboratory for simulation development (Lsd)2ThehistoryandstateofevolutionaryeconomicsStylisedhistoryinthreestages (cf. Hodgson 1993 and Andersen 1996):1. Oldevolutionaryeconomics. The verbal accounts that can now berecognised as covering aspects of economic evolutionFromAdamSmithviaMarx,MengerandMarshalltoVeblen,SchumpeterandHayek2.DarkAges ofevolutionaryeconomics. The crowding out of theverbal approach when economics reached high standards in static analysisEspeciallyfromthe1920s. LionelRobbins: theoldstuis intelligentafter-dinnertalk3. Newevolutionary economics. The modern studies that are based on abreak-through in evolutionary modellinga. Startingpointsnotleastinthreebooks:NelsonandWinter,AnEvolutionaryTheoryofEconomicChange(1982)MaynardSmith,EvolutionandGameTheory(1982)Axelrod,TheEvolutionofCooperation(1984)b. GrowthanddiversityofnewevolutionaryeconomicsNeo-Schumpeterianstudiesoftechnology-basedindustrialdynamicsandeconomicgrowthEvolutionarygametheoryoftheformaltypethatstudytheevolutionaryselectionofNashequilibriaSimulation-orientedstudiesoftheevolutionofinstitutionsanddominatingstrategiesComplexitystudiesthatemphasisesofthepathdependencyofdominanttechnologies,etc.Andsoon. . .c. ContemporaryproblemsandperspectivesTheproductionofsolidresultsofevolutionaryanalysisisstillratherslowRelativelyhighbarrierstoentrytoevolutionarymodellingandsimulationRapiddiusion(e.g. intothejournalsofbusinesseconomicsandeconomicgeography)beforebasicissueshavebeenclariedThediusionintopolicyaspectsisincreasing,andherethemodellingproblemsareevenlarger3RevisitingtheNelsonWinterbook20yearsafterContents in brief summaryPartI OverviewandMotivationPartII Organization-TheoreticFoundationsofEconomicEvolutionaryTheoryPartIII TextbookEconomicsRevisitedPartIV GrowthTheoryPartV SchumpeterianCompetitionPartVI EconomicWelfareandPolicyPartVII ConclusionCharacteristics(cf. Andersen 1996, Ch. 4)The populationperspective is fundamentalTheNWevolutionarytheorystartsfromrecognisingthatrmsareheterogeneousandboundedlyrational,sotheyformapopulationwithevolvingcharacteristicsSynthesisofmechanisms. The NW evolutionary theory is based on asynthesis ofTransmission: TheoriesofroutinesandtheirreproductioninrmsMutation: TheoriesofthecreationofnewroutinesinrmsSelection: TheoriesoftheselectionenvironmentanditsinuenceEmphasisonsimulationmodels. The synthesis of the evolutionarymechanisms is made by means of simulation modelsThestartingpointisPartII,buttheactualsynthesistakesplacebymeansoftheevolutionaryNWmodelsthataredesignedforcomputersimulation(PartsIVandV)Appreciative approach. All major NW models are designed with aconcrete problem in mind, although it is especially emphasised in recenthistory-friendly modelsAnalyticalmodels as servants. Nelson and Winter make models forwhich mathematical deductions can be made for the sakeof preparingthe ground for more realistic models4OverviewofNelsonWintermodels(numberedbychapters)Simpleformalmodelsfor analytical results:NW6: SectionAParticularModelofEconomicSelection: NelsonandWinter(1982,Ch. 6,144154)NW7: SubstitutionAMarkovModelofFactorSubstitution: NelsonandWinter(1982,Ch. 7,175192)NW10.1: DevelopmentDevelopmentandBackwardnessinaTwo-TechnologyEvolutionaryModel: NelsonandWinter(1982,Ch. 10,235240,240245)NW10.2: GrowthasselectionGrowthasaPureSelectionProcess: ManyTechniquesandManyVariableInputs: NelsonandWinter(1982,Ch. 10,240245).Growthandindustrymodelsfor simulation results:NW9: Growthvs. SolowAnEvolutionaryModelofEconomicGrowth:NelsonandWinter(1982,Ch. 9,209214)NW12: IndustrialdynamicsIDynamicCompetitionandTechnicalProgress: NelsonandWinter(1982,Ch. 12,281287,302f.)NW13: IndustrialdynamicsIIForcesGeneratingandLimitingConcentrationunderSchumpeterianCompetition: NelsonandWinter(1982,Ch. 13)NW14: IndustrialdynamicsIIITheSchumpeterianTrade-oRevisited:NelsonandWinter(1982,Ch. 14)Subsequentmodelsby Nelson and WinterXNW84: RegimesSchumpeterianCompetitioninAlternativeTechnologicalTechnologicalregimes: Winter(1984).XNW99: History-friendlymodelsHistory-friendlyModelsofIndustryEvolution: TheComputerIndustry: Malerba,Nelson,OrsenigoandWinter(1999).Limitationsof the overviewFurtherworks NeitheranalyticalNWmodelspublishedafter1982northecontributionsofotherauthorsarelisted(thelatterarepartlysurveyedinKwasnicki,2001).5TheevolutionarymechanismsandtheNWmodels(I)TwocorequestionsinNWmodelsare:Willtheevolutionaryprocessmovetowardmonopoly?Howcanthis(unrealistic?) tendencybeavoided?Thesimpleselectionprocessdue to the basic structure of NW modelsDierentproductivities. FirmsnormallyhavedierentcapitalproductivitiessothatagivenstockofcapitalcanproducedierentquantitiesindierentrmsUniformprices. Allrmsfacethesameoutputpriceandthesamefactorprices.Dierentprotrates. DierentproductivitiesandunitarypricesmeansthatrmshavedierentprotratesSelection ofrms. Firmsarebeing selected sincethedierentprotratesleadtodierentgrowthrates. Supernormalprotscanbeconsideredasrewards for high tness, while subnormal prots are punishmentsfor low tnessSelectionandtheprocess ofaccumulation. Investment behaviour maychange the basic selection mechanismSimplecapacityaccumulationandmonopoly. Ifrmsinvestalltheirprotsinaccumulationanddonothaveexternalnance,thenthermwiththehighestproductivitywillgrowintoamonopolyMonopolisticrestraint. InthestandardNWmodelthisfull selection isavoidedbymonopolisticrestraintoncapacityaccumulation. ThusthemodelsincludethermsincreasingawarenessoftheoveralldemandcurveasitsmarketshareincreasesEntryofnewrms. Analternativestrategytocontrolthetendencytowardmonopolyistointroducenewrmsintotheindustry. Thesenewrmsenterfromanexogenouspoolofrms(cf. e.g.Winter,1984,283288).Externalnance couldalsochangethebasicselectionprocessbysuckingprotsoutofdominantrms. IntheNWmodelsit,however,strengthensthebasicselection6TheevolutionarymechanismsandtheNWmodels(II)Theinnovationimitationprocessboth produces and controls the varianceof the rms productivitiesInnovationindependentofrmbehaviour. Inthiscaseinnovationscomelike mannahfromheaven tosmallandlargerms. Inthis(unrealistic)waywecanavoidmonopolytSatiscingbehaviourandinnovation. IntheNW9growthmodel search forimprovementsisanadhocactivitythatemergescostlesslywhenarmexperiencesunsatisfactoryresults. ThisbehaviourhelpstoavoidmonopolyImprovementasapermanentstrategy. ThisistheassumptioninmostoftheNWmodels. Theinnovationimitationprocessdoesnotremovethelong-termtendencytowardmonopolybecauseofincreasingreturnstotheapplicationofR&Dresults. Ifrmsshownorestraintontheirexpansion,monopolyemergeswithaprobabilityofoneSchumpeterian evolutionincludesjumpsinproductivityandquality,sohereweseefurtherpossibilitiestobreakoutofnear-monopolysituations7ThestandardNWmodelofindustrialdynamics(I)1. Themarketsare simplied to allow a focus on evolutionCapitalandlabourmarkets arearesimplycharacterisedbyxedpricesandunlimitedsupplyTheoutputmarket hasaxeddemandD. TheoutputpricePtissetsothatthemarketclears,i.e.Pt= D/Qt(1)2. Productionandprotfor rmjin periodtCapitalandproductivityFromperiodt 1thermhasitsownlevelsofcapitalKj,t1andproductivityAj,t1Output Additionalinputs(labouretc.) isbought,andtheresultingoutputisQjt= Aj,t1Kj,t1(2)Prot ThesumoftheoutputofallthermsQt=

nj=1 QjtresultsinthepricePtandtherevenuePtQjt. Thexedcostsperunitofcapitaliscincludesbothwagesandcapitalrental. TherearealsoR&Dexpendituresthatperunitofcapitalisrj. Thustheprotisjt= PtQjt (c + rj)Kj,t1(3)3. Capitalaccumulationis in principle simpleDepreciationUnlesstherminvestsitscapitalshrinkswiththerateofdepreciation.Financialconstraint Themaximuminvestmentisdeterminedbytheprotplusextranancialresourcesfrombanks. ThusImaxjt= (1 + b)jt.Desiredinvestment isdeterminedbythesizeofpricerelativetotheunitcosts.Iftheexpectedmarkupislessthanunity,Idesirejtbecomesnegative. Ifthermhasalargemarketshare,itshowsinvestmentrestraintbecausethewaytheoutputmarketisfunctioning. ThusIdesirejtisalsodeterminedbythemarketshare.Actualinvestment perunitofcapitalcomesfromacombinationoftheconstraintandthedesire:Ijt= min(Imaxjt, Idesirejt) (4)Thenewlevel ofcapital isonlyforuseinnextperiod. Itis:Kjt= (1 + Ijt )Kj,t1(5)8ThestandardNWmodelofindustrialdynamics(II)4. Endogenousproductivitychangeis the core issue of the NW modelProductivityandR&DCapitalproductivityisdeterminedbyrm-specicknowledgethatisimprovedbyR&Dthatcanbeinnovativeand/orimitative.TheR&Deortperunitofcapitalissplitupaccordingtoaxrulesothatrj= rINj+ rIMj(6)ImitativeR&DgivesifsuccessfulaccesstothebestproductivityoftheindustryAmaxj. ThetotaleortofthermisrIMjKj,t1andtheprobabilisticproductivityofresearchisIM. Theproductofthesetwonumbersgivesthemeannumberofimitationsperperiod. TheactualnumberisdrawnfromaPoissonprocess. Ifthenumberisatleastunity,wesetAIMj= Amaxj;otherwiseitis0.InnovativeR&DgivesifsuccessfulaccesstoaresultdrawfromanormaldistributionwithaxedstandarddeviationandameanthatdierbetweenthedierentNWmodels;inthecumulativeregimeitisequaltotheexistingproductivity. ThetotalinnovativeeortofrmisrINjKj,t1andtheprobabilisticproductivityofresearchisIN. Theproductofthesetwonumbersgivesthemeannumberofinnovationsperperiod. TheactualnumberisthedrawnfromaPoissonprocess. Ifthenumberisatleastunity,thermgetsadrawfromthenormaldistributionandtheresultisAINj. IfinnovativeR&Disunsuccessful,thisnumberis0.Newproductivityisdeterminedpreciselyandisavailableinthenextperiod:Ajt= max(Aj,t1, AIMjt, AINjt ) (7)Appropriabilityregimes arespecieddirectlybytheproductivityofimitativeresearch. Ifthisproductivityislow,thentheresultsoftheinnovatorsarewellprotected.Technologicalregimes arespeciedbythewaythemeanofthenormaldistributionofinnovativeresultsaredetermined: 1. Theregimewithrm-basedcumulationoftechnologyhasameanequaltoAj,t1. 2. Theregimewithindustry-basedcumulationoftechnologyhasameanequaltoAmeant1. 3. Theregimewithscience-basedtechnologyhasameanequaltoanexogenouslyknowledgethatisexponentiallygrowing.9StructureofthestandardNWmodelProtPhysicalcapitalVariableinputsCostsInnovation&imitationKnowledgeFirmsoutputRevenueOtherrmsTotaloutputPriceTotaldemandInvestment(dependentonmarketshare)Figure 1: StructurediagramofthestandardNWmodelofindustrialdynamics10StrategiesformodellingintheNWtraditionResultsandproblemsThe standard NW model has had a signicantinuence. But there are problems, e.g.Too manyparameters. Especially the xed demand in standard NWmodels is problematicAd hocinvestmentrestraintof large rms is problematic as a startingpointAd hocentryofnewrmsin extended NW models like Winter (1984)Separatesimpliedmodelsto study replicator dynamics, etc. areproblematicDicultiesofextendedsimulationmodelsbecause of thecomplexitiesDicultiesofteachingbecause of the complexitiesSolutions. There are dierent ways of coping with the problems within theNW tradition, e.g.1. Theback-to-basicsstrategyseeks for highly simplied startingpoints and then moves very slowly to the real complexity of evolutionaryprocesses.2. Theextensionsstrategyis largely related to Winter (1984). It hasrun into decreasing returns . . .3. The history-friendly strategyof Malerba, Nelson, Orsenigo andWinter (1999) emphasises the main NW strength: the relationship toambitious empirical studies4. Thedemandsidestrategyadds a theory of the complexity ofdemand to reach more realistic industrial dynamics (partly in relation tothe ChamberlinLancaster traditions)5. Themultiactivitygeneralisationstarts from complex rms withintraorganisational diversity to deal with intermediate exchange,specialisation of R&D, and multisectoral growth and developmentIn the following strategy 1 is chosen, but it is intended to support otherstrategies (especially strategy 5).11ConstructingtheALmodelfamilyinthreesteps1. Studytheproblems oftheNWmodelfamily. This model family maybe called theAKmodels of economic evolution.aTo sum up, majorproblems are ThedefactostandardistheAKmodelofindustrialdynamics TheAKgrowthmodelhasbeenlessdeveloped SpecialisedAKmodelsanalyseaspectsofformalevolutionindependentlyfromtherestofthemodels Thesetypesofmodelshouldbeintegrated Butphysicalcapitalhindersaneasyintroductionofmultipleactivitiesandtheintroductionofssionsandfusionsofrms2. Developapure-labourversion oftheNWmodelofgrowth. Thismodel family may be called theAL models TheALmodelsalsocoverindustrialdynamicsandformalreplicatordynamics ALmodelsmakeiteasytointroducemultipleactivitiesaswellasssionsandfusions TheALmodelsishandytoolsforteachingevolutionarymodelsandsimplesimulationtechniques3. DevelopmultiactivityALmodelsas a generalisation of simple andwell-studiedAL models ItinheritsallthecharacteristicsofthesimpleALmodel,butismorecomplex Itallowsustostartfromastudyofintraorganisationaldiversity WecangraduallyintroduceintermediateexchangewithoutaddingadhocdemandspecicationsspecialisationofR&DinarichselectionenvironmentmultisectoralgrowthanddevelopmentfromthebottomupaBecauseoftheproductionfunctionQjt= Aj,t1Kj,t112Thexed-productivityALmodelofgrowth(ALMarkI)Thehouseholdsandthewagerate. There is an unchanging number ofNhouseholds, which each supply one unit of labour. The wage rate is xed tounity,w = 1. Households spend all income on the single product of theeconomy.Therms. There is a xed number ofn rms. We consider rmjin periodt.EmployeesandproductivityThermhasastockofemployeesLj,t1andxedproductivityAj. Allemployeesproduceattheproductivityleveloftherm. Theunitcostofthermiscj= 1/Aj.Output isproducedaccordingtoQjt= AjLj,t1(8)Prot TheoutputofthermissoldatthemarketpricePwiththerevenuePQjtandthecostswLj,t1= Lj,t1. Thustheprotisjt= PQjt Lj,t1(9)Newemployment Thepaymentofthermsemployees(Lj,t1)ismadeoutoftherevenuefromperiodt 1,soalltherevenueofperiodtisusedforemployment. ThustherminperiodtwillemployLjt= PQjt. ThechangeinthenumberofemployeesisLjt Ljt Lj,t1= PQjt Lj,t1= jt(10)Themarkets. There are only two markets: the output market and the labourmarket.Outputdemandinperiodtissimplytheincomeofthehouseholds. ThustheoutputmarketsdemandDt=

nj=1 Lj,t1= Lt.Outputsupplyistheaggregateoutputoftherms,Qt=

nj=1 Qjt.Outputprice Thepriceissettoclearthemarket. TosecurethatthesupplyQisbought,wehavethepricePt= Dt/QtLaboursupplyissimplythenumberofhouseholdsN.Labourdemandisdeterminedbytherms. TheaggregatedemandisLt=

nj=1 PtQtjLabourmarketequilibrium. Sincethemodelprovidesnomechanismtobringthexedsupplyoflabourinaccordancewiththedemandforlabour,thequestioniswhetherN= Lt. Weshallreturntothisquestion.13SummaryoftheALMarkImodelProtj= Wj CjLabourLj,t1CostsCj= wLj,t1= Lj,t1FirmsoutputQj= AjLj,t1RevenueWj= PQjKnowledgeAjOtherrmssactivitiesTotaloutputQ =

QjPriceP= D/QTotaldemandD=

Lj,t1Hiringorring: Lj= jWorkersincomeFigure2: Structurediagramof theALMarkImodel. Forsimplicityunlaggedtimesubscriptshavebeenomitted.14DeductionsaboutthedynamicsoftheALMarkImodelSimplicityleadstodeductions. Since theAL Mark I model is designedaccording to the KISS principle, we can make formal deductions about itsdynamics:1. Thetheoremofconstantemployment. AggregateemploymentandaggregatedemandisunchangingintheALMarkImodel.2. Thetheoremofdistance-from-meandynamics. IntheALMarkImodelthegrowthrateofthemarketshareofanyrmisequaltothedistancebetweentheaverageunitcostsanditsunitcosttimesitsmarketshare,i.e.dsjt/dt = sjt( ct cjt).3. Fishersfundamentaltheoremofnaturalselection. IntheALMarkImodelthegrowthrateofaverageproductivityisequaltothenegativeofthevarianceofthemarket-shareweightedunitcosts,i.e. d ct/dt = Var(cjt).Deductionshelpinfurtherwork. Given these theorems we immediatelycan say a lot about theAL Mark I model.Replicatordynamics. Thedistance-from-meandynamicsisalsocalledreplicatordynamics. Itmeansthatifallrmshavemeanproductivity,thereisnochangeinmarketshares. Furthermore,thermwiththehighestproductivitywillalwayshavethehighestgrowthrate,soitwillendupasamonopoly.Theimportanceofastatisticalapproach. ThethirdtheoremisavariantofthetheoremofR.A.Fisher(creatorofmuchofmodernstatisticsandevolutionaryanalysis). Itemphasisesthatwecanperformouranalysisintermsoftheweightedmeanvarianceoftheunitcosts/productivities. Asvariancemovestowardszero,thechangeofmarketsharesdisappears.15SimulatingthedynamicsoftheALMarkImodel(I)Table 1: HandsimulationoftheALMarkImodel.Period 0 1 2 . . . 14 15Firm1withA1= 1.2Employment 100.000 120.000 140.260 . . . 273.074 277.441Output 120.000 144.000 . . . 321.468 327.689Marketshare 0.400 0.468 . . . 0.910 0.925Prot 20.000 20.260 . . . 5.185 4.366Firm2withA2= 1.0Employment 100.000 100.000 97.403 . . . 25.523 21.609Output 100.000 100.000 . . . 30.046 25.523Marketshare 0.333 0.325 . . . 0.085 0.072Prot 0.000 -2.597 . . . -4.523 -3.914Firm3withA3= 0.8Employment 100.000 80.000 62.338 . . . 1.403 0.950Output 80.000 64.000 . . . 1.652 1.122Marketshare 0.267 0.213 . . . 0.006 0.004Prot -20.000 -17.662 . . . -0.662 -0.453AggregatedataEmployment 300.000 300.000 300.000 . . . 300.000 300.000Output 300.000 308.000 . . . 353.165 354.334Price/av. unitcosts 1.000 0.974 . . . 0.849 0.847Aggregateprots 0.000 0.000 . . . 0.000 0.000Growthaver. costs -0.027 -0.025 . . . -0.003 -0.002Varianceofunitcosts 0.027 0.025 . . . 0.003 0.003Outputdispersion(H) 2.9220 2.706 . . . 1.162 1.134Instability(I) 0.177 0.169 . . . 0.025 0.02216SimulatingthedynamicsoftheALMarkImodel(II)Usingthecomputer. Even in the simpleAL Mark I model we get helpRunmultiplesteps. Make a huge number of calculations to follow thedynamics to its endCheckdierentvarianceofproductivities. Generate distributions ofproductivities with a known variance and test the consequencesBepreparedforextensions. The computer makes it easy to endogeniseproductivity changeMake graphicaloutputfor comparisons and reporting0 100 200 300 400 5000.1560.1580.160.1620.164PeriodtAj0 100 200 300 400 50000.20.40.60.81PeriodtsjtFigure3: Simulationof theALMarkIamodel for500periodswithfourrms. Theproductivitiesof theleftpanel havebeendrawnrandomlyfromadistributionwithameanof0.16.17EconomiclifeonthelatticeThelatticeis a two-dimensional grid.Householdsinitially employed by the same rm are placed near to each otherEmploymentchangeis shown during the simulationProductivitydierencesbetweenemployeesmay be introduced. Theshift is always from low productivity to high productivity rms. But duringa period new employees may gradually improve from the low level to thehigh levelA.After2periods B.After10periods C.After30periodsD.After80periods E.After125periods F.After200periodsFigure 4: EvolutiononthelatticeoftheALMarkImodel.18FromtheALMarkImodeltotheALMarkIImodelsProductionandresearchis the new topicDivisionoflabour. ThermdividesitsstockofemployeesLj,t1byaxedparameterj. LabourforproductionisLprodj= (1 j)Lj,t1andlabourforresearchisLresj= jLj,t1.Productionfunction. OnlyrmsproductionworkersproduceoutputQj= AjLprodj(11)Costs. Sincew= 1,thermstotalcostsaresimplyCj= Lprodj+ Lresj= Lj,t1.Prot. ThermsellsallitsoutputatthemarketpriceP. Thusitobtainstheprotj= PQj Lj,t1= PAjLprodj Lj,t1(12)TheR&Doutcomeis modelled as a two-stage stochastic processProbabilityofaresearchsuccess. Theresearchershaveaxedproductivitythatismeasuredastheaveragenumberofsuccessesperperiodperresearcher,1/. TheresultofthermstotalresearchactivitiesismodelledasaPoissonprocesswithaveragewaitingtimeforasuccessequaltotimesthenumberofresearchers.Methodsofresearch. TheresearchworkersapplydierentR&Dmethodsaccordingtoxedparametersthatdeterminethedegreetowhichtheresearchersfocusondierentwaysofimprovingknowledge: (a)cumulationofthermsownknowledge,(b)imitationoftheleadingrmintheindustry,(c)applicationoftheindustrysaverageknowledge,and(d)applicationofgeneralknowledge.Outcomesofresearch. Withcumulativeknowledgetheresultisdrawnfromanormaldistributionwithmeandeterminedbythermspresentproductivityandaxedstandarddeviation.Productivitychange. The rms productivity in periodt is the maximum ofthe existing productivity inherited from periodt 1 and the potentialproductivity obtained by R&D, i.e.Aj= max(Aj,t1, Aresj). (13)19StructureoftheALMarkIImodelswithchangingproductivitiesProtj= Rj CjLabourLj,t1CostsCj= Lj,t1ResearchersLresj= rjLj,t1WorkersLprodj= (1 rj)Lj,t1Innovation&imitationAresjFirmsoutputQj= Aj,t1LprodjRevenueRj= PQjKnowledgeAj,t1PriceLj= Lj,t1 +jAj= max(Aj,t1, Aresj)Figure 5: Thebasic structureof theAL MarkII family of growth models with endoge-nousdeterminationoftheproductivitylevel(cf. gure2). Thediagramisdrawnfromtheviewpointofaparticularrmj. Thereadingofthediagramstartsfromthestatevariableslabourand knowledge(i.e. productivity). After theprothasbeen found,theemploymentlevel forthenextperiod is determined. Afterinnovation and imitation hasbeenperformed,theproductivityofthenextperiodisdetermined.20ThedynamicsofdierentALMarkIImodels(I)A.Thecaseofxedproductivities(ALMarkIa)0 100 200 300 400 5000.1560.1580.160.1620.164PeriodtAj0 100 200 300 400 50000.20.40.60.81PeriodtsjtB.Thecaseofrandom-walkcumulationofproductivities(ALMarkIIa)0 50 100 150 2000.150.20.250.30.35PeriodtAjt0 50 100 150 20000.20.40.60.81PeriodtsjtC.Longerrunofthecaseofrandom-walkcumulationofproductivities(ALMarkIIa)0 200 400 600 800 100024681012PeriodtAjt0 200 400 600 800 100000.20.40.60.81PeriodtsjtFigure 6: SimpledynamicalpatternsfromsimulationsofALMarkIImodelswithfourrms:(A)Theresearchintensitytozeroforallrms,sowehaveALMarkIamodel. (B)IntheALMarkIIamodel wehaveproductivityincreasesthat ineachperiodisdrawnfromarandomdistribution with a mean equal to the present productivity level of the rm. (C) The specicationoftheALMarkIIamodelimpliesthataseriesofrandomsuccessescan(withlesserandlesserprobability)changethesituationofpanelB.ThusweinpanelCconsideracontinuationofthepreviousALMarkIIasimulationandseethatpanelBdoesnotrepresentalock-insituation.21ThedynamicsofdierentALMarkIImodels(II)D.ThecaseofR&D-basedcumulationofproductivities(ALMarkIIb)0 50 100 15000.20.40.6PeriodtAjt0 50 100 15000.20.40.60.81PeriodtsjtE.ThecaseoftwormswithR&DandtwormswithoutR&D(ALMarkIIb)0 50 100 1500.160.180.20.220.24PeriodtAjt0 50 100 15000.20.40.60.81PeriodtsjtF.Thecaseofrmsthatarebothinnovatorsandimitators(ALMarkIIc)0 100 200 3000123PeriodtAjt0 100 200 30000.20.40.60.81PeriodtsjtFigure7: Dynamical patternsfromsimulationsof ALMarkIImodelswithfourrms: (D)Inthe ALMarkIIbmodel rms mayperformR&D, andthe innovative results have theirmeanvalueinthepresentproductivityoftherm. InpanelDallrmsperformhavethesameR&Dintensity. (E)Inpanel EtwormsperformR&DlikeinpanelsD, whilethetwootherrmshavenoR&Dandthusobtainsaninitiallyhigherprotability. (F)IntheALMarkIIcmodel all rms may perform both innovation and imitation. Imitators can in one step reach theproductivityleveloftheleadingrm. InpanelFallrmshavethe sameintensityofinnovativeR&DandthesameintensityofimitativeR&D.22TowardsALMarkIIIwithmultipleproductsBasicidea: Move from the aggregate activities ofAL Mark I and II rmsto multiple activities1. Each rmjhasmjt production activities2. A similar number of R&D activities improve the knowledge on theproduction activities3. A structural R&D activity increases the number of production activitiesand the related R&D activities so thatmj,t+1 = mjt + 1Simpleinterdependenceofactivities:One production activity produces nal output like in the otherALmodelsmjt 1 production activities produce intermediate goods used in thenal production activityMore complex interdependencies can easily be introducedSowhat?We may start with single-activity rms and let multiple activities evolveTwo rms with equal aggregate productivities may dier in activity-levelproductivitiesFirms can specialise into sellers and buyers of intermediate goodsTransaction costsR&D strategies may also be specialisedDierent R&D strategies t dierent exchange regimes23ThermintheALMarkIIImodelsofgrowthandindustrialdynamicsLabourInnovation&imitationIntermediategoodsFinaloutputKnowledgeIntermediategoodspurchasesIntermediategoodspricingandsalesFigure 8: Structure diagram that only covers a single rms activities in theALMark III models.24TwotypesofmarketintheALMarkIIImodelsFinalgoodpriceandcostsinanearlyandlaterstage0 10 20 304567890 10 20 30456789Intermediatedemandandsupplyinanearlyandlaterstage0 10 20 30 4022.533.544.50 10 20 30 4022.533.544.5Figure 9: AcomparisonofbetweenthenalgoodmarketandapotentialintermediategoodmarketintheALMarkIIImodels25TwotypesofR&DstrategyintheALMarkIIImodelsTopstrategy(rm 1)L0,1L1,1L2,1L3,1BeforeinnoL0,1L1,1L2,1L3,1InnoinA3,1L0,1L1,1L2,1L3,1+InnoinA3,1L0,1L1,1L2,1L3,1+InnoinA3,1Bottomstrategy(rm 2)L0,2L1,2L2,2L3,2BeforeinnoL0,2L1,2L2,2L3,2InnoinA0,2L0,2L1,2L2,2L3,2+InnoinA1,2L0,2L1,2L2,2L3,2+InnoinA2,2Figure10: Comparisonof twotypesof R&Dstrategywhenthereisnointermediategoods trade. Theareaof eachpieis thelabour costs of producingoneunit of naloutput. Theslicesofthepiearethelabourcostsinindividualactivities.26ConclusionsontheconstructionoftheALmodelfamilyThesimpleALMark Imodel with xed productivities impliesAwhole-economyapproachwith veryfewparameters. ThismakesiteasiertounderstandthanthestandardNWmodelApure-labourapproachthatmakesiteasytointroducee.g. fusionsandssions. ThisallowsasimplesolutiontotheentryandexitproblemofNWmodelsAdeductiveapproachthatgivesproventheoremsaboutthedynamicsofthemodelAsimulationapproachthatgiveadeeperintuitionaboutthedynamicsofthemodelandpreparesforextensionsAnALmodel familywasnotexplicitlycreated. However,entry/exitofrmsandthemodellingoftheproductivitydevelopmentofindividualemployeesaresuchextensionsTheALMark IImodelswith changing productivities implies e.g.ThesameapproacheslikeforALMarkI. ButwedidnothavetimeforthatEasyreductiontotheALmodel bysettingproductivitychangetozero.ThuswecancheckwhetheroursimulationmodelisconstructedcorrectlyEasyintroductionofdierentregimes ofproductivitychange. ThusawholefamilyofALMarkIImodelscanbecreatedquicklyTheALMark IIImodelsare still described programmatically rather thanin detail. However, we see e.g.Intermediategoodsratherthancapital. ThemodelsdonothavetoassumexedpricesoftheproducedinputsResearchspecialisationimpliesbindingsonfuturepossibilities,soitopensupalargeareaofstrategyevolutionTransactioncosts caneasilybeintroducedalthoughtheyhavebeenleftoutintheNelsonWintertradition(cf.Winter,1991)ThetheoryofthermiscloselyrelatedtomultiactivityrmsanditiscentraltotheverbalNelsonWintertradition(cf.NelsonandWinter,1982,PartII)27ElementsoftheartofsimulationWhatcanbesaid,canbesaidclearly,andwhatyoucantsay,youshouldshutupaboutindependentlybyWittgensteinandtheComputerBasicprinciples forhandlingbothevolutionarysystemsandthesimulationofthemTheKISSprinciple: KeepItSimple,Stupid! EvolutionarymodellingissocomplexthatitmustbehandledwithcareThedivide-and-governprinciple: DecomposehardtaskssubtasksTheprincipleofsuccessiveapproximations: Startfromthesimple,andthenmovebytinystepstothecomplexTheunite-and-leadprinciple: BecomeavirtuosowithbymeansofthesubtasksyouhavemasteredThelevelsofsimulationworksuggestsanaturaltrajectoryModelapplication: ExploreagivenmodelbyasetofsystematicallyperformedsimulationsModeldevelopment: ExtendgivenmodelsorcreateanewoneSystemdevelopment: Develop thetools formodeldevelopmentandapplicationDeningasimulationbyfourlists1. Alistofmodelequations likeQuantity = Productivity Employment2. Alistofparametervalues likeProductivity= 1.2(intheALMarkImodel)3. Alistofinitialvaluesofstatevariables likeInitial employment = 1004. AlistofsimulationrunspecicationlikeSimulationsteps = 5000But. . . thecomputerneedsmoretoperformasimulationrun(e.g. providedbytheLsdsystem)28WorkinginloopsSimulationsettingsSystemdevelopmentValuesofparametersModelequations,andalgorithmsforrunningthemodelEvaluationofsimulationresultsInitialvaluesofstatevariables(5)(4)(1)(2)(3)Figure 11: Feedbacksinthesimulationofanevolutionarymodel.29Workinginsteps1. Problemdenition2. Modelspecicationandanalysis3. Modelimplementation4. Simulationanalysisofsingleruns5. Simulationstatisticsofmultipleruns6. Parameterexploration7. Modelspecicationcontrol8. ReportingresultsFigure 12: Stepsinsimulationwork. Afewfeedbacksareincluded.30Laboratoryforsimulationdevelopment(Lsd)TheLsdsystemis a system of simulation tools and evolutionary simulationmodelssee Andersen and Valente (2002) and Valente and Andersen (2002)PurposesareFacilitateexplorationofexistingmodels byawindows-basedinterfacetousersthatcoversallthestepsofmodelexplorationFacilitateextensionofexistingmodels byawindows-basedinterfacetodevelopersthatcoversallthestepsofmodeldevelopmentandbyasimpliedinterfacetotheC++programminglanguageFacilitatecreationofmodels bythesamemethodsasforexistingmodelsbutemphasisingthebottom-upmethodologyFacilitatedocumentationandreplicabilityofsimulationresultsthus,perhaps,overcomingthebadreputationofmuchsimulationworkFacilitatethecreationofasimulationcommunitybymore-or-lessenforcingrulesfordocumentationanddistributionofsimulationmodelsImplementationof the system has been a continuing project by Valente sinceit was initiated in 1995 by Dosi, Nelson, Winter and othersTheLsdModelsManager(LMM) isacomputerapplicationthatisusedfortheselection,compilationandmodicationofstand-alonesimulationmodels.ForusersinterestedonlyinmodelexplorationLMMisatoolforchoosingbetweenpreexistingsimulationmodels. LMMisalsousedbythedeveloperTheLsdModelExplorers(LMEs) arestand-aloneapplicationsforthesimulationofmodels. TheLMEallowsuserstochangethecongurationandthustoperformloops13ofgure11inanecientmanner. LMEisalsousedbythedeveloper31WorkinginstepsintheLsdsystem: ModelusersSelectmodelinLMMInspectbasicdocumentationandequationsStarttheLMEWritesimplereportsonthestudyLoadcongurationintheLMEChangecongurationInspectandchangehelplesRunmodelandstudyRunTimePlotAnalyseresultsintheLMEPlotdata MakestatisticsExportdatatootherapplicationsFigure 13: ThebasicuseoftheLsdsystem.32Firststep: SelectthemodelFigure 14: ThewindowoftheLsdsystemthatisrstencounteredbyusers. ThiswindowisthepartoftheLsdModelsManager(LMM),whereyouchoosethemodelwithwhichtowork.In the leftpart ofthe windowthere isalistof the modelsthat are found inthe Lsddirectory ofthe computer. When a model is chosen,its description is shown in the right part of the window.33WorkinginLsdsteps: StartandcongurationFigure 15: ThemainwindowofLMM.Wehavechosentorunthemodelimmediately.Figure 16: ThebrowserwindowoftheLME(LsdModelExplorer)foranAL-likemodelhasbeenopenedbyLMMandwehaveloadedasimulationspecicationcalledLK1arepldyn. IntherightpaneltheRunmenuhasbeenpulleddownandwearereadytorunthemodel.34WorkinginLsdsteps: ModelstructureandresultsFigure17: Themodel structurewindowof theLMEfortheAL-likemodel. Therearevehierarchicallyorganisedobjects: World, Economy, Firm, HouseSectorandOptions. SincethecursorisplacedovertheobjectWorld,weseethevariablesthatarefoundhere.Figure 18: During a simulation run in an LMEapplication it is possible to follow the dynamicsof selected variables. The have selected the market shares of the ve rms and see that they showa simple distance-from-mean dynamics. After the simulation run there are very rich possibilitiesfor exploring and documenting the results. Here we can also produce more beautiful and precisegraphics.35WorkinginLsdsteps: ModeldevelopersCopyofornewmodelinLMMWriteequationsinLMMDevelopthemodelinLMMMakebasicdocumentationCompileandstarttheLMEofthemodelDevelopconginsyncwithequationsLoadcongurationintheLMEDevelophelponthemodelRunmodelandstudyRunTimePlotAnalyseresultsintheLMEFigure 19: ThedevelopmentofLsdmodels.36WorkinginLsdsteps: WritingequationsFigure 20: HereLMMisusedforrewritingmodelequations. ThiscaneitherbedoneintheamixedLsd/C++languageor (ashere)inthe highlysimpliedLsdmacro language. Itisonlythedarktextthatismacrocode. Therestarecomments.37ReferencesAndersen, E.S.(1996),EvolutionaryEconomics: Post-SchumpeterianContributions,paperbackedn,Pinter,London.Andersen, E.S.(2001),TowardamultiactivitygeneralisationoftheNelsonWintermodel,PaperforDRUIDsNelsonandWinterConference,1215June,DRUID,Aalborg.URL:http://www.business.auc.dk/druid/conferences/nw/paper1/andersen.pdfAndersen, E.S.andValente,M.(2002),Introductiontoarticialevolutionaryprocesses,Chapterforthebookproject Articial EconomicEvolution: Model ExplorationandExtensionintheLaboratoryforSimulationDevelopment, DRUID,DepartmentofBusinessStudies,AalborgUniversity.URL:http://www.business.auc.dk/evolution/esapapers/esa02/andval1.pdfAxelrod,R.(1984),TheEvolutionofCooperation, BasicBooks,NewYork.Hodgson,G.M.(1993),EconomicsandEvolution: BringingLifeBackintoEconomics,Polity,Cambridge.Kwasnicki, W.(2001),Comparativeanalysisofselectedneo-Schumpeterianmodelsofindustrialdynamics,ComparativeAnalysisofSelectedNeo-SchumpeterianModelsofIndustrial Dynamics,DRUID,Aalborg.URL:http://www.business.auc.dk/druid/conferences/nw/paper1/Kwasnicki1.pdfMalerba,F.,Nelson,R.R.,Orsenigo,L.andWinter,S.G.(1999), History-friendly modelsofindustryevolution: Thecomputerindustry,Industrial andCorporateChange8,136.MaynardSmith,J.(1982),EvolutionandtheTheoryofGames,CambridgeUniversityPress,Cambridge.Nelson,R.R.andWinter,S.G.(1982),AnEvolutionaryTheoryofEconomicChange,BelknapPress,Cambridge,Mass.andLondon.Valente,M.andAndersen,E.S.(2002),Ahands-onapproachtoevolutionarysimulation:NelsonWintermodelsintheLaboratoryforSimulationDevelopment,ElectronicJournalofEvolutionaryModelingandEconomicDynamics1.URL:http://www.e-jemed.org/1003/Winter,S.G.(1984),Schumpeteriancompetitioninalternativetechnologicalregimes,JournalofEconomicBehaviorandOrganization5,287320.Winter,S.G.(1991),OnCoase,competence,andthecorporation,inO.E.WilliamsonandS.G.Winter(eds),OnCoase,Competence, andtheCorporation, OxfordUniversityPress,NewYorkandOxford,pp.179195.38