19
The Relationships Between BlackScholes Model And Financial Crash James Moore Economic Expert From Blair Academy Pakapark Bhumiwat (Nik) Blair Academy Class of 2014 May 5, 2014

Econ Research Paper - Final Draft

Embed Size (px)

Citation preview

Page 1: Econ Research Paper - Final Draft

 

 

 

 

 

 

 

 

The  Relationships  Between  Black-­‐Scholes  Model    

And  Financial  Crash  

 

 

 

 

James  Moore  

Economic  Expert  From  Blair  Academy  

 

Pakapark  Bhumiwat  (Nik)  

Blair  Academy  

Class  of  2014  

May  5,  2014  

Page 2: Econ Research Paper - Final Draft

Abstract  

  Like  each  chemical  element  that  had  various  properties  depending  on  many  

combinations  of  amalgamating  protons,  neutrons,  and  electrons,  the  market  price  

always  fluctuated  depending  on  such  various  factors  as  underlying  price,  strike  

price,  risk-­‐free  interest  rate,  market  volatility,  the  length  of  time  interval,  and  

dividend.  Traders  had  to  apply  their  intuition  and  their  previous  experience  to  

predict  the  future  price  until  1973,  when  Fischer  Black  and  Myron  Scholes  

coordinately  worked  with  a  plethora  of  statistical  data  to  generate  the  world-­‐

shaking  mathematical  model,  called  Black-­‐Scholes  formula.  Their  ideal  formula,  a  

main  material  helping  predict  the  future  call  price  under  particular  conditions,  

completely  blew  out  the  entire  financial  world  because  many  specific  and  idealistic  

prerequisites  for  Black-­‐Scholes  formula  never  existed  in  the  real  financial  market.  

However,  it  resulted  in  the  rapidly  increasing  number  of  unprofessional  traders  who  

considered  the  entire  financial  market  as  just  mathematical  models  that  led  to  the  

financial  crash  in  1987.  

  However,  the  main  purpose  of  this  analysis  paper  was  for  high  school  

students  to  have  a  broad  understanding  of  the  complicated  version  of  Black-­‐Scholes  

Model.  

Page 3: Econ Research Paper - Final Draft

Technical  Terms  

Arbitrageur  An  investor  who  tries  to  make  a  profit  from  the  inefficient  market  by  

making  trades  that  counteract  each  other  and  earn  the  risk-­‐free  profit  at  the  same  

time  

America  Option  An  option  that  the  trade  can  occur  at  any  point  during  the  life  of  

the  contract  

At-­‐the-­‐money  An  option  the  price  of  an  underlying  asset  and  the  strike  price  are  

equal  

Call  Price  The  price  that  the  bond  or  stock  can  be  redeemed  

Derivative  An  investment  product  that  derives  its  value  from  an  underlying  asset  

European  Option  An  option  that  the  trade  occurs  at  the  expiration  of  the  contract  

Lognormal  Distribution  (Galton  Distribution)  A  continuous  probability  

distribution  of  a  random  variable  whose  logarithm  is  normally  distributed  

In-­‐the-­‐money  An  option  that  the  derivative  would  make  money.  A  call  option  will  

be  in-­‐the-­‐money  when  the  price  of  an  underlying  asset  is  higher  than  the  strike  

price  

Strike  Price  The  agree-­‐upon  price  at  which  an  option  can  be  exercised  

Option  A  financial  derivative  that  gives  the  holder  the  right  to  either  buy  or  sell  a  

fixed  amount  of  financial  assets  at  the  agree-­‐upon  price  

Out-­‐of-­‐the-­‐money  An  option  the  derivative  would  not  make  money.  A  call  option  

will  be  out-­‐of-­‐the-­‐money  when  the  price  of  an  underlying  asset  is  lower  than  the  

strike  price  

Underlying  Price  The  price  of  the  underlying  asset  

Page 4: Econ Research Paper - Final Draft

Background  

  The  price  in  financial  market  fluctuates  depending  on  various  factors.  In  this  

paper,  the  author  focus  only  on  six  primary  factors  in  the  macroscopic  scale,  

including  underlying  price,  strike  price,  the  length  of  time  interval,  market  volatility,  

free-­‐risk  interest  rate  and  dividends.1  

1. Underlying  price  

  The  current  price  of  the  underlying  asset  is  one  of  the  most  influential  factors  

that  determines  the  price  of  any  goods  or  services  in  financial  market.  Basically,  

when  the  price  of  underlying  asset  increases,  the  call  price  will  increase.  Conversely,  

when  the  price  of  underlying  asset  decreases,  the  call  price  will  decrease.  

2. Strike  price  

  The  strike  price  is  usually  used  to  determine  that  the  option  is  in-­‐the-­‐money,  

at-­‐the-­‐money,  or  out-­‐of-­‐the-­‐money.  A  call  option  will  be  in-­‐the-­‐money  when  the  

current  price  of  the  underlying  asset  is  higher  than  the  strike  price;  a  call  option  will  

be  at-­‐the-­‐money  when  the  current  price  of  the  underlying  asset  is  equal  to  the  strike  

price;  and  a  call  option  will  be  out-­‐of-­‐the-­‐money  when  the  current  price  of  the  

underlying  asset  is  lower  than  the  strike  price.    

3. The  length  of  time  interval  

  The  length  of  time  interval  means  a  period  of  time  from  the  present  time  to  

the  expiration  date  of  the  underlying  asset.  Generally,  the  longer  the  length  of  time  

interval,  the  higher  the  call  price  in  finacial  market.  

 

1  The  information  comes  from  Jean  Folger.  "Options  Pricing:  Introduction."  Investopedia.  N.p.,  n.d.  Web.  04  Apr.  2014.

Page 5: Econ Research Paper - Final Draft

4. Market  Volatility  

  Market  volatility  is  a  parameter  to  measure  the  price  change  regardless  of  

direction.  Market  volatility  is  used  to  predict  the  inclination  of  the  future  call  price  

in  financial  market.  In  terms  of  calculation,  we  assume  that  the  market  volatility  is  

equal  to  the  variance  of  statistical  data.    

5. Free-­‐risk  interest  rate  

  The  free-­‐risk  interest  rate  is  the  actual  interest  rate  applied  in  financial  

institutions.  Generally,  the  greater  the  interest  rate,  the  higher  the  call  price.  

6. Dividends  

  Divident  is  the  amount  of  any  cash  from  the  last  investment.  We  can  consider  

that  the  more  dividend  we  have,  the  less  the  price  of  underlying  price  and  the  call  

price  are.  

 

Black-­‐Scholes  Model  and  Its  Prerequisites  

  According  to  these  six  factors,  Black  and  Scholes  proposed  a  mathematical  

model,  called  Black-­‐Scholes  formula,  to  predict  the  future  call  price  under  the  

following  certain  conditions,    

1. There  is  no  dividend  during  the  length  of  time  interval  

2. The  risk-­‐free  interest  rate  and  market  volatility  are  constant  

3. Options  are  European  

4. The  market  is  effiecient  

5. It  follows  the  Galton  distribution  (lognormal  distribution)  

 

Page 6: Econ Research Paper - Final Draft

The  Black-­‐Scholes  formula  is    

𝐶!! 𝑘 = 𝑆!Φln 𝑆!

𝑘 + 𝑟 + 𝜎!

2 𝑇

𝑇 𝜎−  𝑘𝑒!!"Φ

ln 𝑆!𝑘 + 𝑟 − 𝜎

!

2 𝑇

𝑇 𝜎  

when   𝐶!! 𝑘    is  the  call  price  of  the  European  option  for  the  length  of  time  interval  T  

    𝑆!     is  the  current  price  of  the  underlying  asset  

  𝑇     is  the  length  of  time  interval  

  𝑘         is  the  option  strike  price  

  𝑟             is  the  free-­‐risk  interest  rate  

  𝜎     is  the  standard  deviation  of  statistical  data  

  Φ(𝑦)        is  the  cumulative  standard  lognormal  distribution  function  

Φ 𝑦 =   𝑓!(𝑦!)𝑑𝑦!!!! = !

!1+ erf !

!  where  erf 𝑦 = !

!𝑒!!!!

! 𝑑𝑡  

  Before  discussing  the  result  of  the  Black-­‐Scholes  formula,  the  author  will  

comprehensively  explain  the  mathematical  reasoning  behind  this  formula  in  the  

simplest  way  predicated  on  The  Intuitive  Proof  of  Black-­‐Scholes  Formula  Based  on  

Arbitrage  and  Properties  of  Lognormal  Distribution  by  Alexei  Krouglov.  The  author  

will  use  original  variables  same  as  those  in  the  reference.  

  Suppose  that  the  bank  account  pays  the  constant  continuous  free-­‐risk  

interest  rate  equal  to  𝑟.  At  time  𝑡 = 𝑡!  the  current  price  of  the  underlying  asset  is  𝑆!.  

We  want  to  determine  the  price  of  a  share  from  𝑡 = 𝑡!  to  𝑡 = 𝑡! + 𝑇.  Denote  the  call  

price  at  𝑡 = 𝑡! + 𝑇  is  𝐹!!  and  the  underlying  price  at  𝑡 = 𝑡! + 𝑇  is  equal  to  𝑆!!    .  We  

find  the  relationship  that    

𝑟𝑆 =𝑑𝑆𝑑𝑡  

Page 7: Econ Research Paper - Final Draft

𝑟𝑑𝑡!!!!

!!=

1𝑆

!!!

!!𝑑𝑆  

𝑟𝑇 =   ln(𝑆!!

𝑆!)  

𝑆!! = 𝑆!𝑒!"  

  According  to  the  concept  of  arbitrage,  we  can  assume  that  𝐹!!  will  converge  to  

𝑆!𝑒!"  because  if  𝐹!! > 𝑆!!  then  the  profit  from  borrowing  money  𝑆!  from  bank  at  

𝑡 = 𝑡!    to  buy  an  underlying  asset  and  sell  it  at  𝑡 = 𝑡! + 𝑇  is  equal  to  𝐹!! − 𝑆!! > 0.  In  

the  same  manner,  if    𝐹!! < 𝑆!! ,  the  profit  from  sell  the  underlying  asset  at  price  𝑆!,  

put  money  in  bank  at  𝑡 = 𝑡!,  and  then  withdraw  it  at  𝑡 = 𝑡! + 𝑇  is  equal  to  𝑆!! −

𝐹!! > 0.  Finally,  𝐹!! = 𝑆!𝑒!" .  

  Suppose  that  the  variable  𝑥! ,  the  series  of  infomation  for  the  price  of  the  

underlying  asset,  is  continuously  distributed  in  interval  0 < 𝑥! < ∞,  variable  𝑥!  is  

defined  as  𝑥! = ln(𝑥!),  𝑓!(𝑥!)  is  the  probability  density  function  in  interval  

0 < 𝑥! < ∞,  𝑓! 𝑥!  is  the  probablity  density  function  in  interval  −∞ < 𝑥! < ∞,  𝜇!  

and  𝜇!  is  the  mean  value  of  variables  𝑥!  and  𝑥! ,  respectively,  and  𝜎!!  is  the  variance  

of  variable  𝑥! .  Now,  we  can  assume  that  𝜇! = 𝑆!𝑒!" ,  and,  according  to  the  

assumption  that  the  market  volatilty  is  directly  proportionate  to  the  length  of  time  

interval  𝑇,  the  valiance  of  the  underlying  asset  is  𝜎!! = 𝜎!𝑇.  

  The  function  for  the  standard  lognormal  distribution  is  

𝑓 𝑥 = !!" !!

𝑒!!!(!"!!!! )! ,  where  𝜇 = 𝑥𝑓(𝑥)𝑑𝑥,  and  the  basic  integral  identity  

𝑒!!!!!!! 𝑑𝑥 =   𝜋.  

Page 8: Econ Research Paper - Final Draft

𝜇! =   𝑥!!

!𝑓 𝑥! 𝑑𝑥!  

𝜇! =   𝑥!!

!(

1𝑥!𝜎! 2𝜋

𝑒!!!(!"!!!!!

!!)!)𝑑𝑥!  

𝜇! =  1

𝜎! 2𝜋𝑒!

!!(!"!!!!!

!!)!

!

!𝑑𝑥!  

Suppose  that  𝑥! = 𝑒 !!!!!!!  then  𝑑𝑥! = 2𝜎!𝑒 !!!!!!!  and  𝑀 = !"!!!!!! !

.  

Since  0 < 𝑥! < ∞  

then  −∞ < 𝑀 < ∞  

Thus,    

𝜇! =  1

𝜎! 2𝜋𝑒!!!

!

!!2𝜎!𝑒 !!!!!!! 𝑑𝑀  

𝜇! =  1𝜋

𝑒!(!!! !!!!!!!)!

!!𝑑𝑀  

𝜇! =  1𝜋

𝑒! !!!!

!

!!!!

!

! !!!!

!!𝑑(𝑀 −

𝜎!2)  

𝜇! =  1𝜋𝑒!!!

! !!! 𝑒! !!!!

!

!!

!!𝑑(𝑀 −

𝜎!2)  

𝜇! =  1𝜋𝑒!!!

! !!! 𝜋  

𝜇! = 𝑒!!!

! !!!    

Considering  variable  𝑥!  in  interval  𝑘 < 𝑥! < ∞  where  the  strike  price  𝑘 > 0  

Denote    𝜇!(𝑘)  as  

𝜇!(𝑘)  =   (𝑥! − 𝑘)!

!𝑓 𝑥! 𝑑𝑥!  

(1)  

Page 9: Econ Research Paper - Final Draft

𝜇! 𝑘 =   𝑥!!

!𝑓 𝑥! 𝑑𝑥! − 𝑘

!

!𝑓 𝑥! 𝑑𝑥!  

𝜇! 𝑘 =   𝑥!!

!

1𝑥!𝜎! 2𝜋

𝑒!!!!"!!!!!

!!

!

𝑑𝑥! − 𝑘!

!

1𝑥!𝜎! 2𝜋

𝑒!!!!"!!!!!

!!

!

𝑑𝑥!  

Suppose  that  𝑥! = 𝑒 !!!!!!!  then  𝑑𝑥! = 2𝜎!𝑒 !!!!!!!  and  𝑀 = !"!!!!!!! !

.  

Since  𝑘 < 𝑥! < ∞    

then  ln 𝑘 < ln 𝑥! < ∞ → !"!!!!!! !

< !"!!!!!!! !

< ∞    

Thus,  

𝜇! 𝑘 =1

𝜎! 2𝜋𝑒!!! 2𝜎!𝑒 !!!!!!! 𝑑𝑀

!

!"!!!!!! !

− 𝑘1

𝑒 !!!!!!!𝜎! 2𝜋𝑒!!! 2𝜎!𝑒 !!!!!!! 𝑑𝑀

!

!"!!!!!! !

 

𝜇! 𝑘 =1𝜋

𝑒!(!!! !!!!!!!)𝑑𝑀 −𝑘𝜋

𝑒!!!𝑑𝑀!

!"!!!!! !

!

!"!!!!! !

 

𝜇! 𝑘 =1𝜋

𝑒! !!!!

!

!!!!

!

! !!!𝑑𝑀 −𝑘𝜋

𝑒!!!𝑑𝑀!

!"!!!!! !

!

!"!!!!! !

 

𝜇! 𝑘 =1𝜋𝑒!!!

! !!! 𝑒!!!𝑑𝐺 −𝑘𝜋

𝑒!!!𝑑𝑀!

!"!!!!! !

!

!"!!!!!!!!

! !

 

𝜇! 𝑘 =1𝜋𝑒!!!

! !!! 𝑒!!!𝑑𝐺 −𝑘𝜋

𝑒!!!𝑑𝑀!!"!!!!

! !

!!

!!"!!!!!!!!

! !

!!  

𝜇! 𝑘 =1𝜋𝑒!!!

! !!!( 𝑒!!!𝑑𝐺 + 𝑒!!!𝑑𝐺!!"!!!!!!!

!

! !

!)−

𝑘𝜋( 𝑒!!!𝑑𝑀

!

!!

!

!!

+ 𝑒!!!𝑑𝑀)!!"!!!!

! !

!  

Page 10: Econ Research Paper - Final Draft

𝜇! 𝑘 =1𝜋𝑒!!!

! !!!𝜋2 +

𝜋2 erf

−𝑙𝑛 𝑘 + 𝜇! + 𝜎!!

𝜎 2

−𝑘𝜋

𝜋2 +

𝜋2 erf

−ln 𝑘 + 𝜇!𝜎 2

 

𝜇! 𝑘 = 𝑒!!!

! !!!12 1+ erf

−𝑙𝑛 𝑘 + 𝜇! + 𝜎!!

𝜎 2− 𝑘

12 1+ erf

−𝑙𝑛 𝑘 + 𝜇!𝜎 2

 

𝜇! 𝑘 = 𝑒!!!

! !!!Φ(!!" !!!!!!!!

!)− 𝑘Φ(!!" !!!!

!)  

According  to  (1),  𝜎!! = 𝜎!𝑇,  and  𝜇! = 𝑆!𝑒!" ,  

𝜇! = 𝑒!!!

! !!! = 𝑒!!!! !!! = 𝑆!𝑒!"  

𝜎!𝑇2 + 𝜇! = ln 𝑆! + 𝑟𝑇  

𝜇! = ln 𝑆! + (𝑟 −𝜎!

2 )𝑇  

Plug  𝜇! = ln 𝑆! + (𝑟 − !!

!)𝑇  and  𝜎!! = 𝜎!𝑇  in  (2)  

𝜇! 𝑘 = 𝑒!" !! !!"Φ(𝑙𝑛 𝑆!𝑘 + (𝑟 +

𝜎!2 )𝑇

𝑇 𝜎)− 𝑘Φ(

𝑙𝑛 𝑆!𝑘 + (𝑟 −𝜎!2 )𝑇

𝑇 𝜎)  

For  the  price  of  European  call  option  𝐶!! 𝑘  from  𝑡 = 𝑡!  to  𝑡 = 𝑡! + 𝑇,    

 𝜇! 𝑘 = 𝐶!! 𝑘 𝑒!" .  

Thus,    

𝐶!! 𝑘 𝑒!" = 𝑒!" !! !!"Φ(𝑙𝑛 𝑆!𝑘 + (𝑟 +

𝜎!2 )𝑇

𝑇 𝜎)− 𝑘Φ(

𝑙𝑛 𝑆!𝑘 + (𝑟 −𝜎!2 )𝑇

𝑇 𝜎)  

We  will  get  the  Black-­‐Scholes  formula:  

𝐶!! 𝑘 = 𝑒!" !! Φ(𝑙𝑛 𝑆!𝑘 + (𝑟 +

𝜎!2 )𝑇

𝑇 𝜎)− 𝑘𝑒!!"Φ(

𝑙𝑛 𝑆!𝑘 + (𝑟 −𝜎!2 )𝑇

𝑇 𝜎)  

(2)  

Page 11: Econ Research Paper - Final Draft

 Why  Was  Black-­‐Scholes  Model  Popular?  

  The  prediction  of  future  price  was  formally  initiated  during  1970s  when  

financial  engineers  discovered  the  basic  idea  of  arbitrage.  At  that  time,  there  were  a  

few  number  of  professional  trader  companies  such  as  Salomon  Brothers  and  

Goldman.  Also,  the  market  volatility  was  so  stable  that  the  prediction  from  the  

Black-­‐Scholes  formula  was  pretty  precise,  or  made  just  a  little  deviation.  Many  

untrained  traders  flows  into  the  market  with  the  notion  that  financial  market  was  

just  a  mathematical  equation.  From  1973  to  1987,  many  traders  made  substantial  

profits  from  the  future  market  without  realizing  that  they  gradually  destroyed  the  

great  balance  of  the  financial  system.  The  amount  of  money  flowing  in  financial  

market  decreases,  the  market  volatility  fluctuated  depending  on  more  factors  and  

the  financial  catastrophically  crashed  in  1987.  Many  untrainer  traders,  who  worked  

individually  without  taking  punctilious  advice  from  financial  engineers  and  did  not  

realize  the  incompatible  prerequisite  for  the  Black-­‐Scholes  mathematical  formula,  

lost  all  their  probits  and  was  heavily  in  debt  within  a  next  few  years.  The  more  

irretrievable  disadvantages  of  applying  mathematical  models  without  truly  

understanding  of  the  specific  conditions  of  Black-­‐Schole  model  will  be  explained  in  

the  next  section.  

 

Page 12: Econ Research Paper - Final Draft

Disadvantages  of  Black-­‐Scholes  Model  

  Despite  being  one  of  the  most  popular  mathematical  models  among  traders  

for  the  market  future  price,  Black-­‐Scholes  Model  could  not  be  applicable  to  the  real  

situation  for  a  long  period  of  time  because  of  its  narrow  and  its  idealistic  

preconditions.  First,  the  free-­‐risk  interest  rate  and  the  market  volatility  are  never  

constant.  Second,  the  market  is  never  perfectly  efficient.  Third,  the  future  price  does  

not  perfectly  rely  on  the  Galton  distribution.  However,  the  poor  incoordination  

between  traders  and  financial  engineers  in  using  the  Black-­‐Scholes  model  led  to  the  

more  terrible  conditions  as  the  author  would  explain  in  the  next  section:  Black-­‐

Scholes  Model  Paradox:  The  Big  Tail  Crisis  of  The  Black-­‐Scholes  Model.  

  Now,  we  will  delve  into  these  three  internal  and  one  external  causes  of  

invalidating  Black-­‐Scholes  model.  During  reading  the  analysis,  we  need  to  ask  

ourselves  why  doesn’t  each  condition  fit  the  real  situation  and  how  it  affect  the  

financial  market  in  short  term  and  in  long  term.  

1. The  free-­‐risk  interest  rate  and  the  market  volatility  are  not  constant.  

  For  the  interest  rate,  it  is  obvious  that  it  will  not  be  constant  as  we  can  see  in  

terms  of  the  fluctuation  of  bank  interest  rate.  The  interest  rate  depends  on  the  

amount  of  money  circulating  in  the  economic  system.  If  there  is  the  great  amount  of  

money  in  the  economic  system,  Central  Banks  will  pass  the  monetary  policy  to  

increase  the  interest  rate  or  decrease  the  aggregate  demand  that  helps  relieve  the  

severity  from  inflation.  Conversely,  if  there  is  low  amount  of  money  in  the  economic  

system,  bank  will  pass  the  monetary  policy  to  decrease  the  interest  rate  or  increase  

the  aggregate  demand  to  keep  it  in  equilibrium.  

Page 13: Econ Research Paper - Final Draft

  For  the  market  volatility,  it  is  more  difficult  because  it  does  not  visually  occur  

in  our  routine  lives.  According  to  the  Black-­‐Scholes  model,  the  volatility  depends  

only  on  the  length  of  time  interval  T  as  expressed  in  the  equation  𝜎! = !!!

!.    

  However,  from  the  graph  above,  it  was  clear  that,  after  the  crash  of  1987,  the  

market  volatility  also  depended  on  strike  price  𝑘  as  shown  in  graph  below.  This  

graph  is  also  known  as  the  volatility  smile.  

  According  to  the  volatility  smile,  we  can  imply  the  Black-­‐Scholes  model  does  

not  completely  reflect  the  real  situation  of  financial  market  and  precisely  predict  the  

market  future  price.  

2. The  market  is  never  efficient.  

  In  theory,  the  market  is  efficient  when  the  price  and  the  quantity  sold  of  

financial  goods  are  at  the  point  that  the  quantity  demanded  is  equal  to  the  quantity  

supplied.  But  in  practice,  the  quantity  demanded  and  the  quantity  supplied  of  a  

financial  goods  always  fluctuates  depending  on  such  various  factors  as  the  number  

of  buyers,  the  number  of  sellers,  the  market  volatility,  the  amount  of  consumer’s  

income,  and  the  price  of  related  goods.  Also,  many  various  consumers’  preferences  

Volatility  

Strike  Price  The  picture  showing  the  volatility  after  the  crash  of  

1987  comes  from  www.ipredict.it      

Page 14: Econ Research Paper - Final Draft

that  disobey  the  law  of  demand  and  the  law  of  supply  result  in  the  market  

inefficiency.  Accordingly,  how  much  chance  that  the  quantity  of  demanded  will  be  

equal  to  the  quantity  supplied?  In  mathematical  aspects,  we  can  assume  that  the  

probability  is  very  close  to  zero !!~  0 .  But  viewing  in  financial  aspects,  we  can  just  

say  that  the  value  of  quantity  demanded  and  that  of  the  quantity  supplied  converge  

to  each  other.  We  do  not  know  how  much  the  difference  in  quantity  demanded  and  

quantity  supplied  at  the  particular  future  time.  Thus,  we  cannot  determine  that  how  

much  error  the  Black-­‐Scholes  model  predicted,  but  we  can  conclude  that  the  real  

financial  market  is  never  abided  by  the  oversimplified  Black-­‐Schloes  model’s  

conditions.  

3. The  future  price  does  not  perfectly  fit  to  the  Galton  distribution.  

  The  financial  market  will  follow  the  Galton  distribution  only  when  the  supply  

of  sellers  and  the  demand  of  buyers  do  not  affect  each  other.  However,  from  social  

perspective,  people  in  the  society  cannot  completely  avoid  the  interaction  with  

other  people.  In  the  same  manner  as  in  economic  aspect,  buyers  and  sellers  cannot  

avoid  interaction  from  each  other  that  means  the  demand  of  one  consumer  can  

influence  the  demand  of  another  consumer  or  the  supply  of  another  seller.  Also,  the  

supply  of  one  seller  can  influence  the  supply  of  another  seller  and  the  demand  of  

another  buyer.  Thus,  we  have  to  consider  how  much  chance  that  the  overall  demand  

and  supply  impacted  by  other  demands  and  supplies  are  equal  to  zero.  This  

question  is  very  easy  to  answer,  as  the  probability  of  that  market  will  be  efficient.  It  

will  come  close  to  zero  or  never  happen.  

Page 15: Econ Research Paper - Final Draft

4. The  poor  incoordination  between  the  traders  and  the  financial  

engineers  

  The  relationship  between  traders  and  financial  engineers  is  that  financial  

engineers  create  some  mathematical  model  to  predict  the  market  future  price  under  

the  certain  conditions  while  traders  will  put  the  value  of  each  variable  in  the  

mathematical  model.  The  traders  and  financial  engineers  do  not  have  much  time  to  

interact  and  discuss  about  the  outcome  of  each  section  because  the  traders  have  to  

spend  all  days  to  observe  the  variables  changing  over  time  while  the  financial  

engineers  have  to  recreate  their  model  that  its  conditions  are  never  constant.  Thus,  

the  traders  never  know  that  they  really  apply  the  mathematical  model  in  the  right  

condition  or  not.  In  other  words,  the  poor  incoordination,  which  frequently  occurs  

in  nowadays,  inevitably  causes  the  irretrievable  error.  

 

Black-­‐Scholes  Model  Paradox:  The  Big  Tail  Crisis  of  The  Black-­‐

Scholes  Model  

  As  stated  in  the  last  section,  Black-­‐Scholes  model  does  not  completely  explain  

the  real  financial  market  because  of  the  vibrant  market  volatility  and  many  idealistic  

preconditions  for  the  model.  Hence,  the  Black-­‐Scholes  model’s  outcomes  

unavoidably  result  in  the  market  inefficiency,  insolvency,  and  the  international  

conflicts;  for  instance,  the  quick  cash  need  from  many  foreign  firms  resulted  in  the  

ominous  interference  of  Thai  financial  system  in  1997,  called  Tom  Yam  Kung  crisis.  

However,  one  of  the  pre-­‐conditions  of  the  Black-­‐Scholes  model  is  the  market  has  to  

be  efficient.  It  means  that  the  Black-­‐Scholes  model  can  be  used  only  once  or  it  is  

Page 16: Econ Research Paper - Final Draft

inapplicable  to  the  financial  market.  The  author  calls  the  condition  that  the  outcome  

of  Black-­‐Scholes  model  is  not  compatible  with  the  prerequisite  of  its  own,  Black-­‐

Scholes  model  paradox.    

  According  to  the  fluctuation  of  various  factors  such  as  the  market  volatility,  

the  difference  between  quantity  demanded  and  quantity  supplied  that  the  financial  

goods  will  be  sold,  and  the  free-­‐risk  interest  rate,  we  cannot  predict  when  the  

financial  crash  will  occur  or  how  much  chance  that  the  Black-­‐Scholes  model  really  

reduces  the  risk.  But,  we  can  ascertain  that  the  Black-­‐Scholes  model  can  cause  many  

small  tails  and  few  big  tails  crisis  as  shown  in  the  graph  below.  

 

   This  picture  comes  from  “Why  We  Never  Used  the  Black-­‐Scholes-­‐Merton  Option  Pricing  

Formula”  by  Espen  Gaarder  Haug  and  Nassim  Nicholas  Taleb  

Page 17: Econ Research Paper - Final Draft

Conclusion  

  Due  to  the  unpredicatable  variation  of  such  future  factors  as  free-­‐risk  

interest  rates  and  market  volatilities,  it  is  almost  impossible  to  predict  the  exact  

future  market  price  from  the  insufficient  current  information.  The  mathematical  

models  can  just  indicate  the  inclination  of  the  future  factors  that  have  to  periodically  

adjust  over  time.  Comparing  finance  with  quantum  mechanic,  the  underlying  price  

𝑆!  is  like  the  energy  𝐸  staying  within  the  system  and  the  length  of  time  interval  𝑇  is  

like  the  time  𝑡  in  quantum  mechanics.  According  to  the  Heinsenberg’s  uncertainty  

principle,  ∆𝐸∆𝑡 ≥ ℏ!.  In  terms  of  economics,  we  can  assume  that  ∆𝑆!∆𝑇 ≥ 𝑐  where  𝑐  

is  a  constant.  The  inequality  means  that  no  mathematical  model  that  can  completely  

explain  the  whole  financial  market  and  precisely  predict  the  market  future  price.  On  

the  other  hand,  trying  to  create  mathematical  model  will  lead  to  incorrigible  

miscalculation  and  wrong  prediction.  Therefore,  the  best  way  to  deal  with  financial  

market  may  not  only  create  mathematical  models,  but  also  include  the  traders’  

previous  experience  and  intution.  

Page 18: Econ Research Paper - Final Draft

Bibliography

Bookstaber,  Richard.  "A  Demon  of  Our  Own  Design:  Markets,  Hedge  Funds,  and  the  

  Risks  of  Financial  Innovation."  Barnes  &  Noble.  John  Wiley  &  Som  Inc.,  2007.  

  Web.  04  Apr.  2014.

Derman,  Emanuel.  My  Life  as  a  Quant:  Reflections  on  Physics  and  Finance.  Hoboken,  

  NJ:  Wiley,  2004.  Print.  

"Discover  the  Proven,  Fast  and  Easy  Time-­‐series  Forecasting  Software!"  Time-­‐Series  

  Forecasting  Software,  Stock  Market  Prediction,  Sales  Forecasting  Software.  

  IPredict,  n.d.  Web.  22  Apr.  2014.  

Gaarder  Haug,  Espen,  and  Nassim  Nicholas  Taleb.  Why  We  Have  Never  Used  the  

  Black-­‐Scholes-­‐Merton  Model  Option  Pricing  Formula.  Publication.  N.p.,  Nov.  

  2007.  Web.  21  Apr.  2014.

Harford,  Tim.  "Black-­‐Scholes:  The  Maths  Formula  Linked  to  the  Financial  Crash."  

  BBC  News.  N.p.,  n.d.  Web.  04  Apr.  2014.

Jean  Folger.  "Options  Pricing:  Introduction."  Investopedia.  N.p.,  n.d.  Web.  04  Apr.  

  2014.

Kristensen,  Dennis,  and  Antonio  Mele.  Adding  and  Subtracting  Black-­‐Scholes:  A  New  

  Approach  to  Approximating  Derivative  Prices  in  Continuous-­‐Time  Models.  

  Publication.  London  school  of  Economics,  Columbia  University  and  CREATES,  

  21  Sept.  2009.  Web.  21  Apr  2014.

Krouglov,  Alexei.  Intuitive  Proof  of  Black-­‐Scholes  Formula  Based  on  Arbitrage  and  

  Properties  of  Lognormal  Distribution.  N.p.,  n.d.  Web.

Page 19: Econ Research Paper - Final Draft

Lowenstein,  Roger.  When  Genius  Failed:  The  Rise  and  Fall  of  Long-­‐Term  Capital  

  Management.  New  York:  Random  House,  2000.  Print.

Morris,  Charles  R.  The  Trillion  Dollar  Meltdown:  Easy  Money,  High  Rollers,  and  the  

  Great  Credit  Crash.  New  York:  PublicAffairs,  2008.  Print.

"Quants:  The  Alchemists  of  Wall  Street."  Top  Documentary  Films  RSS.  N.p.,  n.d.  Web.  

  04  Apr.  2014.

Worstall,  Tim.  "Black-­‐Scholes  And  Financial  Crash."  Forbes.  Forbes  Magazine,  13  

  Feb.  2012.  Web.  04  Apr.  2014.