68
ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order Elements

ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Embed Size (px)

Citation preview

Page 1: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

ECIV 720 A Advanced Structural

Mechanics and Analysis

Lecture 15: Quadrilateral Isoparametric Elements

(cont’d)Force VectorsModeling Issues

Higher Order Elements

Page 2: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Integration of Stiffness Matrix

1

1

1

1

det dJdt Te DBBk

B (3x8)

D (3x3)

BT(8x3)

ke (8x8)

Page 3: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Integration of Stiffness Matrix

Each term kij in ke is expressed as

1

1

1

1

1

1

1

1

3

1

3

1

,

,det

ddgt

ddJBDBtkm l

ljmlTimij

Linear Shape Functions is each Direction

Gaussian Quadrature is accurate if

We use 2 Points in each direction

Page 4: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Integration of Stiffness Matrix

311 312

311

311

2222212112121111 ,,,, gwwgwwgwwgww

1

1

1

1

, ddgt

11 w

12 w

22211211 ,,,, gggg

Page 5: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Choices in Numerical Integration

• Numerical Integration cannot produce exact results

• Accuracy of Integration is increased by using more integration points.

• Accuracy of computed FE solution DOES NOT necessarily increase by using more integration points.

Page 6: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

FULL Integration

• A quadrature rule of sufficient accuracy to exactly integrate all stiffness coefficients kij

• e.g. 2-point Gauss ruleexact for

polynomials

up to 2nd order

311 312

311

311

311 312

311

311

Page 7: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Reduced Integration, Underintegration

Use of an integration rule of less than full order

Advantages

• Reduced Computation Times

• May improve accuracy of FE results

• Stabilization

Disadvantages

Spurious Modes (No resistance to nodal loads that tend to activate the mode)

Page 8: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Spurious Modes

t=1

E=1

v=0.3

8 degrees of freedom 8 modes

1

1

Consider the 4-node plane stress element

Solve Eigenproblem

Page 9: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Spurious Modes

01

Rigid Body Mode 02

Rigid Body Mode

Page 10: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Spurious Modes

03

Rigid Body Mode

Page 11: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Spurious Modes

495.05

Flexural Mode

495.04 Flexural Mode

Page 12: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Spurious Modes

769.06 Shear Mode

Page 13: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Spurious Modes

769.07 Stretching Mode

43.18 Uniform Extension Mode

(breathing)

Page 14: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Element Body Forces

ii

Ti

el

T

eA

T

eA

T

e

e

e

tdl

tdA

tdA

Pu

Tu

fu

Dεε2

1

ii

Ti

eA

T

eV

T

eV

T

e

e

e

dA

dV

dV

φεσ 0

Total Potential Galerkin

Page 15: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Body Forces

eA

T dAd detfu

Integral of the form

8

1

4321

4321

0000

0000

q

q

NNNN

NNNN

v

u

8

1

4321

4321

0000

0000

NNNN

NNNN

y

x

eA

T dAd detfφ

Page 16: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Body Forces

In both approaches

e

e

e

e

Ay

Ax

Ay

Ax

dAdNf

dAdNf

dAdNf

dAdNf

qqWP

det

det

det

det

4

2

1

1

81

Linear Shape Functions

Use same quadrature as stiffness maitrx

Page 17: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Element Traction

ii

Ti

el

T

eA

T

eA

T

e

e

e

tdl

tdA

tdA

Pu

Tu

fu

Dεε2

1

ii

Ti

eA

T

eV

T

eV

T

e

e

e

dA

dV

dV

φεσ 0

Total Potential Galerkin

Page 18: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Element Traction

Similarly to triangles, traction is applied along sides of element

4

2

3

Tx

Ty

u

v

1

4

0

12

1

12

1

0

4

3

2

1

N

N

N

N

el

TT tdlWP Tu

32

Page 19: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Traction

8

1

32

32

000000

000000

q

q

NN

NN

v

u

0

0

0

0

232

8132

y

x

eT T

Tlt

qqWP

For constant traction along side 2-3

Traction

components

along 2-3

Page 20: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Stresses

311 312

311

311

DBqσ

12221121

1121

1222

00

00

det

1

JJJJ

JJ

JJ

JA

10101010

10101010

01010101

01010101

4

1G

More Accurate at

Integration points

Stresses are calculated at any

Page 21: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Modeling Issues: Nodal Forces

ii

Ti

el

T

eA

T

eA

T

e

e

e

tdl

tdA

tdA

Pu

Tu

fu

Dεε2

1

A node should be

placed at the location

of nodal forces

In view of…

Or virtual potential energy

Page 22: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Modeling Issues: Element Shape

Square : Optimum Shape

Not always possible to use

Rectangles:

Rule of Thumb

Ratio of sides <2

Angular Distortion

Internal Angle < 180o

Larger ratios

may be used

with caution

Page 23: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Modeling Issues: Degenerate Quadrilaterals

Coincident Corner Nodes

1

2

3

4

32

1

4

xx

xx

x

xx

x

Integration Bias

Less accurate

Page 24: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Modeling Issues: Degenerate Quadrilaterals

Three nodes collinear

1

2

3

4

xx

xx

1

2

3

4 x

xx

x

Less accurate

Integration Bias

Page 25: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Modeling Issues: Degenerate Quadrilaterals

Use only as necessary to improve representation of geometry

2 nodes

Do not use in place of triangular elements

Page 26: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

A NoNo Situation

3

4

1 2

x

y

(3,2) (9,2)

(7,9)

(6,4)

Parent

All interior angles < 180

J singular

Page 27: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Another NoNo Situation

x, y

not uniquely

defined

Page 28: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

FEM at a glance

It should be clear by now that the cornerstone in FEM procedures is the interpolation of the displacement field from discrete values

i

m

ni zyxzyx uNu

1

,,,,

Where m is the number of nodes that define the interpolation and the finite element and N is a set of Shape Functions

Page 29: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

FEM at a glance

1=-1 2=1

m=2

1=-1

1

3

2=1

2m=3

Page 30: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

FEM at a glance

12

3q6

q5

q4

q3

q2

q1

vu

m=3

4

1

2

3

m=4

Page 31: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

FEM at a glance

In order to derive the shape functions it was assumed that the displacement field is a polynomial of any degree, for all cases considered

nn xaxaxaax 2

210u

..., 3210 xyayaxaayxu

Coefficients ai represent generalized coordinates

1-D

2-D

Page 32: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

FEM at a glance

For the assumed displacement field to be admissible we must enforce as many boundary conditions as the number of polynomial coefficients

1=-1

1

3

2=1

2e.g.

12121101 uxaxaaxx u

22222102 uxaxaaxx u

32323103 uxaxaaxx u

Page 33: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

FEM at a glance

This yields a system of as many equations as the number of generalized displacements

nn u

u

a

a

zyx

Matrix

tCeofficien

10

),,(

nn u

u

C

a

a

1

10

that can be solved for ai

Page 34: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

FEM at a glance

nn xaxaxaax 2

210u

Substituting ai in the assumed displacement field

and rearranging terms…

i

m

ni uxNxu

1

Page 35: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

FEM at a glance

113N

12

11N 1

2

12N

u(-1)=a0 -a1 +a2 =u1

u(1)=a0 +a1 +a2 =u2

u(0)=a0 =u3

33

22

11

uN

uN

uNu

u()=a0+a1 +a2 2

1=-1

1

2=1

3 2

Page 36: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Let’s go through the exercise

x1

1

x2

2

220 xaaxu

Assume an incomplete form of quadratic variation

Page 37: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Incomplete form of quadratic variation

We must satisfy

12

1201 uxaaxu

22

2202 uxaaxu

2

1

1

0

22

21

1

1

u

u

a

a

x

x

x1

1

x2

2

Page 38: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Incomplete form of quadratic variation

2

1

1

0

22

21

1

1

u

u

a

a

x

x

And thus,

2

121

22

21

221

0

11

1

u

uxx

xxa

a

Page 39: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Incomplete form of quadratic variation

21

22

2211

22

0 xx

uxuxa

21

22

211 xx

uua

220 xaaxu

And substituting in

221

22

2121

22

2211

22 x

xx

uu

xx

uxuxxu

Page 40: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Incomplete form of quadratic variation

221

22

2121

22

2211

22 x

xx

uu

xx

uxuxxu

2

1

21

22

221

21

22

222

u

u

xx

xx

xx

xxxu

Which can be cast in matrix form as

Page 41: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Isoparametric Formulation

The shape functions derived for the interpolation of the displacement field are used to interpolate geometry

2

1

21

22

221

21

22

222

x

x

xx

xx

xx

xxx

x1

1

x2

2

Page 42: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Intrinsic Coordinate Systems

Intrinsic coordinate systems are introduced to eliminate dependency of Shape functions from geometry

1 (-1,-1) 2 (1,-1)

4 (-1,1) 3 (1,1)

The price?

Jacobian of transformation

iiiN 114

1

Great Advantage for the money!

Page 43: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Field Variables in Discrete Form

nNxx

Geometry

Displacement

nNuu

= DB un

Stress Tensor

= B un

Strain Tensor

)(intrinsic

)(cartesianJ

Page 44: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

FEM at a glance

eeTeV

Te

e

dVU ukuσDε2

1

2

1

Element Strain Energy

ee V

TTeV

Tf dVdVW fNufu

Work Potential of Body Force

ee S

TTeS

Tf dSdSW TNuTu

Work Potential of Surface Traction

etc

Page 45: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Higher Order Elements

Quadrilateral Elements

Recall the 4-node

4321, aaaau

Complete Polynomial

4 generalized displacements ai

4 Boundary Conditions for admissible displacements

Page 46: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Higher Order Elements

Quadrilateral Elements

29

28

227

26

25

432

1,

aaaaa

aaa

au

Assume Complete Quadratic Polynomial

9 generalized displacements ai

9 BC for admissible displacements

Page 47: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

9-node quadrilateral

9-nodes x 2dof/node = 18 dof

BT18x3 D3x3 B3x18

ke 18x18

Page 48: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

9-node element Shape Functions

Following the standard procedure the shape functions are derived as

1 2

34

4,3,2,14

1 iN iii

Corner Nodes

5

6

7

8

8,7,6,5

11

12

1 22

i

N

iiii

iii

Mid-Side Nodes9

Middle Node

911 22 iN i

Page 49: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

9-node element – Shape Functions

113N

12

11N 1

2

12N

Can also be derived from the 3-node axial element

1=-1

1

2=1

3 2

Page 50: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Construction of Lagrange Shape Functions

(1,)(1,1)

1 (-1,-1)

12

11N

12

11N

1

2

11

2

1, 111 NNN

4,3,2,14

1 iN iii

Page 51: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

N1,2,3,4 Graphical Representation

Page 52: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

N5,6,7,8 Graphical Representation

Page 53: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

N9 Graphical Representation

Page 54: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Polynomials & the Pascal Triangle n

n xaxyayaxaayx 3210, u

1

x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

…….

x5 x4y x3y2 x2y3 xy4 y5

Degree

1

2

3

4

5

0

Pascal Triangle

Page 55: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Polynomials & the Pascal Triangle

To construct a complete polynomial

1

x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

…….

x5 x4y x3y2 x2y3 xy4 y5

etc

Q1

xyayaxaayx 3210, u

4-node QuadQ2

39

28

27

36

254

23

21

01

,

yaxyayxaxa

yaxyaxa

yaxa

a

yx

u

9-node Quad

Page 56: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Incomplete Polynomials

1

x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

…….

x5 x4y x3y2 x2y3 xy4 y5

yaxaayx 210, u

3-node triangular

Page 57: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Incomplete Polynomials

1

x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

…….

x5 x4y x3y2 x2y3 xy4 y5

27

26

254

23

21

01

,

xyayxa

yaxyaxa

yaxa

a

yx

u

Page 58: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

8-node quadrilateral

Assume interpolation

1 2

34

5

6

7

8

27

26

254

23

21

01

,

xyayxa

yaxyaxa

yaxa

a

yx

u

8 coefficients to determine for admissible displ.

Page 59: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

8-node quadrilateral

8-nodes x 2dof/node = 16 dof

BT16x3 D3x3 B3x16

ke 16x16

Page 60: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

8-node element Shape Functions

Following the standard procedure the shape functions are derived as

1 2

34

4,3,2,1

1114

1

i

N iiiii

Corner Nodes

5

6

7

8

8,7,6,5

112

1 22

i

N iiiii

Mid-Side Nodes

Page 61: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

N1,2,3,4 Graphical Representation

Page 62: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

N5,6,7,8 Graphical Representation

Page 63: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Incomplete Polynomials

1

x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

…….

x5 x4y x3y2 x2y3 xy4 y5

254

23

21

01

,

yaxyaxa

yaxa

a

yx

u

Page 64: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

6-node Triangular

Assume interpolation

1 2

3

4

56

254

23

21

01

,

yaxyaxa

yaxa

a

yx

u

6 coefficients to determine for admissible displ.

Page 65: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

6-node triangular

6-nodes x 2dof/node = 12 dof

BT12x3 D3x3 B3x12

ke 12x12

1 2

3

4

56

Page 66: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

6-node element Shape Functions

Following the standard procedure the shape functions are derived as

3,2,112 iLLN iii

Corner Nodes

1 2

3

214 4 LLN

Mid-Side Nodes

4

56

325 4 LLN

136 4 LLN Li:Area coordinates

Page 67: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Other Higher Order Elements

1

x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

…….

x5 x4y x3y2 x2y3 xy4 y5

12-node quad

1 2

34

Page 68: ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 15: Quadrilateral Isoparametric Elements (cont’d) Force Vectors Modeling Issues Higher Order

Other Higher Order Elements

x5 x4y x3y2 x2y3 xy4 y5

16-node quad1

x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

……. x3y21 2

34