35
D f (x) D f (x) δ> 0 ε> 0 x 1 ,x 2 D : |x 1 - x 2 | ⇒|f (x 1 ) - f (x 2 )| [1, ) f (x)= x |x 1 - x 2 | x 1 ,x 2 [1, ) δ> 0 ε> 0 |f (x 1 ) - f (x 2 )| |f (x 1 )-f (x 2 )| = | x 1 - x 2 | = ( x 1 - x 2 )( x 1 + x 2 ) ( x 1 + x 2 ) = x 1 - x 2 x 1 + x 2 < |x 1 -x 2 | |f (x 1 ) - f (x 2 )| < |x 1 - x 2 | δ = ε K (a, b) f (x) (a, a) f (x) |f (x 1 ) - f (x 2 )|≤ K |x 1 - x 2 | f (x) f (x) D

ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

'` `ecg

ilaib aia` :lbxzn

2008 lixt`a 9

deey dcina zetivx 1lkl m` D a deey dcina dtivx f(x) ik xn`p .D megza zxcbend divwpet f(x) idz

:y jk δ > 0 miiw ε > 0

∀x1, x2 ∈ D : |x1 − x2| < δ ⇒ |f(x1)− f(x2)| < ε

:1 libxz

.[1,∞) rhwa y"na dtivx f(x) =√

x ik egiked

:oexzt

if` |x1 − x2| < δ miniwnd x1, x2 ∈ [1,∞) lkly jk δ > 0 `evnl jixv ε > 0 idi:okle |f(x1)− f(x2)| < ε miiwzn

|f(x1)−f(x2)| = |√

x1−√

x2| =∣∣∣∣(√x1 −

√x2)(

√x1 +

√x2)

(√

x1 +√

x2)

∣∣∣∣ =

∣∣∣∣ x1 − x2√x1 +

√x2

∣∣∣∣ < |x1−x2|

.|f(x1)− f(x2)| < |x1 − x2| < δ miiwzi f` δ = ε gwip m` jkl i`

:uiytil i`pz

lkly jk K iynn reaw miiw ik gippe (a, b) rhwa zxcbend divwpet f(x) idz:miiwzn (a, a) rhwa f(x) zecewp izy

|f(x1)− f(x2)| ≤ K|x1 − x2|

:dprh

dtivx f(x) if` megza zecewp izy lkl uiytil i`pz zniiwn f(x) y dxwna.D megza y"na

1

Page 2: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:dgked

jk K ∈ R miiw if` uiytil i`pz zniiwne D megza zxcbend divwpet f(x) idz:miiwzn x1, x2 ∈ D lkly

|f(x1)− f(x2)| ≤ K|x1 − x2|

:okle |x1 − x2| < δ miiwzn x1, x2 ∈ D lkl ik lawp f`e δ = εK

xgape ε > 0 idi

|f(x1)− f(x2)| ≤︸︷︷︸Lipchitz

K|x1 − x2| < K · ε

K= ε

.D megza y"na dtivx f(x) jkl i`

:htyn

.D megza dtivx `id if` D megza y"na dtivx f(x) m`

:xehpw htyn

.y"na ea dtivx [a, b] xebq rhwa dtivx divwpet

:dprh

{xn}∞n=1, {yn}∞n=1 ∈ D zexcq izy lkl if` D rhwa y"na dtivx f(x) m`.limn→∞(f(xn)− f(yn)) = 0 miiwzn if` limn→∞(xn − yn) = 0 zeniwnd

:dgked

:miiwzn x, y ∈ D lkly jk δ > 0 miiw okle D a y"na dtivx f(x) .ε > 0 idi

|x− y| < δ ⇒ |f(x)− f(y)| < ε

|xn − yn| < δ miiwzn n > N lkly jk N miiw if` limn→∞(xn − yn) = 0 e zeidokle

.limn→∞(f(xn)− f(yn)) = 0 xnelk |f(xn)− f(yn)| < ε miiwzi n > N lkl

:milibxz

:y"na dtivx `id m`d eraw ze`ad zeivwpetdn zg` lkl

(−∞,∞) rhwa sin x2 .1

(0, 1) rhwa sin πx

.2

2

Page 3: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

(−∞,∞) rhwa 2 sin x− cos x .3

[0,∞) rhwa x sin x .4

:zeaeyz

1. `l , 2. `l , 3. ok , 4. `l

zxfbp 1.1

xy`k) x = x0 +∆x onqp .x0 dcewpd ly zniieqn daiaqa zxcbend divwpet f(x) idzm` f`e ∆y = f(x0 + ∆x) − f(x0) mb onqp .(x0 dcewpl dpzyn zixtqn ztqez ∆x

:`ad leabd miiw

lim∆x→0

∆y

∆x= lim

∆x→0

f(x0 + ∆x)− f(x0)

∆x= L

mpyi f ′(x) = L onqpe x0 a f(x) ly zxfbpd epid leabd .x0 a dxifb f(x) ik xn`p if`.y′, dy

dx, df

dxoebk mitqep mipeniq mb

:dxrd

wiyn xyi `xwp f ′(x0) l deey eretiy xy` (x0, f(x0)) dcewpd jxc xaerd xyidzecewpd z` xagnd ewd xveiy zeiefd α idz .∆y

∆x= tan θ miiwzn xnelk

:ik lawp ileabd avna f`e (x0, f(x0)) e (x0 + ∆x, f(x0 + ∆x))

lim∆x→0

∆y

∆x= lim

∆x→0tan θ = tan α

e y− y0 = ∆y zexg` milina e` y− y0 = f ′(x0)(x−x0) `id wiynd xyid z`eeyn. ∆y

∆x= f ′(x0) ileabd avna f`e x− x0 = ∆x

:htyn

.ef dcewpa dtivx `id if` x0 dcewpa dxifb f(x) m`

:dxrd

.da dxifb dcewpa dtivxy divwpet lk `le oekp eppi` jtdd

:`nbec

z` wecap ik x0 = 0 a dxifb dppi` j` xyid lk lr dtivx f(x) = |x| divwpetd

3

Page 4: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:ik lawpe leabd

lim∆x→0

f(0 + ∆x)− f(0)

∆x= lim

∆x→0

|∆x| − 0

∆x= lim

∆x→0

|∆x|∆x

:ik miiw `l leabd la`

lim∆x→0+

|∆x|∆x

= lim∆x→0+

∆x

∆x= 1

lim∆x→0−

|∆x|∆x

= lim∆x→0−

−∆x

∆x= −1

:dxcbd

g(x) = f ′(x) divwpetd if` (a, b) rhwa dcewp lka dxifbd divwpet f(x) idz.(a, b) a f(x) ly zxfbp z`xwp x ∈ (a, b) xear

:zeiccv cg zexfbpzniiw m` f(x) ly zipni zxfbp .x0 ly zipni daiaqa zxcbend divwpet f(x) idz

.f ′+(x0) onqpe lim∆x→0+f(x0+∆x)−f(x0)

∆xmiiw m` leabd dpid

.zil`ny zxfbp iabl dneca [∗]

:htyn

zeniiw m` wxe m` x0 a dxifb f(x) ,x0 ly daiaqa zxcbend divwpet f(x) idz.f ′−(x0) = f ′(x0) = f ′+(x0) xnelk x0 a zeiccv cgd zexfbpd zeeye

:zeidl zxcben x = a dcewpa y = f(x) divwpetd ly zipnid zxfbpd

f ′+(a) = limh→0+

f(a + h)− f(a)

h= lim

h→0+

f(x)− f(a)

x− a

:zeidl zxcben x = a dcewpa y = f(x) divwpetd ly zil`nyd zxfbpd

f ′−(a) = limh→0−

f(a + h)− f(a)

h= lim

h→0−

f(x)− f(a)

x− a

:1 libxz

:divwpetd dpezp{2x3 − 5x , x < 0

x + 2 , x ≥ 0

4

Page 5: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

.x = 0 dcewpa dxcbd it lr exfib

:oexzt

dcewpa dtivx `l divwpetde oeikny dcaera ynzydl `id dpey`x jxczeiccv cg zexfbp ly dxcbd ici lr `id dipy jxc .my dxifb `l mb `id f` x = 0

:ok`e

f ′+(0) = limh→0+

f(0 + h)− f(0)

h= lim

h→0+

(h + 2)− 2

h= lim

h→0+1 = 1

f ′−(0) = limh→0−

f(0 + h)− f(0)

h= lim

h→0−

(2h3 − 5h)− 2

h= lim

h→0+2h2 − 5− 2

h= ∞

.zniiw dppi` f ′(0) okle f ′+(0) 6= f ′−(0) jkl i`

:zeillk dxifb ze`gqep

:yxtde mekq z`gqep [1]

(f(x)± g(x))′ = f ′(x)± g′(x)

:ze`nbec

[`]f(x) = −5x3 + 7x2 + 2 ⇒ f ′(x) = −15x2 + 14x

[a]f(x) = 7x3 + 2x−4 ⇒ f ′(x) = 21x2 − 8x−5

:dltkn z`gqep [2]

(f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x)

:ze`nbec

[`]

f(x) = (3x2 − 5x)2 = (3x2 − 5x)(3x2 − 5x) ⇒ f ′(x) = (6x− 5)(3x2 − 5x)+

(3x2 − 5x)(6x− 5)

5

Page 6: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

[a]

f(x) = (2x + 7)(x2 − 3x) ⇒ f ′(x) = 2(x2 − 3x) + (2x− 3)(2x + 7)

:dpnd z`gqep [3](f(x)

g(x)

)′=

f ′(x) · g(x)− f(x) · g′(x)

g2(x)

:ze`nbec

[`]

f(x) =x2 + 2x

x− 5⇒ f ′(x) =

(2x + 2)(x− 5)− (x2 + 2x) · 1(x− 5)2

=x2 − 10x− 10

(x− 5)2

[a]

f(x) = −x4 − 3x

x2 − 1⇒ f ′(x) = −

((4x3 − 3)(x2 − 1)− (2x)(x4 − 3x)

(x2 − 1)2

)=

=−2x5 + 4x3 − 3x2 − 3

(x2 − 1)2

:zxyxyd llk - zakexn divwpet ly zxfbp

:f` f(x) = g(h(x)) xnelk zakexn divwpet `id f(x) divwpetd m`

f ′(x) = g′(h(x)) · h′(x)

.ziniptd z` f`e zipevigd divwpetd z` xefbl yi xnelk

:ze`nbec

[`]f(x) = (3x4 − 5x)7 ⇒ f ′(x) = 7(3x4 − 5x)6 · (12x3 − 5)

[a]

f(x) =x

(ax + b)4⇒ f ′(x) =

1 · (ax + b)4 − x · 4(ax + b)3 · a(ax + b)8

=

(ax + b)3(ax + b− 4xa)

(ax + b)8=

b− 3xa

(ax + b)5

6

Page 7: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

[b]

f(x) =

(x + 1

2x + 1

)4

⇒ f ′(x) = 4

(x + 1

2x− 1

)3

·(

1 · (2x + 1)− 2(x + 1)

(2x + 1)2

)=

= 4

(x + 1

2x− 1

)3

·(

−1

(2x + 1)2

)=−4(x + 1)3

(2x + 1)5

:miyxey ly zxfbp

.epi`xy dpey`xd `gqepd itl xefbp f`e m√

xn = xnm y dcaera ynzyp

:ze`nbec

[`]

f(x) =√

x = x12 ⇒ f ′(x) =

1

2· x−

12 =

1

2√

x

[a]

f(x) =

√5x2 − 2

√x = (5x2−2

√x)

12 ⇒ f ′(x) =

1

2·(5x2−2

√x)−

12 ·(10x−2· 1

2√

x) =

=10x− 1√

x

2√

5x2 − 2√

x

[b]

f(x) =

√x2 + x

2x + 1=

(x2 + x)12

2x + 1⇒ f ′(x) =

12· (x2 + x)−

12 · (2x + 1) · (2x + 1)− (x2 + x)

12 · 2

(2x− 1)2=

=12· (x2 + x)−

12 · (2x + 1)2 − 2(x2 + x)

12

=

1√x2 + x

− 2√

x2 + x

(2x + 1)2

:zeixhnepebixh zeivwpet ly zexfbp

(cos x)′ = − sin x [a] (sin x)′ = cos x [`]

(cot x)′ = − 1sin2 x

[c] (tan x)′ = 1cos2 x

[b]

:ze`nbec

[`]f(x) = cos 2x ⇒ f ′(x) = − sin 2x · 2 = −2 sin 2x

7

Page 8: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

[a]

f(x) = sin4 2x ⇒ f ′(x) = 4 sin3 2x · cos 2x · 2 = 8 sin3 2x cos 2x

[b]

f(x) = x2 tan2 4x ⇒ f ′(x) = 2x tan4 2x + x2 · 2 tan 4x · 1

cos2 4x· 4

[c]

f(x) = sin3 x cos x ⇒ f ′(x) = 3 sin2 x · cos x · cos x + sin3 x · (− sin x) =

= 3 sinx cos2 x− sin4 x

[d]

f(x) = cos(x + sin 3x) ⇒ f ′(x) = − sin(x + sin 3x) · (1 + cos 3x · 3)

[e]

f(x) = sin

(x + 1

x− 1

)⇒ f ′(x) = cos

(x + 1

x− 1

)· 1 · (x− 1)− 1(x + 1)

(x− 1)2

= cos

(x + 1

x− 1

)· −2

(x− 1)2

[f]

f(x) =2 tan x

1 + cot2 x=

2 sin xcos x1

sin2 x

= 2 sin x cos x = sin 2x ⇒ f ′(x) = 2 cos 2x

:zeinzixbel zeivwpet ly zexfbp

:`id zxfbpd illk ote`a

(loga(f(x)))′ =f ′(x)

f(x)· loga e

.(ln(f(x)))′ = f ′(x)f(x)

`ed ihxt dxwn

:ze`nbec

8

Page 9: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

[`]

f(x) = log5(x2 − 4) ⇒ f ′(x) =

2x

x2 − 4· log5 e

[a]

f(x) = ln

√x− 3

x− 2= ln

(x− 3

x− 2

) 12

=1

2ln

(x− 3

x− 2

)=

1

2(ln(x− 3)− ln(x− 2))

⇒ f ′(x) =1

2

(1

x− 3− 1

x− 2

)[b]

f(x) = ln(5x2 − 7x) ⇒ f ′(x) =10x− 7

5x2 − 7x

[c]

f(x) = ln3(sin x) ⇒ f ′(x) = 3 ln2(sin x) · cos x

sin x= 3 cot x ln2(sin x)

[d]

f(x) = sin2(ln x) ⇒ f ′(x) = 2 sin(ln x) · cos(ln x) · 1

x=

sin(2 ln x)

x

[e]

f(x) = (ln x)(ln ln x) ⇒ f ′(x) =1

xln ln x + ln x ·

1x

ln x=

ln ln x + 1

x

[f]

f(x) = ln2 sin2(x2) ⇒ f ′(x) = 2 ln sin2(x2) · 1

sin2 x2· (2 sin x2 cos x2 · (2x)) =

= 8x cos2 x2 ln sin2(x2)

:zeikixrn zeivwpet ly zexfbp

:`id zxfbpd illk ote`a(af(x)

)′= ln a ·

(af(x)

)· f ′(x)

9

Page 10: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

.(ef(x)′

= ef(x) · f ′(x) `ed ihxt dxwn

:ze`nbec

[`]f(x) = e2x ⇒ f ′(x) = (ln e) · e2x · 2 = 2e2x

[a]

f(x) = 53x2 ⇒ f ′(x) = (ln 5) ·(53x2

)· (6x) = 6x ln 5 · 53x2

[b]

f(x) = e√

x ⇒ f ′(x) =1

2√

x· e√

x

[c]

f(x) = esin2x ⇒ f ′(x) = esin2x · (2 sin x · cos x) = esin2x sin 2x

[d]

f(x) = ex ln x ⇒ f ′(x) = ex ln x + ex · 1

x= ex

(ln x +

1

x

)[e]

f(x) = ln(xex) ⇒ f ′(x) =1 · ex + xex

xex=

1 + x

x

:ik lawpe mitb`d ipy lr ln lirtp if` y = x−x idz [f]

ln y = ln x−x = −x ln x

:ik lawpe mitb`d ipya xefbp zrke

y′

y= − ln x− x · 1

x= − ln x− 1 ⇒ y′ = y(− ln x− 1) = x−x(− ln x− 1)

:ik lawpe mitb`d ipy lr ln lirtp if` y = xln x idz [g]

ln y = ln xln x = ln x ln x = ln2 x

:ik lawpe mitb`d ipya xefbp zrke

y′

y= 2 ln x · 1

x⇒ y′ = y

2 ln x

x=

2xln x ln x

x= 2xln x−1 ln x

10

Page 11: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

dketd divwpet ly zxfbp 1.1.1

:htyn

e x0 a dxifb f(x) m` .x0 dcewpd zaiaqa dtivxe dkitd divwpet y = f(x) idzy0 = f(x0) dcewpa dxifb x = g(y) dly dketdd divwpetd mb if` f ′(x0) 6= 0

.g′(y0) = 1f ′(x0)

miiwzne

:1 libxz

.(ax)′ z` eayg

:oexzt

dly dketdd divwpetde xyid lk lr dxifbe dkitd divwpet `idy y = ax onqp:ik lawp htynd itl jkl i` g′(y) = 1

y ln aokle g(y) = loga y = ln y

ln a`id

(ax)′ =1

g′(y)= y ln a = ax ln a

.(af(x))′ = 1g′(y)

= y ln a = af(x) · f ′(x) ln a illk ote`a

ddeab xcqn zexfbp 1.1.2

divwpet lawp (a, b) zecewp lka f(x) z` xefbp m`e (a, b) a dxifb divwpet f(x) idzm` .(a, b) a f(x) ly dpey`xd zxfbpd z`xwp f ′(x) .(a, b) a zxcben mby f ′(x) dycgf(x) ly diipyd zxfbpd efe (a, b) a zxcben mb f ′′(x) dzxfbp if` (a, b) a dxifb mb f ′(x)

.f (n) onqpe f(x) ly n xcqn zxfbp xicbdl ozip jke (a, b) a

:milibxz

:1 dl`y:ze`ad zeivwpetd z` exfb

f(x) = e−x2ln√

1 + x3 [a] f(x) = 3√

x [`]

f(x) = 3

√x2+11−x [c]

(0, π

2

)rhwa f(x) = xsinx + (sinx)x [b]

f(x) = arcsin(

x√1+x2

)[e] f(x) = 3

√x +

√x [d]

11

Page 12: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

f(x) = arcsin(cos x) [g] f(x) = 1√3x2+1

[f]

:2 dl`y

:ze`ad zeprhd z` ekixtd e` egiked

`l g′(a) e zniiw h′(a) day a dcewpa dxifb `l F (x) = g(x) + h(x) divwpetd [`].zniiw

g′(a) e zniiw `l h′(a) day a dcewpa dxifb `l F (x) = g(x) + h(x) divwpetd [a].zniiw `l

`l g′(a) e zniiw h′(a) day a dcewpa dxifb `l F (x) = g(x) · h(x) divwpetd [b].zniiw

g′(a) e zniiw `l h′(a) day a dcewpa dxifb `l F (x) = g(x) · h(x) divwpetd [c].zniiw `l

:3 dl`y

:ze`ad zeprhd z` ekixtd e` egiked

. limn→∞

n(f(x + 1

n

)− f(x)

)= f ′(x) miiwzn if` dxifb f(x) m` [`]

.dxifb f(x) if` limn→∞

n(f(x + 1

n

)− f(x)

)= L iteqd leabd miiw m` [a]

.dneqg f(x) da a ly daiaq zniiw m`d a dcewpa dxifb f(x) idz [b]

:4 dl`y

.a a dtivx ϕ(x) xy`k f(x) = (x− a)ϕ(x) y oezp m` f ′(a) z` e`vn [`]

.a a 0 n dpeye dtivx ϕ(x) e f(x) = |x− a|ϕ(x) xy`k zniiw f ′(a) m`d [a]

.a1, a2, · · · , an zecewpa dxifb `l xy` dtivx divwpet epa [b]

:5 dl`y

divwpetd s ly mikxr eli` xear ewca

f(x) =

xs sin 1x , x 6= 0

0 , x = 0

12

Page 13: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

.dzxfbp eayge 0 a dxifbe dtivx

:6 dl`y

.zeivwpet od u(x), v(x) xy`k u(x)v(x) ly zxfbpd z` e`vn

:zeaeyz:1 dl`y:'` sirq

:ik lawpe millkd itl xefbp

3√

x = x13 ⇒

(x

13

)′=

13x

13−1 =

13x−

23 =

13 3√

x2

:'a sirq

:ik lawpe zxyxyde dltknd llka ynzyp

f(x)′ =(e−x2

)′ln√

1 + x3 + e−x2(ln√

1 + x3)′

=(e−x2

· (−2x))

ln√

1 + x3+

e−x2(

1√1 + x3

· (√

1 + x3)′)

= −2xe−x2ln√

1 + x3 + e−x2· 1√

1 + x3· 12

(√1 + x3

)− 12 · 3x2

= −2xe−x2ln√

1 + x3 +32x2e−x2

· 11 + x3

:'b sirq

:`ad gezitd z` d`xp

(sinx)x = ex ln(sin x) , xsin x = eln xsin x

= esin x ln x

:ik lawpe millkd itl xefbp zrk

(xsin x)′ = (esin x ln x)′ = esin x ln x · (sinx lnx)′ = esin x ln x

(cos x lnx +

sinx

x

)

((sinx)sin x)′ = (ex ln(sin x))′ = ex ln(sin x) · (x ln(sin x))′ = ex ln(sin x)

(ln(sin x) + x · 1

sinx· cos x

)

(sinx)x(ln(sin x) +

x cos x

sinx

)

13

Page 14: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:lawp lkd jqa okl

(xsin x + (sinx)sin x)′ = xsin x

(cos x lnx +

sinx

x

)+ (sinx)x

(ln(sin x) +

x cos x

sinx

)

:'c sirq

:ik lawpe millkd itl xefbp(3

√x2 + 11− x

)′=

((x2 + 11− x

) 13)′

=13

(x2 + 11− x

)− 23

·(

x2 + 11− x

)′=

13

(x2 + 11− x

)− 23

·(

2x · (1− x)− (−1)(x2 + 1)(1− x)2

)=

=13

(x2 + 11− x

)− 23

·(−x2 + 2x + 1

(1− x)2

)

:'d sirq

:ik lawpe millkd itl xefbp(3√

x +√

x

)′=((

x +√

x) 1

3)′

=13(x +

√x)− 2

3 ·(x +

√x)′ =

1

3 (x +√

x)23·(

1 +1

2√

x

)

:'e sirq

:ik lawpe millkd itl xefbp

(arcsin

(x√

1 + x2

))′=

(x√

1+x2

)′√

1−(√

x√1+x2

)2=

1 ·√

1 + x2 − 1·2x·x2·√

1+x2√1− x2

1+x2

=

1

(1+x2)32√

1− x2

1+x2

=

=1

(1 + x2)32 ·√

11+x2

:'f sirq

:ik lawpe millkd itl xefbp(1√

3x2 + 1

)′=((

3x2 + 1)− 1

2)′

= −12(3x2 + 1

)− 32 ·(3x2 + 1

)′= −1

21

(3x2 + 1)32· 6x =

=−3x

(3x2 + 1)32

14

Page 15: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:'g sirq

:ik lawpe millkd itl xefbp

(arcsin(cos x))′ =1√

1− (cos x)2(cos x)′ =

sinx√1− (cos x)2

:2 dl`y

:'` sirq

g(x) = F (x)− h(x) ik lawp if` a dcewpa dxifb F (x) y dlilya gipp .dpekp dprhd.dxizq efe zexifb zeivwpet ly yxtdk a dcewpa dxifb

:'a sirq

a zexifb `l ody h(x) = −|x| e g(x) = |x| efk zicbp `nbec gwp .dpekp `l dprhd.R lka dxifb F (x) = |x| − |x| = 0 la` 0

:'b sirq

ik d`xp .h(x) = sin2(πx) e g(x) = [x] efk zicbp `nbec gwp .dpekp `l dprhdxy`k (m,m + 1) dxevdn rhw lka lk mcew .dxifb F (x) = [x] sin2(πx) dltknd

zecewpa zexifb wecap .zexifb zeivwpet ly dltknk dxifb F (x) f` m ∈ Z:dxcbd itl zenlyd

limx→m+

F (x)− F (m)x−m

= limx→m+

[x] sin2(πx)− 0x−m

= limx→m+

m sin2(π(x−m))x−m

=

limx→m+

sin2(πx)(π(x−m))2

· m(π(x−m))2

x−m= lim

x→m+m(x−m)π2 = 0

:ik lawp ote` eze`a

limx→m−

F (x)− F (m)x−m

= limx→m−

[x] sin2(πx)− 0x−m

= limx→m−

(m− 1) sin2(π(x−m))x−m

=

limx→m−

sin2(πx)(π(x−m))2

· (m− 1)(π(x−m))2

x−m= lim

x→m−(m− 1)(x−m)π2 = 0

.F ′(m) = 0 okle

:'c sirq

15

Page 16: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

a zexifb `l ody h(x) = |x| e g(x) = |x| efk zicbp `nbec gwp .dpekp `l dprhd.R lka dxifb F (x) = x2 la` 0

:3 dl`y

:'` sirq

:miiwzn dxcbdd itl if` dxifb f(x) m` .dpekp dprhd

f ′(x) = lim∆x→0

f(x0 + ∆x)− f(x0)∆x

okle n →∞ xy`k 1n → 0 mb f` ∆x → 0 xy`k ik xexae 1

n z` ∆x mewna aezkp:ik lawp

f ′(x) = limn→∞

f(x0 + 1

n

)− f(x0)

1n

= limn→∞

n

(f

(x0 +

1n

)− f(x0)

)

:'a sirq

idz , zicbp `nbec gwp .dpekp `l dprhd

f(x) =

1 , x ∈ Q

0 , x /∈ Q

mpne` iteq leabd xnelk limn→∞ n(f(x + 1

n

)− f(x)

)= 0 ik lawp jkl i`

.dxifb `l i`ceea okle dtivx `l divwpetd

:'b sirq

leabd zxcbde zetivxn okle ef dcewpa dtivx mb okle a a dxifb f(x)miiwzn |x− a| < δ miiwnd x lkly jk δ > 0 miiw ε > 0 lkly meyxl lkep

a ly daiaq yiy lawp ε = 1 gwip m` zxne` z`f .f(a)− ε < f(x) < f(a) + ε

.|f(x)| < max{|f(a) + 1|, |f(a)− 1|} day

:4 dl`y

:'` sirq

:ik lawp ϕ ly zetivxd jnq lre zxfbpd zxcbd itl

f ′(a) = limx→a

(x− a)ϕ(x)− 0x− a

= limx→a

ϕ(x) = ϕ(a)

:'a sirq

16

Page 17: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:cxtpa aygp mrtd wx f ′(a) meiw z` wecap dxcbd itl aey

limx→a+

|x− a|ϕ(x)− 0x− a

= limx→a+

(x− a)ϕ(x)− 0x− a

= ϕ(a) 6= 0

limx→a−

|x− a|ϕ(x)− 0x− a

= limx→a−

−(x− a)ϕ(x)− 0x− a

= −ϕ(a) 6= 0

`ly iptn zniiw `l f ′(a) okle ϕ(a) 6= −ϕ(a) ik miiw `l limx→a|x−a|ϕ(x)−0

x−a okle.oey`x oinn zetivx i` zeidl dleki

:'b sirq

zeivwpet ly dltknk dtivx `id .∏n

i=1 |x− ai| lynl `id zywaend divwpetd.'a sirq itl 1 ≤ i ≤ n lkl ai zecewpa dxiyb `l `ide zetivx

:5 dl`y

s > 0 xear dxcbd itl ok`e dtivx f divwpetd s ikxr eli` xear mcew wecaps ≤ 0 xear zxne` z`f .miiw `l leabd zxg` limx→0 xs sin 1

x = 0 = f(0) ik lawpf izn wecap s > 0 xear zrk .dtivx `l `id ik dxifb `l geha f divwpetd

:ok`e dxcbd itl dxifb

limx→0

xs sin 1x − 0

x− 0= lim

x→0xs−1 sin

1x

= 0

.miiw `l `ed zxg` s > 1 xy`k

:6 dl`y

:ik lawp jkl i` f(x) = u(x)v(x) idz

ln (f(x)) = ln(u(x)v(x)

)= v(x) ln (u(x))

:ik lawpe mitb`d ipy z` xefbp

1f(x)

· f ′(x) = v′(x) ln (u(x)) + v(x) · 1u(x)

· u′(x)

okl

f ′(x) = f(x)[v′(x) ln (u(x)) + v(x) · u′(x)

u(x)

]= u(x)v(x)

[v′(x) ln (u(x)) + v(x) · u′(x)

u(x)

]

17

Page 18: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

il`ivpxticd oeaygd ly miiceqid mihtynd 2

dnxt htyn 2.1

zlawn f(x) m` .x0 zinipt dcewpa dxifbe (a, b) megza zxcbend divwpet f(x) idz.f ′(x0) = 0 if` x0 a meniqwnd e` menipind z`

:1 libxz

.(0, π) rhwa f(x) = sin x divwpetd ly meniqwn e`vn

:oexzt

xnelk f ′(x0) = 0 miiwzdl jixv if` (0, π) rhwa meniqwn zcewp zniiw m`.rhwa meniqwnd epid sin

(π2

)= 1 ok`e x = π

2 m` wxe m` dfe cos x = 0

liawn elld zecewpa wiynd xyidy df dnxt htyn ly ixhne`bd yextd [∗].x d xivl

lex htyn 2.2

.f(a) = f(b) miiwzne (a, b) a dxifbe [a, b] a dtivx [a, b] megza zxcbend divwpet f(x) idz.f ′(c) = 0 y jk c ∈ (a, b) zniiw if`

:ze`nbec

zpwqn z` miniwnd c ikxr lk z` e`vne oezpd rhwa lex htyn i`pz z` ewca:htynd

.htynd i`pz z` wecap .[2, 4] rhwd z`e f(x) = x2 − 6x + 8 divwpetd z` gwp [`]ok enk .[2, 4] rhwa hxtae x lkl dxifbe dtivx okle mepilet `id eply divwpetd

:miiwzn

f(2) = 22 − 6 · 2 + 8 = 0 , f(4) = 42 − 6 · 4 + 8 = 0 ⇒ f(2) = f(4)

f ′(x) = 2x− 6 la` .f ′(c) = 0 y jk c ∈ (2, 4) dcewp zniiw lex htyn itl jkl i`:okle

0 = f ′(c) = 2c− 6 ⇒ c = 3

18

Page 19: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

.htynd i`pz z` wecap .[

π2 , 3π

2

]rhwd z`e f(x) = cos x divwpetd z` gwp [a]

enk .[

π2 , 3π

2

]rhwa hxtae x lkl dxifbe dtivx okle zixhpnl` `id eply divwpetd

:miiwzn ok

f(π

2

)= 0 , f

(3π

2

)= 0 ⇒ f

2

)= f

(3π

2

)

f ′(x) = sin x la` .f ′(c) = 0 y jk c ∈(

π2 , 3π

2

)dcewp zniiw lex htyn itl jkl i`

:okle0 = f ′(c) = sin c ⇒ c = π

.htynd i`pz z` wecap .[0, 4] rhwd z`e f(x) = 12x−

√x divwpetd z` gwp [b]

enk .[0, 4] rhwa hxtae x lkl dxifbe dtivx okle zixhpnl` `id eply divwpetd:miiwzn ok

f(0) =12· 0−

√0 = 0 , f(4) =

12· 4−

√4 = 0 ⇒ f(0) = f(4)

f ′(x) = 12 −

12√

xla` .f ′(c) = 0 y jk c ∈ (0, 4) dcewp zniiw lex htyn itl jkl i`

:okle

0 = f ′(c) =12− 1

2√

c⇒

√c = 1 ⇒ c = 1

:libxz

.miiynn miyxey 2 weica yi ex − x− 4 = 0 d`eeynl ik egiked

:oexzt

divwpetd zetivxn if` f(4) ≈ 7.98 < 0 mbe f(−4) ≈ 46 > 0 e f(0)− 3 < 0 y oeiknd`eeynl miyxey 3 miniw ik gipp .miiynn miyxey ipy zegtl mpyiy raep

x1 < x2 < x3 ik gipp zeillkd zlabd ilae d`eeynd iyxey x1, x2, x3 eidi xnelklex htyn itl okle xyid lk lr dxifbe dtivx f(x) .f(x1) = f(x2) = f(x3) xnelk

f ′(x) = ex − 1 la` f ′(c1) = f ′(c2) = 0 y jk c2 ∈ (x2, x3) e c1 ∈ (x1, x2) zeniiw.dxizq efe x = 0 wx `ed ef d`eeynl oexztde

'fpxbl htyn 2.3

y jk c ∈ (a, b) zniiw if` (a, b) a dxifbe [a, b] a dtivx divwpet f(x) idz

f ′(c) =f(b)− f(a)

b− a

19

Page 20: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:ze`nbec

zpwqn z` miniwnd c ikxr lk z` e`vne oezpd rhwa fpxbl htyn i`pz z` ewca:htynd

.htynd i`pz z` wecap .[−4, 6] rhwd z`e f(x) = x2 + x divwpetd z` gwp [`]jkl i` .[−4, 6] rhwa hxtae x lkl dxifbe dtivx okle mepilet `id eply divwpetd

y jk c ∈ (−4, 6) dcewp zniiw fpxbl htyn itl

f ′(c) =f(6)− f(−4)

6− (−4)

:ik lawp lkd jqa jkl i` f(6) = 42 , f(−4) = 12 e f ′(x) = 2x + 1 la`

2c + 1 = f ′(c) =42− 12

10⇒ 2c + 1 = 3 ⇒ c = 1

divwpetd .htynd i`pz z` wecap .[1, 2] rhwd z`e f(x) = x3+1 divwpetd z` gwp [a]htyn itl jkl i` .[1, 2] rhwa hxtae x lkl dxifbe dtivx okle mepilet `id eply

y jk c ∈ (1, 2) dcewp zniiw fpxbl

f ′(c) =f(2)− f(1)

2− 1

:ik lawp lkd jqa jkl i` f(2) = 9 , f(1) = 2 e f ′(x) = 3x2 la`

3c2 = f ′(c) =9− 2

1⇒ 3c2 = 7 ⇒ c = ±

√73

.[1, 2] rhway dcigid `id ik c =√

73 `id ziteqd daeyzd jkl i`

: libxz

ik egikednan−1(b− a) < bn − an < nbn−1(b− a)

.b > a > 0 lkl

:oexzt

dcewp zniiw fpxbl htyn itl okle [a, b] rhwa opeazpe f(x) = xn divwpetd z` xicbp:y jk a < c < b

f ′(c) =f(b)− f(a)

b− a⇔ ncn−1 =

bn − an

b− a⇔ bn − an = (b− a)ncn−1

20

Page 21: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:ik lawp okle an−1 < cn−1 < bn−1 ik raep a < c < b y dcaerdn

(b− a)nan−1 < (b− a)ncn−1 < (b− a)nbn−1

xnelk(b− a)nan−1 < bn − an < (b− a)nbn−1

iyew htyn 2.4

lkl g′(x) 6= 0 sqepae (a, b) rhwa zexifbe [a, b] rhwa zetivx zeivwpet f(x), g(x) eidi:y jk c ∈ (a, b) zniiw if` x ∈ (a, b)

f ′(c)g′(c)

=f(b)− f(a)g(b)− g(a)

lhitel htyn 2.5

.∞∞ , 00 dxevdn zeleab aygl minieqn mi`pza epl xyt`i df htyn

:htyn

:ik gipp .dnvr a l ile` hxt x = a zaiaqa zexifb zeivwpet f(x), g(x) eidi

.limx→a f(x) = limx→a g(x) = 0 [`]

.g′(x) 6= 0 miiwzn a zaiaqa x 6= a lkl [a]

.limx→af ′(x)g′(x) miiw [b]

.limx→af ′(x)g′(x) l deeye limx→a

f(x)g(x) leabd miiw if`

:dxrd

l (l`nyn wx e`) oinin wx zexcben zeivwpetdy dxwna mb miiwzn htynd.limx→a+

f(x)g(x) = limx→a+

f ′(x)g′(x) f`e a

:htyn

21

Page 22: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:ik gipp .(α,∞) zaiaqa zexifb zeivwpet f(x), g(x) eidi

.limx→∞ f(x) = limx→∞ g(x) = 0 [`]

.g′(x) 6= 0 miiwzn x > α lkl [a]

.limx→∞f ′(x)g′(x) miiw [b]

.limx→∞f ′(x)g′(x) l deeye limx→∞

f(x)g(x) leabd miiw if`

: milibxz

:1 dl`y

: jxtd e` gkedegiked limx→a+ f(x) = limx→a− f(x) mbe (a, b) gezt rhwa dxifb divwpet f(x) idz

.f ′(c) = 0 y jk c ∈ (a, b) yiy

:2 dl`y

:mi`ad mipeieiy i`d z` exzt

.0 < a < b xear b−a1+b < ln 1+b

1+a < b−a1+a [`]

.| arctanx− arctan y| ≤ |x− y| [a]

:3 dl`y

lk oia f` , f ′(x)g(x) 6= f(x)g′(x) zeniiwne x lkl zexifb g(x) e f(x) m` ik egiked.g(x) ly yxey yi f(x) ly miyxey ipy

:4 dl`y

.edylk irah xtqn n idie (0, 1) a dxifbe [0, 1] a dtivx divwpet f(x) idz.f(1)− f(0) = f ′(c)

ncn−1 miiwnd 0 < c < 1 miiwy egiked

:5 dl`y

f(x0) = f(x1) = f(x2) = f(x3) y gippe (a, b) rhwa minrt 3 dxifbd divwpet f(x) idzx0 < c < x3 y jk c dcewp zniiwy egiked .a < x0 < x1 < x2 < x3 < b xy`k

.zqt`zn c dcewpa ziyilyd zxfbpd xnelk f (3)(c) = 0 zniiwnd

:6 dl`y

yxey xzeid lkl p(x) l yi (−∞,−1) rhwa ik egiked , p(x) = 3x4 + 4x3 + C idi

22

Page 23: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

.cg` iynn

: zepexzt

:1 dl`y.xgapy (a, b) rhw lka f(x) = x `nbecl ! dpekp `l of dprh

: d`ad dipal al eniy mpne`:`ad ote`a [a, b] rhwa g(x) divwpet xicbp

g(x) =

limt→a+ f(t) , x = a

f(x) , x ∈ (a, b)

limt→a− f(t) , x = b

itl jkl i` .g(a) = g(b) miiwzn mbe (a, b) rhwa dxifbe [a, b] rhwa dtivx g(x)miiwzne c ∈ (a, b) y oeik .g′(c) = 0 day c ∈ (a, b) dcewp zniiw lex htyn

.f ′(c) = g′(c) = 0 ik xexa f` x ∈ (a, b) lkl f(x) = g(x)

x = b a zetivx i` zcewp yie okzi la` oekp hrnk df ok m`! z`f zeyrl ozip `l f`e

:2 dl`y

:'` sirq

okle (a, b) a dxifbe [a, b] a dtivx divwpet f(x) ik xexa f` f(x) = ln(1 + x) idz:miiwzny jk c ∈ (a, b) zniiw fpxbl htyn itl

f ′(c) =1

1 + c=

f(b)− f(a)b− a

=ln(1 + b)− ln(1 + a)

b− a

:ik lawp minzixbel iweg itl

ln(1 + b)− ln(1 + a) = ln(

1 + b

1 + a

)

:ik eplaiw okl

ln(

1+b1+a

)b− a

=1

1 + c

:ik lawpe b− a a oeieiyd z` letkp

ln(

1 + b

1 + a

)=

b− a

1 + c

23

Page 24: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:ik lawp f` a < c < b e zeid

b− a

1 + b<

b− a

1 + c<

b− a

1 + a

:ik eplaw lkd jqa okl

b− a

1 + b< ln

(1 + b

1 + a

)<

b− a

1 + a

:'a sirq

`ll gippe , x 6= y eay dxwna lthp .oeieiy miiwzn x = y eay dxwnay xexa:jk oeieiy i`d z` azkyl ozip .x > y ik zeillkd zlabd∣∣∣∣arctanx− arctan y

x− y

∣∣∣∣ ≤ 1

dxifbe df rhwa dtivx divwpetd , [x, y] rhwa f(t) = arctan(t) divwpeta opeazpcvn f ′(c) = arctan x−arctan y

x−y exeary c ∈ (x, y) miiw fpxbl htyn itl okle (x, y) rhwa:ik milawn okle .f ′(c) = 1

1+c2 y xxeby dn f ′(t) = 11+t2 ipy∣∣∣∣arctanx− arctan y

x− y

∣∣∣∣ ≤ 1 ⇒∣∣∣∣ 11 + c2

∣∣∣∣ ≤ 1

.c lkl miiwzn dfe

:3 dl`y

:ik lawpe (dpnd llk itl) h(x) z` xefbp h(x) = f(x)g(x) xicbp

h′(x) =f ′(x)g(x)− f(x)g′(x)

(g(x))26=

given

0

x1, x2 eidi xnelk , f(x) iyxey 2 lk oia g(x) ly yxey miiw `l ik dlilya gipp:miiwzn xnelk f(x) iyxey

f(x1) = f(x2) = 0 ⇒ h(x1) = h(x2) = 0

miniiwzn htynd i`pz , (x1 < x2 k"da) [x1, x2] rhwd xear lex htyna ynzyp.zqt`zn dpi` h′(x) ik dxizq ef la` h′(c) = 0 y jk c ∈ (x1, x2) zniiw okl rhwa

:4 dl`y

24

Page 25: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

mbe (0, 1) rhwa dxifb mbe [0, 1] rhwa dtivx gn(x) .n > 0 xear gn(x) = xn xicbpdcewp zniiw iyew htyn itl okl .g′n(x) = nxn−1 6= 0 miiwzn x ∈ (0, 1) lkl

:miiwzn day c ∈ (0, 1)

f(a)− f(0)gn(1)− gn(0)

=f ′(c)g′n(c)

=f ′(c)ncn−1

xnelk

f(1)− f(0) =f ′(c)ncn−1

(gn(1)− gn(0)) =f ′(c)ncn−1

(1− 0) =f ′(c)ncn−1

:5 dl`y

okle a < x0 < x1 < x2 < x3 < b xy`k (a, b) rhwa minrt 3 dxifb f(x)mirhwa lex htyn i`pz miniiwzn okl .[x0, x1], [x1, x2], [x2, x3] mirhwa dtivxy jk c1 ∈ (x0, x1), c2 ∈ (x1, x2), c3 ∈ (x2, x3) zeniw jkl i` [x0, x1], [x1, x2], [x2, x3]

mirhwa f ′(x) divwpetd xear lex htyn z` aey lirtp .f ′(c1) = f ′(c2) = f ′(c3) = 0.f ′′(c4) = f ′′(c5) = 0 y jk c4 ∈ (c1, c2), c5 ∈ (c2, c3) zecewp zeniw okle [c1, c2], [c2, c3]

okle [c4, c5] rhwa f ′′(x) divwpetd xear lex htyn i`pz miniiwzn jkl i`.c6 = c ∈ (x0, x3) ik xexae c = c6 idze f (3)(c6) = 0 y jk c6 ∈ (c4, c5) zniiw

:6 dl`y

if` p(a) = p(b) = 0 e a < b y jk a, b eidi , miyxey 2 yi p(x) l ik dlilya gipp:y jk c ∈ (a, b) zniiw okle lex htyn i`pz miniwzn

p′(c) = 12c3 + 12c2 = 0 ⇒ 12c2(c + 1) = 0 ⇒ c = 0 or c + 1 = 0

yi p(x) l okl .dxizq efe (−∞,−1) l zkiiy `l c la` , c = −1 f` c 6= 0 y oeikn.(−∞,−1) a cg` iynn yxey xzeid lkl

:htyn

:ik gipp .dnvr a l ile` hxt x = a zaiaqa zexifb zeivwpet f(x), g(x) eidi

.limx→a f(x) = limx→a g(x) = ∞ [`]

.g′(x) 6= 0 miiwzn a zaiaqa x 6= a lkl [a]

.limx→af ′(x)g′(x) miiw [b]

.limx→af ′(x)g′(x) l deeye limx→a

f(x)g(x) leabd miiw if`

.zeiccv cg od divwpetd zexcbd xy`k oekp htynd el`d mixwna mb [∗]

25

Page 26: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:dpwqn

:y jk a dcewpa minrt n zexifb zeivwpet f(x), g(x) eidi

f(a) = f ′(a) = · · · = f (n−1)(a) = 0

g(a) = g′(a) = · · · = g(n−1)(a) = 0

.∞∞ ly dxwna mb .limx→af(x)g(x) l deey `ed if` limx→a

f(n)(x)g(n)(x)

leabd miiw m`

:1 libxz

.α > 0 e a > 1 xy`k limx→∞xα

ax leabd z` eayg

:oexzt

z` lhitel itl aygp okle x lkl qt`n dpey dpknd zxfbp ∞∞ dxevdn leab edf

:ik lawpe zexfbpd zpn

limx→∞

αxα−1

ax ln a=(∞∞

):ik lawpe lhitel aey dyrp okle

limx→∞

(α)(α− 1)xα−2

ax(ln a)2=(∞∞

)

:ik lawp f`e α− k < 0 y cr minrt k xefbl jiynp okle

limx→∞

(α)(α− 1) · · · (α− k)xα−k−1

ax(ln a)k=(

0∞

)= 0

:2 libxz

.limx→0

(1x −

1sin x

)leabd z` eayg

:oexzt

ynzyp okle limx→0

(sin x−xx sin x

)=(

00

)dxevdn df ik mii`ex ep` f`e leabd z` hytp

:ik lawpe lhitela

limx→0

(sinx− x

x sinx

)=(

00

)=︸︷︷︸

L′Hospital

limx→0

(cos x− 1

sinx + x cos x

)=(

00

)=︸︷︷︸

L′Hospital

limx→0

(− sinx

cos x + cos x− x sinx

)=

02

= 0

26

Page 27: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:3 libxz

.limx→∞ x(

π2 − arctanx

)leabd z` eayg

:oexzt

okle limx→∞

(π2−arctan x

1x

)=(

00

)dxevdn df ik mii`ex ep` f`e leabd z` hytp

:ik lawpe lhitela ynzyp

limx→∞

π2 − arctanx

1x

=(

00

)=︸︷︷︸

L′Hospital

limx→∞

− 11+x2

− 1x2

= limx→∞

x2

1 + x2= 1

:dxrd

leab lr ef jxca melk cibdl ozip `l f` miiw `l zexfbpd zpn ly leabd m`.onvr zeivwpetd zpn

:milibxz

:mi`ad zeleabd z` eayg

limx→0+2ex2

−2cos(x)ln(x) [a] limx→1

x2−2x+12x2−x−1 [`]

limx→0+ sin(x) · ln(x) [c] limx→0 (tanx)2 sin(x) [b]

limx→∞xln x

(ln x)x [e] limx→0+

(1− xxx)

[d]

limx→0

(sin x

x

) 11−cos x [g] limx→0

(cos xcos 2x

) 1x2 [f]

limx→0ex−e−x−2x

x−sin x [i] limx→0

(1x2 − cot2 x

)[h]

:zeaeyz

:ik lawpe lhitel htyna ynzyp [`]

limx→1

x2 − 2x + 12x2 − x− 1

=(

00

)=︸︷︷︸

L′Hospital

limx→1

2x− 24x− 1

=03

= 0

27

Page 28: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:lhitela ynzydl jxev oi`e heyt leab edf [a]

limx→0+

2ex2 − 2cos(x)ln(x)

= 0

:ik lawp okle eln x = x y dcaera ynzyp [b]

limx→0

(tanx)2 sin(x) = limx→0

eln(tan x)2 sin(x)= elimx→0 2 sin(x) ln(tan(x))

:ik lawpe jixrnd ly leabd z` aygp zrk

limx→0

2 sin(x) ln(tan(x)) = 2 limx→0

ln(tan(x))1

sin(x)

=(−∞∞

)=︸︷︷︸

L′Hospital

= −2 limx→0

1tan(x) cos2(x)

cos(x)sin2(x)

= −2 limx→0

sin2(x)tan(x) cos3(x)

= −2 limx→0

sin2(x)sin(x)cos(x) · cos3(x)

=

= −2 limx→0

sin(x)cos2(x)

= 0

:ik lawp ixewnd leabl dxfga jkl i`

limx→0

(tanx)2 sin(x) = elimx→0 2 sin(x) ln(tan(x)) = limx→0

e0 = 1

:ik lawpe lhitel htyna ynzyp [c]

limx→0+

sin(x) · ln(x) = limx→0+

ln(x)1

sin(x)

=(−∞∞

)=︸︷︷︸

L′Hospital

= limx→0+

1x

− cos(x)sin2(x)

=

= − limx→0+

sin2(x)x cos(x)

= − limx→0+

sin(x)x

· sin(x)cos(x)

= −1 · limx→0+

tan(x) = −1 · 0 = 0

:ik lawpe g(x) = xx onqp [d]

limx→0+

g(x) = limx→0+

xx = limx→0+

eln(xx) = limx→0+

ex ln(x)

:`ad leaba lthp jkl i`

limx→0+

x ln(x) = limx→0+

ln(x)1x

=(∞∞

)=︸︷︷︸

L′Hospital

= limx→0+

−1x1x2

= limx→0+

−x = 0

:ik lawp oklelim

x→0+g(x) = lim

x→0+ex ln(x) = e0 = 1

28

Page 29: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

limx→0+

xg(x) = limx→0+

xxx

= limx→0+

eg(x) ln(x) = e1·(−∞) = 0

:ik lawpe ixewnd leabl xefgp

limx→0+

(1− xxx

)= 1− 0 = 1

:ik lawp okle eln x = x y dcaera ynzyp [e]

limx→∞

xln x

(lnx)x= lim

x→∞

eln x·ln x

eln(ln x)·x = limx→∞

eln2 x−x ln(ln(x)) = elimx→∞ ln2 x−x ln(ln(x))

:leabd lr lkzqp zrk

limx→∞

ln2 x− x ln(ln(x)) = limx→∞

x

(ln2 x

x− x ln(ln(x))

)= −∞

:ik

limx→∞

ln2 x

x=(∞∞

)=︸︷︷︸

L′Hospital

limx→∞

2 ln · 1x1

= limx→∞

2 ln x

x=(∞∞

)=︸︷︷︸

L′Hospital

limx→∞

2x

1= 0

:ik lawp okle eln x = x y dcaera ynzyp [f]

limx→0

( cos x

cos 2x

) 1x2

= limx→0

e1

x2 ln( cos xcos 2x ) = lim

x→0e

ln(cos x)−ln(cos 2x)x2 = e

32

:ik

limx→0

ln(cos x)− ln(cos 2x)x2

=(

00

)=︸︷︷︸

L′Hospital

limx→0

2 sin 2xcos 2x − sin x

cos x

2x= lim

x→0

tan 2x− tanx

2x=

(00

)=︸︷︷︸

L′Hospital

limx→0

4cos2 2x −

1cos2 x

2=

32

:ik lawp okle eln x = x y dcaera ynzyp [g]

limx→0

(sinx

x

) 11−cos x

= limx→0

eln( sin x

x )1−cos x = e−

13

:ik

limx→0

ln(

sin xx

)1− cos x

=(

00

)=︸︷︷︸

L′Hospital

limx→0

xsin x ·

x cos x−sin xx2

sinx= lim

x→0

x cos x− sinx

x sin2 x=

29

Page 30: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

(00

)=︸︷︷︸

L′Hospital

limx→0

cos x− x sinx− cos x

sin2 x + 2x sinx cos x= lim

x→0

−x

sinx + 2x cos x=

(00

)=︸︷︷︸

L′Hospital

limx→0

=−1

3 cos x− 2x sinx= −1

3

:`ad gezitd z` d`xp [h]

limx→0

(1x2− cot2 x

)= lim

x→0

sin2 x− x2 cos2 x

x2 sin2 x= lim

x→0

sin2 x− x2(1− sin2 x)x2 sin2 x

=

limx→0

sin2 x− x2

x2 sin2 x+ 1 = lim

x→0

sin2 xx2 − 1sin2 x

+ 1 =23

:ik

limx→0

sin2 xx2 − 1sin2 x

=(

00

)=︸︷︷︸

L′Hospital

limx→0

2x2 sin x cos x−2x sin2 xx4

2 sinx cos x= lim

x→0

x cos x− sinx

x3 cos x=

limx→0

x− tanx

x3=(

00

)=︸︷︷︸

L′Hospital

limx→0

1− 1cos2 x

3x2=(

00

)=︸︷︷︸

L′Hospital

limx→0

−2 sin x cos xcos4 x

6x=

limx→0

− sinx

3x cos3 x=(

00

)=︸︷︷︸

L′Hospital

limx→0

=− cos x

3 cos3 x− 9x cos2 x sinx= −1

3

:ik lawpe lhitel htyna ynzyp [i]

limx→0

ex − e−x − 2x

x− sinx=(

00

)=︸︷︷︸

L′Hospital

limx→0

ex + e−x − 21− cos x

=(

00

)=︸︷︷︸

L′Hospital

limx→0

ex − e−x

sinx=(

00

)=︸︷︷︸

L′Hospital

limx→0

ex + e−x

cos x= 2

xeliih zgqep 3

idi :xfr zprh `iap htynd iptle mepilet zxfra divwpet ly aexw epid illkd oeirxd.P (k)(a) = ak · k! f` k ≤ n idie n dlrnn mepilet P (x) = a0 + a1(x− a) + · · ·+ an(x− a)n

:xeliih zgqep

daiaqa idylk dcewp x idze x = x0 dcewpd zaiaqa minrt n + 1 dxifb f(x) idz:`ed f(x) xear mepiletd if`

f(x) = f(x0) +f ′(x0)

1!(x− x0) +

f ′′(x0)2!

(x− x0)2 + · · ·+ f (n)(x0)n!

(x− x0)n

30

Page 31: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:dpid fpxbl itl zix`yd zgqep xy`k

Rn(x) =f (n+1)(c)(n + 1)!

(x− x0)n+1 , c ∈ (x0, x)

:dxrd

:jk zi`xp `ide oxelwn z`gqep z`xwp xeliih zgqep if` x0 = 0 xy`k

f(x) = f(0) +f ′(0)

1!· x +

f ′′(0)2!

· x2 + · · ·+ f (n)(0)n!

· xn + Rn(x)

:1 libxz

.f(x) = ln(x + 1) ly oxelwn zgqep z` e`vn

:oexzt

:ok`e k xcq cr divwpetd ly zexfbpd z` aygp

f(x) = ln(x + 1) ⇒ f ′(x) =1

x + 1= (x + 1)−1 ⇒ f ′′(x) = −(x + 1)−2 ⇒

f (3)(x) = 2(x + 1)−3 ⇒ f (4)(x) = −6(x + 1)−4

a aygp xy`k okle f (k)(x) = (−1)k+1(k − 1)!(x + 1)−k ik divwecpi`a gikedl ozip:ik lawp x0 = 0

f(x) = f(0) +f ′(0)

1!(x) +

f ′′(0)2!

(x)2 + · · ·+ f (n)(0)n!

(x)n + Rn(x) =

= 0 +(−1)2 · 0!

1!· x +

(−1)3 · 1!2!

· x2 + · · ·+ (−1)k+1 · (k − 1)!k!

· xk + Rk(x) =

x− 12x2 +

13x3 + · · ·+ (−1)k+1

kxk + Rk(x)

.c ∈ (0, x) xear Rk(x) =((−1)k+2k!(c + 1)−k−1

)xk+1

(k+1)! `id d`ibyd xy`k

:2 libxz

.10−2 = 0.01 lr dlrz `l d`ibyd xy`k ln(1.2) z` eayg

31

Page 32: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:oexzt

x = 0.2 gwp m` .|Rk(x)| < 0.01 miiwi fpxbl itl d`ibyd xai`y jk k miytgn

xy`k f(k+1)(c)(k+1)! · xk+1 jk d`xp d`ibyd xai`e ln(1.2) = ln(1 + x) ik lawp if`

:ik lawp ln(1 + x) xear eply dxwna .c ∈ (0, 0.2)

|Rk(x)| =∣∣∣∣f (k+1)(c)

(k + 1)!· xk+1

∣∣∣∣ = ∣∣∣∣ (−1)k+1 · (k)!(k + 1)!

· (0.2)k+1

∣∣∣∣ < 1k + 1

· (0.2)k+1 =(0.2)k+1

k + 1

:ok`e z`f miiwn k dfi` wecap okle (0.2)k+1

k+1 < 0.01 ik yexcp okle

k = 1 :(0.2)2

2= 0.02 > 0.01

k = 2 :(0.2)3

3= 0.0004 < 0.01

:ik lawp okle k = 2 xear miiwzn df xnelk

f(x) ≈ P2(x) = 0 + x− 12x2 = x− 1

2x2

.ln(1.2) = 0.1823 ok`e P2(0.2) = (0.2)− 12 (0.2)2 = 0.18 okle

milibxz:1 dl`y

:ze`ad zeivwpetd z` xelih xehl egzt.x0 = 0 aiaq f(x) = cos(x) [`]

.x0 = 1 aiaq f(x) = 1x [a]

.x0 = 2 aiaq f(x) = ln(x) [b]

:2 dl`y

lcebl dkxrd epze sinx ly 3 xcqn oxelwn xeh zxfra sin 3◦ z` eayg [`].d`ibyd

, dcewpd ixg` zextq 3 ly weica , ex ly oxelwn xeh zxfra e z` eayg [a].0.5 · 10−3 lr dlrz `l d`ibydy zxne` z`f

:1 dl`y

32

Page 33: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:'` sirq

:ok`e x0 = 0 a odly jxrd z`e n xcq cr divwpetd ly zexfbp `vnp

f(x) = cos(x) ⇒ f(0) = 1f ′(x) = − sin(x) ⇒ f ′(0) = 0f ′′(x) = − cos(x) ⇒ f ′′(0) = −1f (3)(x) = sin(x) ⇒ f (3)(0) = 0f (4)(x) = cos(x) ⇒ f (4)(0) = 1

...f (n)(x) = cos

(x + nπ

2

)⇒ f (n)(0) = cos

(nπ2

):ik lawp xelih zgqep itl jkl i`

f(x) = 1− x2

2!+

x4

4!− x6

6!+ · · ·+ (−1)nx2n

(2n)!+ Rn(x)

.c ∈ (0, x) xear Rn(x) = cos(c + (n+1)π

2

)xn+1

(n+1)! y jk

:'a sirq

:ok`e x0 = 1 a odly jxrd z`e n xcq cr divwpetd ly zexfbp `vnp

f(x) = 1x = x−1 ⇒ f(1) = 1 = (−1)0 · 0!

f ′(x) = −x−2 ⇒ f ′(1) = −1 = (−1)1 · 1!f ′′(x) = 2x−3 ⇒ f ′′(1) = 2 = (−1)2 · 2!f (3)(x) = −6x−4 ⇒ f (3)(1) = −6 = (−1)3 · 3!

...f (n)(x) = (−1)nn!x−(n+1) ⇒ f (n)(1) = (−1)nn!

:ik lawp xelih zgqep itl jkl i`

f(x) = f(1) +f ′(1)

1!(x− 1) +

f ′′(1)2!

(x− 1)2 + · · ·+ f (n)(1)n!

(x− 1)n + Rn(x) =

= 1 + (−1)1(x− 1) + (−1)2(x− 1)2 + · · ·+ (−1)n(x− 1)n + Rn(x) = 1 +n∑

k=1

(−1)k(x− 1)k + Rn(x)

.c ∈ (1, x) xear Rn(x) = (1−x)n+1

cn+2 y jk

:'b sirq

33

Page 34: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:ok`e x0 = 2 a odly jxrd z`e n xcq cr divwpetd ly zexfbp `vnp

f(x) = ln(x) ⇒ f(2) = ln 2f ′(x) = 1

x ⇒ f ′(2) = 12 = (−1)0 · 0!

21

f ′′(x) = −x−2 ⇒ f ′′(2) = − 14 = (−1)1 · 1!

22

f (3)(x) = 2x−3 ⇒ f (3)(2) = 14 = (−1)2 · 2!

23

f (4)(x) = −6x−4 ⇒ f (4)(2) = − 38 = (−1)3 · 4!

24

...f (n)(x) = (−1)n−1(n− 1)!x−n ⇒ f (n)(2) = (−1)n−1 (n−1)!

2n

:ik lawp xelih zgqep itl jkl i`

f(x) = f(2) +f ′(2)

1!(x− 2) +

f ′′(2)2!

(x− 2)2 + · · ·+ f (n)(2)n!

(x− 2)n + Rn(x) =

= ln 2 + (−1)0(x− 2)1 · 21

+ (−1)1(x− 2)2

2 · 22+ (−1)2

(x− 2)3

3 · 23+ · · ·+ (−1)n−1 (x− 2)3

n · 2n+ Rn(x) =

ln 2 +n∑

k=1

(−1)k−1 (x− 2)3

k · 2k+ Rn(x)

.c ∈ (2, x) xear Rn(x) = (−1)n

n+1

(x−2

c

)n+1 y jk

:2 dl`y

:'` sirq

`id d`ibyde P3(x) = x− x3

3! ik lawp 3 xcq cr oxelwn gezit it lr:d`ibyd z` jixrpe R3(x) = sin(c)x4

4!∣∣∣R3

( π

60

)∣∣∣ = ∣∣∣∣ sin(c)4!

( π

60

)4∣∣∣∣ ≤ π4

24 · 604≈ 0.3 · 10−6

lawpe aygp zrk .dcewpd ixg` zewiecn zextq 5 lra didi P3

(π60

)zxne` z`f

:ik

sin 3◦ ≈ P3

( π

60

)=

π

60− π3

6 · 603≈ 0.05234

:'a sirq

:dpid ex ly oixelwn zgqep

ex = 1 + x +x2

2!+

x3

3!+ · · ·+ xn

n!+ Rn(x) =

∞∑n=0

xn

n!

34

Page 35: ecg - אוניברסיטת חיפהmath.haifa.ac.il/agibali/hedva08/hw/DLT.pdf'` `ecg ilaib aia` :lbxzn 2008 lixt`a 9 deey dcina zetivx 1 lkl m` D a deey dcina dtivx f(x) ik xn`p

ilaib aia`'` `"ecg

:d`ibyd ly mqg `vnp .c ∈ (0, x) xear Rn(x) = ecxn+1

(n+1)! y jk

Rn(1) =ec

(n + 1)!<

e

(n + 1)!<

3(n + 1)!

lr zrk .e < 3 mby oaenke dler divwpet ex ik e0 < ec < e1 f` 0 < c < 1 y oeik3

(7+1)! ≈ 0.074 · 10−3 < 0.5 · 10−3 miiwny oey`xd `ed n = 7 ik mi`ven dirhe ieqip ici:z` aygp okle

P7(1) =7∑

n=0

1n!≈ 2.718

35