31
Klimeck – ECE606 Fall 2012 – notes adopted from Alam ECE606: Solid State Devices Lecture 6 Gerhard Klimeck [email protected] 1 Klimeck – ECE606 Fall 2012 – notes adopted from Alam Reference: Vol. 6, Ch. 3 & 4 Presentation Outline •Reminder – Density of states »Possible states as a function of Energy •Reality check - Measurements of Bandgaps •Reality check - Measurements of Effective Mass • Rules of filling electronic states •Derivation of Fermi-Dirac Statistics: three techniques •Intrinsic carrier concentration •Conclusions 2

ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck [email protected] 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

ECE606: Solid State Devices

Lecture 6Gerhard Klimeck

[email protected]

1

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder – Density of states»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps•Reality check - Measurements of Effective Mass•Rules of filling electronic states •Derivation of Fermi-Dirac Statistics: three techniques

•Intrinsic carrier concentration•Conclusions

2

Page 2: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

k

a

πa

π− 2k

Na

π∆ =

E E

DOS

( )3 3 0

2 3

2* *m m E EDOS

π−

=ℏ

Reminder: Momentum vs. DOS

Important things to remember:• Momentum k entered our thinking as a quantum number• Each quantum number is creating ONE state• Often “just” need the number of available states in an energy range

=> Density of States => appears to be solely determined by »1) band edge, »2) effective mass 3

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Measurement of Band Gap

k

E

1

2

3

4

Photons are only absorbed between bands that have filled and empty states

E23

abso

rptio

n

4

Page 3: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Measurement of Energy Gap

k

Iout

Iin

E23

I out -I in

E23+∆

23E E−∼

( )2

23 phE E E− −∼

k

E

1

2

3

4

5

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Temperature-dependent Band Gap

k

E

1

2

3

4

( ) ( )2

0G G

TE T E

T

αβ

= −+

6

Page 4: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder – Density of states»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps•Reality check - Measurements of Effective Mass•Rules of filling electronic states •Derivation of Fermi-Dirac Statistics: three techniques

•Intrinsic carrier concentration•Conclusions

7

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Measurements of Effective Masses

Important things to remember:• Full bands do not conduct –

electrons have no space to go• Empty bands to not conduct –

there are no electrons to go aroundQuestion:• We are interested in the top-most

valence band holes and the bottom-most electron states

• We want to figure out the slope of the bands

• How can we probe just one particular species of electrons/holes?

• We do not want to transfer them from one band to the next!

=> can we rotate the electrons around in a single band?

k

E

3

2

1

8

Page 5: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

(kx,0)

(0,-ky)

(0,ky)

(-kx,0)

kx

Energy=constant.

kxky

kz

ky

Liquid He temperature …x

y

Motion in Real Space and Phase Space

9

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Derive the Cyclotron Formula

2

0

0 0

z z

m*q B q B

r

qB r

m*

υ υ υ

υ

= × =

=

B

For an particle in (x-y) plane with B-field in z-direction, the Lorentz force is …

0

0

00

00 0

2 2

12

2

r m*

qB

qB

m*qB

m*

π πτυ

ντ π

ω πν

= =

≡ =

= =

0

02

qm*

B

vπ=

10

Page 6: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Measurement of Effective Mass

ν0=24 GHz(fixed)

IoutIin

B field variable …

00

0

0

2 2

q qm

B B*

vm*πν

π= =

I out -I in

BBcon

kxky

kz

Bval kxky

kz

11

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Effective mass in Ge

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

111 111 111 111

111 111 111 111

4 angles between B field and the ellipsoids …Recall the HW1

B

12

Page 7: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Derivation for the Cyclotron Formula

B

Show that 2 2

2 2

1

c t l t

cos sin

m m m m

θ θ= +

[ ] dF q B M

dt

υυ= × =

The Lorentz force on electrons in a B-field

( )

( )

( )

* xx y z z y t

y*y z x x z t

* zz x y y x l

dF q B B m

dtd

F q B B mdt

dF q B B m

dt

υυ υ

υυ υ

υυ υ

= − =

= − =

= − =

In other words,

Given three mc and three θ,we will Find mt, and ml

13

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Continued …

22 2 2 2 2

2

0 0 00

0 with l

l

yy t t

t* * *c t l

dsin cos

dtqB qB qB

m m m

wω ω

ω

υυ

ω

ω ω θ θ

ω

+ = ≡ +

≡ ≡ ≡

Differentiate (vy) and use other equations to find …

Let (B) make an angle (θ) with longitudinal axis of the ellipsoid (ellipsoids oriented along kz)

( )2 2

2 2

1*

l t tc

sin cos

m m mm

θ θ= +so that …

B0

ky

kx

kz

( ) ( )0 00x y zB B cos , B , B B sin ,θ θ= = =

14

Page 8: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Measurement of Effective Mass

Three peaks B1, B2, B3Three masses mc1,mc2,mc3Three unique angles: 7, 65, 73

2 2

2 2

1

tc l t

cos sin

m mm m

θ θ= +

Known θ and mc allows calculation of mt and ml.

[110]

B=[0.61, 0.61, 0.5]

1

02cmqB

vπ=

15

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Valence Band Effective Mass

Which peaks relate to valence band?Why are there two valence band peaks?

16

Page 9: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Conclusions

1) Only a fraction of the available states are occupied. The

number of available states change with energy. DOS

captures this variation.

2) DOS is an important and useful characteristic of a

material that should be understood carefully.

3) Experimental measurements are key to making sure that

the theoretical calculations are correct. We will discuss

them in the next class.

17

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder – Density of states»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps•Reality check - Measurements of Effective Mass•Rules of filling electronic states •Derivation of Fermi-Dirac Statistics: three techniques

•Intrinsic carrier concentration•Conclusions

18

Page 10: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Carrier Density

Carrier number = Number of states x filling factor

Chapters 2-3 Chapter 4

19

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

E-k diagram and Electronic States

ka

πa

π−

E

g(E)

E2 3

2

2π−

*

cm m*

E E

E1

E2

E3

Energy-Band Density of States

20

Page 11: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Rules for filling up the States

� Pauli Principle: Only one electron per state

� Total number of electrons is conserved

� Total energy of the system is conserved

E2

E3

T iiN N=∑

T i iiE E N=∑

E1

21

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Presentation Outline

•Reminder – Density of states»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps•Reality check - Measurements of Effective Mass•Rules of filling electronic states •Derivation of Fermi-Dirac Statistics: three techniques

•Intrinsic carrier concentration•Conclusions

In 1926, Fowler studied collapse of a star to white dwarf by F-D statistics, before Sommerfeld used the F-D statistics to develop a theory of electrons in metals in 1927. Wikipedia has a nice article on this topic. Difference between a trick and a method: A method is a trick used more than once!

22

Page 12: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Illustrative Example: 3 Energy Levels

E=0

E=2

E=4

T iiN N=∑ T i ii

E E N=∑ET=12

203

5!

0!5!

2!

1!2

7!

3!5

4!3

!W = • •

=

122

5!

2!3!

72!

1!1

!

5!2!!420

W = • •

=

041

5!

4!1!

2!

0!2

7!

6!5

1!3

!W = • •

=

Particle conservation Energy conservation

NT=5

23

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Occupation Statistics

E=0

E=2

E=4

122 420W = 041 35W =203 35W =

W (E

)

2,0,3 1,2,2 0,4,1

Choose the most probable configuration.

24

Page 13: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Occupation Statistics

E=0

E=2

E=4

122 420W =

*3

*2

*1

2

7

2

1

2

5

f

f

f

=

=

=W (E)

2,0,3 1,2,2 0,4,1

f(E)

E

Side note:So far everything shown here is EXACT!No approximations on the occupation probability!=> direct application to nano-scale electronics!

25

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

For N-states

( )!

! !i

ci i i i

SW

S N N=

−∏

lnW

2,0,3 1,2,2 0,4,1

[ ]ln ( ) ln( ) ( ) ln− − − − + − − +∑≃ i i i i i i i ii i i ii

NS S S N N NS NS N S

203

5!

0!5

2!

1 !

7!

3!4!!2!= • •WRecall.

Si

Ni

Stirling approx.

[ ]ln( ) ln ! ln( )! ln != − − −∑ i i i ii

W S S N N

[ ]ln ( ) ln( ) ln= − − − −∑ i i i i i i i ii

S S S N S N N N

( )ln( !) ln 10S S S S for S≈ − >

configurations

26

Page 14: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Optimization with Lagrange-Multiplier

ln 1ii i

i i

SE dN

Nα β

= − − −

T iiN N=∑

T i iiE E N=∑

lnW

configurations

lnln( ) i

i i

WW dN

Nδ ∂=

∂∑

ln 1ii i i i

i i ii

SdN dN E dN

Nα β

− − −

∑ ∑ ∑≃

Choose the most

probable

configuration.[ ]ln ln ( ) ln( ) lni i i i i i i i

i

W S S S N S N N N= − − − −∑

ln 1ii

i i

SdN

N

= −

See additional notes on Lagrange multiplies on ece606 page and blackboard

Particle conservation

Energy conservation

Optimization with constraints!

0=

27

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Final steps …

1

1i

Ei

N

S eα β+=+

ln 1 0ii

i

SE

Nα β

− − − =

1At , ( ) 0

2FF FE f EE Eα β= ≡ ⇒ + =

f(E)

E

fmax(E)=1

1

Bk Tβ⇒ =

( )1

( )1 F

iE

iE

Nf E

S eβ −= =+

/At , ( ) BE k TBoltzmanE f E Ae−→ ∞ =

( ) /

1

1 BFE kE Te −=+

EF

ln ln 1 0ii i

i i

SW E dN

Nδ α β

= − − − =

( )f E ≡

28

Page 15: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Derivation by Detailed Balance

� Pauli Principle, energy, and number conservation all satisfied

0 3 0 4 0 1 0 2( ) ( )[1 ( )][1 ( )]f E f E f E f E− −

E1+ E

2= E

3+ E

4 Only solution is …. 0 ( )

1( )

1 β −=+ FE E

f Ee

E=0

E=2

E=4

1E

2E

3E 4E

0 1 0 2 0 3 0 4( ) ( )[1 ( )][1 ( )]f E f E f E f E− −=

Energy conversation

Pauli Exclusion

Detailed Balance in Equilibrium

29

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Derivation by Partition Function

( )

( )

0

1

000

11

0

1

β

β

− − ×

− − ×i

F

F

i i i

E

E E

state E N P

e Z

e Z

β β

β

− − − −

− −= ≡∑

F F

i i F

iiii( E ) ( E )

i ( E N E )

NE E

i

Ne eP

e Z

Ei

E=0

E=2E=4

1β = Bk T

30

Page 16: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Derivation by Partition Function

( ) 1

0 1

=+P

f EP P

Probability that state is filled ….

( )

( )

0

1

000

11

0

1

β

β

− − ×

− − ×i

F

F

i i i

E

E E

state E N P

e Z

e Z

1

− −

− −=+

i F B

i F B

( E E ) / k T

( E E ) / k T

e / Z

/ Z e / Z

1

1 −=+ i F B( E E ) / k Te

1

f(E)

EF

1/2

E

1

f(E)

EF

1/2

E

1

31

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Few comments on Fermi-Dirac Statistics

� Applies to all spin-1/2 particles

� Information about spin is not explicit; multiply DOS by 2. May be more complicated for magnetic semiconductors.

� Coulomb-interaction among particles is neglected,Therefore it applies to extended solids, not to small molecules

Lx32

Page 17: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Presentation Outline

•Reminder – Density of states»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps•Reality check - Measurements of Effective Mass•Rules of filling electronic states •Derivation of Fermi-Dirac Statistics: three techniques

•Intrinsic carrier concentration•Conclusions

33

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Carrier Distribution

( )cg E

FE( )g Eυ

cE

( )1 f E−

( )f E

( ) ( )cg E f E

( ) ( )1g E f Eυ −

( ) ( )top

c

E

cEn g E f E dE= ∫

( ) ( )1bot

E

Ep g E f E dE

υ

υ = − ∫

DOS F-D concentrationE E

1

34

Page 18: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Electron Concentration in 3D solids

( ) ( )

( )( )2 3

2 12

2 1 βπ −

=

−= ×

+

∫ℏ

top

c

top

Fc

E

cE

* *E n n C

E EE

n g E f E dE

m m E EdE

e

( )3 2

2 1 2

0 1

22

*n

C

dF

e

mN

h ξ ηπ β ξ ξη

−=

≡ +∫

( )( ) ( )2 3

2 1

1 β βπ − −

+

−∫≃

ℏ c Fc c

*C

E

n

E EE E

*nm m

dEe e

E E

( ) ( )1 2

2 η η βπ

= ≡ −c c FC CF EN E

Assume wide bands

Include spinfactor of 2

35

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Boltzmann vs. Fermi-Dirac Statistics

( ) ( )1 2

23ηη η β

π= → − ≡ − >c

C c C c C Fn N F N e if E E

( ) ( )cg E f E

( ) ( )1g E f Eυ − FE

ηce ( )1 2 ηcF

36

Page 19: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Effective Density of States

( ) ( )1 2

23c FE E

C c C c Fn N F N e if E Eβη βπ

− −= → − >

( ) ( )cg E f E

( ) ( )1g E f Eυ −

CN

VN

FEFE

As if all states are at a single level EC

37

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Law of Mass-Action

( )

( )

β

β

− −

+ −

=

=

c F

v F

E EC

E EV

n N e

p N eFE

( )β

β

− −

× =

=

c v

g

E EC V

E

C V

n p N N e

N N e

Product is independent of the Fermi level!Very useful balance equation! Will use it often

38

Page 20: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Fermi-Level for Intrinsic Semiconductors

2β−=≡

gE

i

F

V

i

Cn e

E

N

E

NFE

( ) ( )

1

2 2

β β

β

− − + −= ⇒ =

= +

c i v iE E E E

Gi

V

C

VCn p e e

EE ln

N

N

N

N

E

k

3

2

2 β−

= =

= g

V

i

E

i C N

p n

n eN

n

39

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Conclusions

• We discussed how electrons are distributed in electronic states

defined by the solution of Schrodinger equation.

• Since electrons are distributed according to their energy,

irrespective of their momentum states, the previously

developed concepts of constant energy surfaces, density of

states etc. turn out to be very useful.

=> will not discuss Schroedinger Eq. anymore

=> everything is captured in bandedges and effective masses

• We still do not know where EF is for general semiconductors … If

we did, we could calculate electron concentration.

40

Page 21: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Presentation Outline

•Reminder – Density of states»Possible states as a function of Energy

•Reality check - Measurements of Bandgaps•Reality check - Measurements of Effective Mass•Rules of filling electronic states •Derivation of Fermi-Dirac Statistics: three techniques

•Intrinsic carrier concentration•Conclusions

41

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Illustrative Example: 3 Energy Levels

E=0

E=2

E=4

T iiN N=∑ T i ii

E E N=∑ET=12

203

5!

0!5!

2!

1!2

7!

3!5

4!3

!W = • •

=

122

5!

2!3!

72!

1!1

!

5!2!!420

W = • •

=

041

5!

4!1!

2!

0!2

7!

6!5

1!3

!W = • •

=

Particle conservation Energy conservation

NT=5

42

Page 22: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Occupation Statistics

E=0

E=2

E=4

122 420W = 041 35W =203 35W =

W (E

)

2,0,3 1,2,2 0,4,1

Choose the most probable configuration.

43

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Occupation Statistics

E=0

E=2

E=4

122 420W =

*3

*2

*1

2

7

2

1

2

5

f

f

f

=

=

=

W (E)

2,0,3 1,2,2 0,4,1

f(E)

E

Side note:So far everything shown here is EXACT!No approximations on the occupation probability!=> direct application to nano-scale electronics!

44

Page 23: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

For N-states

( )!

! !i

ci i i i

SW

S N N=

−∏

lnW

2,0,3 1,2,2 0,4,1

[ ]ln ( ) ln( ) ( ) ln− − − − + − − +∑≃ i i i i i i i ii i i ii

NS S S N N NS NS N S

203

5!

0!5

2!

1 !

7!

3!4!!2!= • •WRecall.

Si

Ni

Stirling approx.

[ ]ln( ) ln ! ln( )! ln != − − −∑ i i i ii

W S S N N

[ ]ln ( ) ln( ) ln= − − − −∑ i i i i i i i ii

S S S N S N N N

( )ln( !) ln 10S S S S for S≈ − >

configurations

45

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Optimization with Lagrange-Multiplier

ln 1ii i

i i

SE dN

Nα β

= − − −

T iiN N=∑

T i iiE E N=∑

lnW

configurations

lnln( ) i

i i

WW dN

Nδ ∂=

∂∑

ln 1ii i i i

i i ii

SdN dN E dN

Nα β

− − −

∑ ∑ ∑≃

Choose the most

probable

configuration.[ ]ln ln ( ) ln( ) lni i i i i i i i

i

W S S S N S N N N= − − − −∑

ln 1ii

i i

SdN

N

= −

See additional notes on Lagrange multiplies on ece606 page and blackboard

Particle conservation

Energy conservation

Optimization with constraints!

0=

46

Page 24: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Final steps …

1

1i

Ei

N

S eα β+=+

ln 1 0ii

i

SE

Nα β

− − − =

1At , ( ) 0

2FF FE f EE Eα β= ≡ ⇒ + =

f(E)

E

fmax(E)=1

1

Bk Tβ⇒ =

( )1

( )1 F

iE

iE

Nf E

S eβ −= =+

/At , ( ) BE k TBoltzmanE f E Ae−→ ∞ =

( ) /

1

1 BFE kE Te −=+

EF

ln ln 1 0ii i

i i

SW E dN

Nδ α β

= − − − =

( )f E ≡

47

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder - Rules of filling electronic states •Derivation of Fermi-Dirac Statistics:

»three techniques

• Intrinsic carrier concentration•Potential, field, and charge•E-k diagram vs. band-diagram•Basic concepts of donors and acceptors •Conclusions

48

Page 25: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Derivation by Detailed Balance

� Pauli Principle, energy, and number conservation all satisfied

0 3 0 4 0 1 0 2( ) ( )[1 ( )][1 ( )]f E f E f E f E− −

E1+ E

2= E

3+ E

4 Only solution is …. 0 ( )

1( )

1 β −=+ FE E

f Ee

E=0

E=2

E=4

1E

2E

3E 4E

0 1 0 2 0 3 0 4( ) ( )[1 ( )][1 ( )]f E f E f E f E− −=

Energy conversation

Pauli Exclusion

Detailed Balance in Equilibrium

49

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder - Rules of filling electronic states •Derivation of Fermi-Dirac Statistics:

»three techniques

• Intrinsic carrier concentration•Potential, field, and charge•E-k diagram vs. band-diagram•Basic concepts of donors and acceptors •Conclusions

50

Page 26: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Derivation by Partition Function

( )

( )

0

1

000

11

0

1

β

β

− − ×

− − ×i

F

F

i i i

E

E E

state E N P

e Z

e Z

β β

β

− − − −

− −= ≡∑

F F

i i F

iiii( E ) ( E )

i ( E N E )

NE E

i

Ne eP

e Z

Ei

E=0

E=2E=4

1β = Bk T

51

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Derivation by Partition Function

( ) 1

0 1

=+P

f EP P

Probability that state is filled ….

( )

( )

0

1

000

11

0

1

β

β

− − ×

− − ×i

F

F

i i i

E

E E

state E N P

e Z

e Z

1

− −

− −=+

i F B

i F B

( E E ) / k T

( E E ) / k T

e / Z

/ Z e / Z

1

1 −=+ i F B( E E ) / k Te

1

f(E)

EF

1/2

E

1

f(E)

EF

1/2

E1

52

Page 27: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Few comments on Fermi-Dirac Statistics

� Applies to all spin-1/2 particles

� Information about spin is not explicit; multiply DOS by 2. May be more complicated for magnetic semiconductors.

� Coulomb-interaction among particles is neglected,Therefore it applies to extended solids, not to small molecules

Lx53

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

•Reminder - Rules of filling electronic states •Derivation of Fermi-Dirac Statistics:

»three techniques

• Intrinsic carrier concentration•Potential, field, and charge•E-k diagram vs. band-diagram•Basic concepts of donors and acceptors •Conclusions

54

Page 28: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Carrier Distribution

( )cg E

FE

( )g Eυ

cE

( )1 f E−

( )f E

( ) ( )cg E f E

( ) ( )1g E f Eυ −

( ) ( )top

c

E

cEn g E f E dE= ∫

( ) ( )1bot

E

Ep g E f E dE

υ

υ = − ∫

DOS F-D concentrationE E

1

55

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Electron Concentration in 3D solids

( ) ( )

( )( )2 3

2 12

2 1 βπ −

=

−= ×

+

∫ℏ

top

c

top

Fc

E

cE

* *E n n C

E EE

n g E f E dE

m m E EdE

e

( )3 2

2 1 2

0 1

22

*n

C

dF

e

mN

h ξ ηπ β ξ ξη

−=

≡ +∫

( )( ) ( )2 3

2 1

1 β βπ − −

+

−∫≃

ℏ c Fc c

*C

E

n

E EE E

*nm m

dEe e

E E

( ) ( )1 2

2 η η βπ

= ≡ −c c FC CF EN E

Assume wide bands

Include spinfactor of 2

56

Page 29: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Boltzmann vs. Fermi-Dirac Statistics

( ) ( )1 2

23ηη η β

π= → − ≡ − >c

C c C c C Fn N F N e if E E

( ) ( )cg E f E

( ) ( )1g E f Eυ − FE

ηce ( )1 2 ηcF

57

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Effective Density of States

( ) ( )1 2

23c FE E

C c C c Fn N F N e if E Eβη βπ

− −= → − >

( ) ( )cg E f E

( ) ( )1g E f Eυ −

CN

VN

FEFE

As if all states are at a single level EC

58

Page 30: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Law of Mass-Action

( )

( )

β

β

− −

+ −

=

=

c F

v F

E EC

E EV

n N e

p N eFE

( )β

β

− −

× =

=

c v

g

E EC V

E

C V

n p N N e

N N e

Product is independent of the Fermi level!Very useful balance equation! Will use it often

59

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Fermi-Level for Intrinsic Semiconductors

2β−=≡

gE

i

F

V

i

Cn e

E

N

E

NFE

( ) ( )

1

2 2

β β

β

− − + −= ⇒ =

= +

c i v iE E E E

Gi

V

C

VCn p e e

EE ln

N

N

N

N

E

k

3

2

2 β−

= =

= g

V

i

E

i C N

p n

n eN

n

60

Page 31: ECE606: Solid State Devices Lecture 6 - Purdue …ECE606: Solid State Devices Lecture 6 Gerhard Klimeck gekco@purdue.edu 1 Klimeck –ECE606 Fall 2012 –notes adopted from Alam Reference

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

• We discussed how electrons are distributed in electronic states

defined by the solution of Schrodinger equation.

• Since electrons are distributed according to their energy,

irrespective of their momentum states, the previously

developed concepts of constant energy surfaces, density of

states etc. turn out to be very useful.

=> will not discuss Schroedinger Eq. anymore

=> everything is captured in bandedges and effective masses

• We still do not know where EF is for general semiconductors … If

we did, we could calculate electron concentration.

Summary – DOS and Fermi Functions

61

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 3

Presentation Outline

•Schrodinger equation in periodic U(x)•Bloch theorem•Band structure•Properties of electronic bands•E-k diagram and constant energy surfaces •Conclusions

62