13
ECE259 ECE259: Electromagnetism Term test 1 - Thursday February 11, 2016 Instructors: Costas Sarris (LEC01) , Piero Triverio (LEC02) Last name: ....................................................................................... First name: ....................................................................................... Student number: ................................................................................. Tutorial section number: ......................................................................... TUT Section Day Time Room 1 Thursday 16:00-17:00 BA2155 2 Thursday 16:00-17:00 HA401 3 Thursday 16:00-17:00 BA2139 4 Thursday 16:00-17:00 BA3116 5 Thursday 16:00-17:00 BA2195 6 Tuesday 14:00-15:00 BA2195 7 Tuesday 14:00-15:00 BA2175 8 Tuesday 14:00-15:00 BA2165 Instructions • Duration: 1 hour 30 minutes (9:10 to 10:40) • Exam Paper Type: A. Closed book. Only the aid sheet provided at the end of this booklet is permitted. • Calculator Type: 2. All non-programmable electronic calculators are allowed. Only answers that are fully justified will be given full credit! Marks: Q1: /20 Q2: /20 Q3: /20 TOTAL: /60 1

ECE259: Electromagnetismexams.skule.ca/exams/ECE259H1_20161_621461027012ece259... · 2018. 2. 3. · ECE259 Question 1 1.Consider a charged ring of inner radius and outer radius ,

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • ECE259

    ECE259: ElectromagnetismTerm test 1 - Thursday February 11, 2016

    Instructors: Costas Sarris (LEC01) , Piero Triverio (LEC02)

    Last name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    First name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Student number: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Tutorial section number: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    TUT Section Day Time Room

    1 Thursday 16:00-17:00 BA2155

    2 Thursday 16:00-17:00 HA401

    3 Thursday 16:00-17:00 BA2139

    4 Thursday 16:00-17:00 BA3116

    5 Thursday 16:00-17:00 BA2195

    6 Tuesday 14:00-15:00 BA2195

    7 Tuesday 14:00-15:00 BA2175

    8 Tuesday 14:00-15:00 BA2165

    Instructions

    • Duration: 1 hour 30 minutes (9:10 to 10:40)

    • Exam Paper Type: A. Closed book. Only the aid sheet provided at the end of this booklet is permitted.

    • Calculator Type: 2. All non-programmable electronic calculators are allowed.

    • Only answers that are fully justified will be given full credit!

    Marks: Q1: /20 Q2: /20 Q3: /20 TOTAL: /60

    1

  • ECE259

    Question 1

    1. Consider a charged ring of inner radius 𝛼 and outer radius 𝑏, on the 𝑧 = 0 plane, with surface chargedensity 𝜌𝑠 = 𝑟𝑠,0 cos2 𝜑.

    (x)

    (y)

    (z)

    αb

    ρs

    The electric field of this ring and its potential can be expressed in terms of the superposition integrals:

    E =1

    4𝜋𝜖0

    x

    𝑟𝑖𝑛𝑔

    𝑑𝑄

    |R−R′|3(︀R−R′

    )︀,

    𝑉 =1

    4𝜋𝜖0

    x

    𝑟𝑖𝑛𝑔

    𝑑𝑄

    |R−R′|

    a) Specify these integrals for an arbitrary observation point (𝑥, 𝑦, 𝑧). You do not need to evaluate theseintegrals, just determine 𝑑𝑄, R, R′, R−R′, |R−R′| and the limits of integration. Substitute themto provide the final expressions for the integrals. (6 pts)

    𝑑𝑄 = 𝜌𝑠𝑑𝑆′ =

    (︀𝑟𝑠,0 cos

    2 𝜑′)︀𝑟′𝑑𝜑′𝑑𝑟′

    (1 pt)

    R = 𝑥a𝑥 + 𝑦a𝑦 + 𝑧a𝑧

    (0.5 pt)

    R′ = 𝑟′a𝑟′ = 𝑟′ (︀a𝑥 cos𝜑′ + a𝑦 sin𝜑′)︀

    (1 pt)

    hence,R−R′ = (𝑥− 𝑟′ cos𝜑′)a𝑥 +

    (︀𝑦 − 𝑟′ sin𝜑′

    )︀a𝑦 + 𝑧a𝑧

    (0.5 pt)

    and:

    |R−R′| =√︁

    (𝑥− 𝑟′ cos𝜑′)2 + (𝑦 − 𝑟′ sin𝜑′)2 + 𝑧2

    (1 pt)

    2

  • ECE259

    So, just substituting into the integral and recognizing that the integration is carried out with respectto 𝜑′ from 0 to 2𝜋 and 𝑟′ from 𝛼 to 𝑏, we have:

    E =1

    4𝜋𝜖0

    ∫︁ 𝑏𝛼

    ∫︁ 2𝜋0

    (︀𝑟𝑠,0 cos

    2 𝜑′)︀𝑟′𝑑𝜑′𝑑𝑟′ ((𝑥− 𝑟′ cos𝜑′)a𝑥 + (𝑦 − 𝑟′ sin𝜑′)a𝑦 + 𝑧a𝑧)(︁(𝑥− 𝑟′ cos𝜑′)2 + (𝑦 − 𝑟′ sin𝜑′)2 + 𝑧2

    )︁3/2(1 pt) Likewise,

    𝑉 =1

    4𝜋𝜖0

    ∫︁ 𝑏𝛼

    ∫︁ 2𝜋0

    (︀𝑟𝑠,0 cos

    2 𝜑′)︀𝑟′𝑑𝜑′𝑑𝑟′√︁

    (𝑥− 𝑟′ cos𝜑′)2 + (𝑦 − 𝑟′ sin𝜑′)2 + 𝑧2

    (1 pt)

    b) Now, consider an observation point on the 𝑧−axis, (0, 0, 𝑧). Determine the electric field and theelectric potential at this point. To determine these, you may need the following integrals:∫︁

    𝑟𝑑𝑟

    (𝑟2 + 𝑧2)𝑝=

    1

    2

    (︀𝑟2 + 𝑧2

    )︀−𝑝+1−𝑝+ 1∫︁ 2𝜋

    0cos2 𝜑𝑑𝜑 = 𝜋

    Hint: The electric field has only a 𝑧−component. Justify why and use it to expedite your calcula-tions. (8 pts)

    Letting 𝑥 = 0 = 𝑦, the formulas for the field and the potential become:

    E =1

    4𝜋𝜖0

    ∫︁ 𝑏𝛼

    ∫︁ 2𝜋0

    (︀𝑟𝑠,0 cos

    2 𝜑′)︀𝑟′𝑑𝜑′𝑑𝑟′ (−𝑟′ cos𝜑′a𝑥 − 𝑟′ sin𝜑′a𝑦 + 𝑧a𝑧)

    ((𝑟′)2 + 𝑧2)3/2

    (1 pt)

    𝑉 =1

    4𝜋𝜖0

    ∫︁ 𝑏𝛼

    ∫︁ 2𝜋0

    (︀𝑟𝑠,0 cos

    2 𝜑′)︀𝑟′𝑑𝜑′𝑑𝑟′√︀

    (𝑟′)2 + 𝑧2

    (1 pt)

    For E, we can conclude that only its 𝑧−component is non-zero, either geometrically (recall similararguments in class for the field of a charged ring or an infinite charged plane), or mathematically,since:

    ∫︀ 2𝜋0 cos

    3 𝜑′𝑑𝜑′ = 0 and∫︀ 2𝜋0 cos

    2 𝜑′ sin𝜑′𝑑𝜑′ = 0. (2 pts)

    Hence:

    E = a𝑧𝑧

    4𝜋𝜖0

    ∫︁ 2𝜋0

    (︀𝑟𝑠,0 cos

    2 𝜑′)︀𝑑𝜑′

    ∫︁ 𝑏𝛼

    𝑟′

    ((𝑟′)2 + 𝑧2)3/2

    With:

    3

  • ECE259

    ∫︁ 2𝜋0

    (︀𝑟𝑠,0 cos

    2 𝜑′)︀𝑑𝜑′ = 𝑟𝑠,0𝜋

    and (from the formula above with 𝑝 = 3/2)∫︁ 𝑏𝛼

    𝑟′

    ((𝑟′)2 + 𝑧2)3/2=

    1

    2

    (︀(𝑟′)2 + 𝑧2

    )︀−0.5−0.5

    = − 1√︀(𝑟′)2 + 𝑧2

    |𝑏𝑟′=𝛼 =1√

    𝛼2 + 𝑧2− 1√

    𝑏2 + 𝑧2

    we have:

    E = a𝑧𝑧𝑟𝑠,04𝜖0

    (︂1√

    𝛼2 + 𝑧2− 1√

    𝑏2 + 𝑧2

    )︂(2 pts)

    For 𝑉 , the following integral is used (from the formula above with 𝑝 = 1/2):∫︁ 𝑏𝛼

    𝑟′√︀(𝑟′)2 + 𝑧2

    𝑑𝑟′ =√︀𝑏2 + 𝑧2 −

    √︀𝛼2 + 𝑧2

    Hence:

    𝑉 =𝑟𝑠,04𝜖0

    (︁√︀𝑏2 + 𝑧2 −

    √︀𝛼2 + 𝑧2

    )︁(2 pts)

    Note that 𝐸𝑧 = −𝑑𝑉

    𝑑𝑧a𝑧 , consistently with E = −∇𝑉 .

    c) Can you find the electric field of the ring via Gauss’ law ? Briefly explain. (2 pts)

    No, the problem has no cylindrical, spherical or rectangular symmetry that would allow us to applyGauss law. Just ask yourself: what surface would we choose, if we were to apply Gauss law ? Withno firm knowledge of the field lines, we cannot choose a surface.

    d) Find the electric field and the potential for a large distance 𝑅 >> 𝑏 away from the origin. Sketchthe field lines and the equi-potential surfaces. Briefly explain. (4 pts)

    The key here is that the ring carries a positive amount of charge:

    𝑄 =

    ∫︁ 𝑏𝛼

    ∫︁ 2𝜋0

    𝑟𝑠,0 cos2 𝜑𝑟′𝑑𝑟′𝑑𝜑′ = 𝜋

    𝑏2 − 𝛼2

    2𝑟𝑠,0

    Hence, at 𝑅 >> 𝑏 it will look like a positive point charge (2 pts), with field lines in the +a𝑅direction (1 pt) and equi-potential surfaces being spheres centered at the origin (1 pt).

    Addendum: One to check the validity of our results for the electric field and the potential is by usingthe total charge 𝑄 of the ring and our intuition that from a far distance this ring should behave as apoint charge, generating along the +𝑧-axis:

    E(𝑧) =𝑄

    4𝜋𝜖0𝑧2a𝑧

    4

  • ECE259

    and𝑉 (𝑧) =

    𝑄

    4𝜋𝜖0𝑧

    Indeed,

    E = a𝑧𝑧𝑟𝑠,04𝜖0

    (︂1√

    𝛼2 + 𝑧2− 1√

    𝑏2 + 𝑧2

    )︂→ 𝑧𝑟𝑠,0

    4𝜖0

    1

    𝑧

    (︂1− 𝛼

    2

    2𝑧2− 1 + 𝑏

    2

    2𝑧2

    )︂=

    𝑧𝑟𝑠,04𝜖0𝑧

    𝜋(︀𝑏2 − 𝛼2

    )︀2𝑧2

    Hence:E ≡ 𝑄

    4𝜋𝜖0𝑧2a𝑧

    where we used:1√

    𝑧2 + 𝑏2=

    1

    𝑧

    1√︀1 + (𝑏/𝑧)2

    → 1𝑧

    (︂1− 𝑏

    2

    2𝑧2

    )︂for 𝑧 >> 𝑏. Similar for 𝑉 .

    5