107
1 ECE2262 Electric Circuits Chapter 2: Resistive Circuits ! ENG 1450

ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

  • Upload
    others

  • View
    61

  • Download
    3

Embed Size (px)

Citation preview

Page 1: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

1

ECE2262 Electric Circuits

Chapter 2: Resistive Circuits ! ENG 1450

Page 2: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

2

Page 3: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

3

2.1 Ohm’s Law

R1

Page 4: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

4

The voltage across a resistance is directly proportional to the current flowing through it.

v = Ri

R = vi

- 1 ! (ohm) =1V1A

Conductance: G = 1R

- 1 S (siemens) =1A1V

Page 5: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

5

The power absorbed by a resistor

p = vi = Ri2 ! v = Ri

= v2

R ! v

R= i

Page 6: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

6

R = vi

!

R = 0 ! “Short” Circuit ! v = 0

R = ! ! “Open” Circuit ! i = 0

Page 7: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

7

Example

(a) determine the current and the power absorbed by the resistor (b) determine the voltage and the current in the resistor(c) determine the voltage of the source and the power absorbed by the resistor(d) determine the values of R and VS

Page 8: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

8

!(d) determine the values of R and VS

I = 4 !10"3A , P = 80 !10"3W

P = RI 2 ! R = PI 2

! R = 5 !103" = 5k!

VS = RI ! VS = 20V

Page 9: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

9

2.2 Kirchhoff’s Laws

nodeloop/closed path

loop: closed path such that no node is visited more than once

loop: R2 ! v1! v2 ! R4 ! i1 ! 1" 4" 3" 5" 2"1

Page 10: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

10

Kirchhoff’s Current Law - KCL

The algebraic sum of all currents entering any node is zero ! KCL is based on the principle of the conservation of charge !

Convention*: In writing KCL we consider the current that enters a node with a positive sign and the current that leaves a node with negative sign.

i1 > 0

i2 < 0

i3 > 0 i1 ! i2 + i3 = 0

Convention**: !i1 + i2 ! i3 = 0

Page 11: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

11

iin! = iout!

The sum of all the currents flowing into a node equals the sum of all the currents flowing out

In applying this rule we just need to pay attention to the arrows indicating the flow directions of the element currents present at each node

Page 12: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

12

Example

• Node 1: !i2 ! i1 + i5 = 0 ; • Node 2: i2 ! i3 + 50i2 = 0

• Node 3: i1 ! i4 ! 50i2 = 0 ; • Node 4: i3 + i4 ! i5 = 0 Convention*

Page 13: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

13

In writing these equations, a positive sign is used for a current leaving a node Convention**

Page 14: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

14

SUPERNODE: we can make supernodes by aggregating nodes

node 2 : !i1 ! i6 + i4 = 0 node 3 : i2 ! i4 + i5 ! i7 = 0

Adding 2 and 3 : !i1 ! i6 + i2 + i5 ! i7 = 0 ! Supernode 2&3

Page 15: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

15

Example: Write all KCL equations

Page 16: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

16

Page 17: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

17

Kirchhoff’s Voltage Law - KVL

The algebraic sum of all voltages in every loop of the circuit is zero ! KVL is based on the principle of the conservation of energy !

Convention: In writing KVL when we cross a component from positive to negative terminal we consider its voltage with a positive sign. When we cross a component from negative to positive terminal we consider its voltage with a negative sign.

+ !V > 0

+! V < 0

Page 18: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

18

vdrop! = vrise!

The sum of all voltage rises encountered around any closed loop of elements in a circuit equals the sum of all voltage drops encountered around the same loop voltage rise ! loop moves from ! to + voltage drop ! loop moves from + to !

Page 19: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

19

The voltage of a component can be labeled in different ways

The arrow notation is particularly useful since we may want to label the voltage between two points that are far apart in a circuit.

a

b

+

!

Vab

Page 20: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

20

Example

Page 21: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

21

Example Find Vad , Veb

• loop a!b!c!d!a: 24 ! 4 + 6 !Vad = 0 ! Vad = 26V

• loop a!b!e! f!a: 24 !Veb ! 8 ! 6 = 0 ! Veb = 10V

Page 22: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

22

Example R1 , R2 , RC , RE , VCC , V0 , ! - known; (a) find the equations needed to determine the current in each element of this circuit; 6 unknown currents (b) Devise a formula for computing iB

Page 23: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

23

• KCL for nodes a, b, c, d

1. Node a: i1 + iC ! iCC = 0 ; 2. Node b: iB + i2 ! i1 = 0

3. Node c: iE ! iB ! iC = 0 ; • Node d: xxxxxx

Page 24: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

24

• Dependent current source: 4. iC = !iB

Page 25: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

25

• KVL loop b!c!d!b: 5. V0 + iERE ! i2R2 = 0

loop b!a!d!b: 6. !i1R1 +VCC ! i2R2 = 0

These six equations allow to determine the current in each element of the circuit and obtain

iB =VCCR2 / R1 + R2( )!V0

R1R2 / R1 + R2( ) + 1+ "( )RE

Page 26: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

26

Example Find Vx

b!

6 ! 24 + I " (2 "103) + I " (5 "103) + I " (2"103 ) = 0

I

9 "103( ) " I =18

I = 2mA

Vx = 5 "103( )" I = 10V

KVL

Page 27: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

27

2.3 Series and Parallel Combinations of Resistors

A. Series Connection - Single Loop Network

KVL: !vs + isR1 + ....+ isR7 = 0

vsis= Req = R1 + ....+ R7

Page 28: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

28

Equivalent Circuit

Req = Rii!

Note: Req ! Ri

Page 29: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

29

Multiple-Source/Resistor Networks

KVL: R1i + R2i ! v1 + v2 ! v3 + v4 + v5 = 0 ! R1 + R2( )i = v

v = v1 + v3 ! v2 ! v4 ! v5

Page 30: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

30

B. Parallel Connection - Single Node Network

KCL: is = i1 + ...+ i4

The voltage across each resistor is the same: i j =vsRj

is =vsR1

+ ...+ vsR4

! isvs

= 1R1

+ ...+ 1R4

Req =1

1R1

+ ...+ 1R4

Page 31: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

31

Req =1

1Rii

! Combining Resistors in Parallel

Note: Req !mini Ri

Note: Two resistors in parallel Req =1

1R1

+ 1R2

= R1R2R1 + R2

! R1 || R2

R || R = ?

Page 32: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

32

Multiple-Source/Resistor Networks

KCL: i1 ! i2 ! i3 + i4 ! i5 ! i6 = 0 ! i1 ! i3 + i4 ! i6sources

! "## $## = i2 + i5

i0 = i2 + i5

i0 = i1 ! i3 + i4 ! i6

Page 33: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

33

Example Find is ,i1,i2

• Equivalent circuit

Req =18 ! 6 + 3( )18 + 6 + 3( ) = 6"

is =1204 + Req

= 12A! vxy = 12 " Req = 72V ! i1 =vxy18

= 4A , i2 =vxy9

= 8A

Page 34: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

34

Example (E2.14)

RAB = 22k!

Page 35: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

35

Example Find v and the power delivered to the circuit by the current source.

P5A = 300W - delivered

Page 36: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

36

Example (Mathematical Inequality)

a b

ab

A B

•Switch open ! RAB =a + b2

• Switch closed (short circuit) ! RAB =aba + b

+ aba + b

= 2aba + b

is smaller than before

2aba + b

! a + b2

2aba + b

= 121a+ 1b

!"#

$%&

'()

*+,

-1

! The arithmetic mean is greater than the harmonic mean

Page 37: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

37

C. ! ! Y Equivalent Circuits

RaRc Rb

Page 38: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

38

• Terminal c, a: Rca= R1 || R2 + R3( ) Rca = Ra + Rc

R2

R1 R3

Ra Rb

Rc

! Y

Page 39: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

39

• Terminal b, c: Rbc= R3 || R1 + R2( ) Rbc = Rb + Rc

R2

R1 R3

Ra Rb

Rc

! Y

a

c

b b

c

aR3 R1

R2 Rb Ra

Rc

• Terminal a, b: Rab= R2 || R1 + R3( ) Rab = Ra + Rb

Page 40: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

40

For a given ! network the equivalent Y network is obtained by setting

R2 R1 + R3( )R1 + R2 + R3

= Ra + Rb

R3 R1 + R2( )R1 + R2 + R3

= Rb + Rc

R1 R2 + R3( )R1 + R2 + R3

= Ra + Rc

Page 41: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

41

Ra =R1R2

R1 + R2 + R3 ; Rb =

R2R3R1 + R2 + R3

; Rc =R1R3

R1 + R2 + R3

Note: R1 = R2 = R3 = R ! Ra ,Rb ,Rc = ?

Page 42: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

42

Example Find the current and power supplied by the 40 V source.

We wish to replace the upper ! network by the equivalent Y network

Page 43: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

43

Rc

Ra

Rb

Ra = 100 !125100 +125 + 25

= 50"

Rb = 125 ! 25100 +125 + 25

= 12.5"

Rc = 100 ! 25100 +125 + 25

= 10"

Page 44: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

44

The equivalent circuits

Req = 55 +

10 + 40( )! 12.5 + 37.5( )10 + 40( ) + 12.5 + 37.5( ) = 55 + 50 ! 50

100 = 80!

! i40V = 4080

= 0.5A P40V = 40 ! 0.5 = 20W - supplied

Page 45: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

45

2.5 Single-Loop (Voltage Division) and Single-Node (Circuit Division) Circuits

A. Voltage Division / Single-Loop Circuit

In electronic circuits it is often necessary to generate multiple voltage levels from a single voltage supply

Page 46: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

46

KVL + Ohm’s L vs = iR1 + iR2 ! i = vs

R1 + R2

v1 = iR1 , v2 = iR2

v1 =R1

R1 + R2vs , v2 =

R2R1 + R2

vs

Page 47: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

47

v2 =R2

R1 + R2vs

v1 =R1

R1 + R2vs

Given vs , we wish to specify v2 ! there is a large number of combinations of R1 and R2 yielding the proper ratio

R2R1 + R2

Page 48: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

48

Example The resistors used in the voltage-divider circuit have a tolerance of ±10% . Find the maximum and minimum value of v0 .

v0 = 80V

v0 max( ) = R2 +10%R2

R1 !10%R1( ) + R2 +10%R2( ) vs = 11022.5 +110

!100 = 83.02V

v0 min( ) = R2 !10%R2R1 +10%R1( ) + R2 !10%R2( ) vs = 90

27.5 + 90!100 = 76.60V

The output voltage will lie in the interval 76.60,83.02[ ]

Page 49: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

49

Example (Practical Power Application)

16.45367.09

= 65.8

Page 50: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

50

Multiple-Resistor Networks

i = vR1 + ....+ Rn

= vReq

vj = iRj =Rj

Reqv Voltage Division Equation

Page 51: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

51

B. Current Division/ Single Node Circuit

v = i1R1 = i2R2 and v = R1R2

R1 + R2is

i1 =R2

R1 + R2

larger R2 larger i1

!"#$is , i2 =

R1R1 + R2

is

ibranch =RtotalRbranch

is ! Rtotal =R1R2R1 + R2

Page 52: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

52

Rtotal = 3.75k!

I1 =RtotalR1

Is = 30mA

I2 =RtotalR2

Is = 10mA

I1 =Vs5k

= 2mA

I2 =Vs20k

= 0.5mA

Page 53: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

53

Example Find the power dissipated in the 6! resistor

P6! = i6! " v6! = 6 " i6!2

10 R4||6 = 2.4

R1.6!4||6 = 410

i4

R1.6+4||6 = 4"

CD : i4 =16

16 + 4!10 = 8A

Page 54: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

54

8Ai6

CD : i6 =44 + 6

! 8 = 3.2A

P6! = 3.22 " 6 = 61.44W

Page 55: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

55

Multiple-Resistor Networks

v = i ! Req ; Req =

11Rll

!

i j =vRj

! ibranch =

ReqRbranch

! i Current Division Equation

Page 56: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

56

Example Use CD to find i0 and use VD to find v0

Req = 36 + 44( ) ||10 || (40 +10 + 30) || 24 = 6 !

CD: i0 =Req24

! 8 = 2A

Page 57: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

57

The voltage drop across 40!10! 30

2A

v40!10!30 = 24 " 2v! = 48V

VD: v0 =

3040 +10 + 30

! v40"10"30 = 3080

! 48 = 18V

Page 58: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

58

Example

Page 59: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

59

+!

!

+

KCL: 16mA+I2 ! I1 = 0

CD: I1 =120

120 + 40!16 = 12 mA

! I2 = 12 !16 = !4 mA

! P40k! = I12 " 40k! = 5.76W

Page 60: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

60

Example

P6k! = 6k " I2

2

Page 61: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

61

+

I1

I2

I3

4 ||12 = 3 k!

Page 62: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

62

!2mA 3k"I2

CD: I2 =33+ 6

! "2mA( ) = " 23mA

P6k! = 6 "103( )" I22 = 6 !103( )! " 23

#$%

&'(2

!10"6 = 2.67mW

Page 63: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

63

2.5. Measuring Resistance: The Wheatstone Bridge

Galvanometer µA( )

R1,R2 ,R3 - known resistors; Rx - unknown resistor

To find Rx we adjust R3 until there is no current in Galvanometer, i.e., ig = 0 .

Page 64: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

64

Let ig = 0 , i.e., the bridge is balanced ! KCL: i1 = i3 , i2 = ix

By KVL (points a and b are at the same potential):

i3R3 = ixRx , i1R1 = i2R2

i1 = i3 , i2 = ix

Page 65: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

65

i3R3 = ixRx ! i1 = i3 , i2 = ix

i1R1 = i2R2 ! i1R3 = i2Rx

i1R1 = i2R2 !

R3R1

= Rx

R2

!

Page 66: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

66

Rx =R2R1

! R3

Rx =R2R1R3

• The range of Rx : 1! - 1 M! ! with the accuracy ±0.1%

• The range of R3 : 1! - 11 k!

• The ratio R2 / R1 range: 0.001 - 1000

Page 67: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

67

Example: R3 - varies from 10! to 2k!

1k! 4k!

Rx =R2R1

! R3

• R3 = 10! ! Rx =40001000

10( ) = 40! • R3 = 2k! ! Rx =

40001000

2000( ) = 8k! ! 40! " Rx " 8k!

Page 68: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

68

2.6 ! ! Y ( ! ! T ) Transformations (Delta ! Wye)

v Req!

A resistive network generated by a Wheatstone bridge circuit

Page 69: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

69

! (Delta) Resistance Network

R2

R1 R3

Page 70: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

70

Y (Wye) Resistance Network

Ra Rb

Rc

Page 71: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

71

! ! Y Equivalent Circuits

R2

R1 R3

Ra Rb

Rc

! Y

• Terminal c, a: Rca= R1 || R2 + R3( ) Rca = Ra + Rc

Page 72: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

72

• Terminal b, c: Rbc= R3 || R1 + R2( ) Rbc = Rb + Rc

R2

R1 R3

Ra Rb

Rc

! Y

a

c

b b

c

aR3 R1

R2 Rb Ra

Rc

• Terminal a, b: Rab= R2 || R1 + R3( ) Rab = Ra + Rb

Page 73: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

73

For a given ! network the equivalent Y network is obtained by setting

R2 R1 + R3( )R1 + R2 + R3

= Ra + Rb

R3 R1 + R2( )R1 + R2 + R3

= Rb + Rc

R1 R2 + R3( )R1 + R2 + R3

= Ra + Rc

Page 74: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

74

Ra =R1R2

R1 + R2 + R3 ; Rb =

R2R3R1 + R2 + R3

; Rc =R1R3

R1 + R2 + R3

Page 75: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

75

For a given Y network the equivalent ! network is obtained by setting

! Y

Page 76: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

76

Example* Find the current and power supplied by the 40 V source.

We wish to replace the upper ! network by the equivalent Y network

Page 77: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

77

Rc

Ra

Rb

Ra = 100 !125100 +125 + 25

= 50"

Rb = 125 ! 25100 +125 + 25

= 12.5"

Rc = 100 ! 25100 +125 + 25

= 10"

Page 78: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

78

The equivalent circuits

Req = 55 +

10 + 40( )! 12.5 + 37.5( )10 + 40( ) + 12.5 + 37.5( ) = 55 + 50 ! 50

100 = 80!

! i40V = 4080

= 0.5A P40V = 40 ! 0.5 = 20W

Page 79: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

79

Example

Page 80: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

80

!

Ra =54 ! 36108

=18k"

Rb = 6k"Rc = 9k"

Ra = 18k"

Rb =18 ! 36108

= 6k"

Rc =18! 54108

= 9k"

RT = 6 +18 + 9 + 3( ) || 6 +18( ) + 2 = 34 k!

Page 81: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

81

Example

!

Page 82: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

82

4

4 4

1212

V0

V0 = 12k!" 4mA2

symmetry!

= 24V

Page 83: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

83

Example

Page 84: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

84

6

66

12 6I1

I1

CD : I1 =6 + 6( )

12 + 6( ) + 6 + 6( ) ! 3A = 1230

! 3A = 1.2A

I1 = !I1 = !1.2A

Page 85: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

85

Electrical Safety

Page 86: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

86

2.7 Circuits with Dependent Sources

Page 87: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

87

Example

KVL: !12 + 3kI1 !Va + 5kI1 = 0 and Va = 2000I1 ! I1 = 2mA

V0 = 5k ! I1 = 10V

Page 88: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

88

Example

KCL + OL: 10 !10"3 + Vs

2 + 4+ Vs3" 4I0 = 0 and I0 =

Vs3

! Vs = 12V

VD: V0 =44 + 2

Vs = 8V

Page 89: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

89

Example

KVL: !6 + 4kI ! 2VA + 8kI = 0 and VA = 4I ! I = 1.5mA

V0 = I ! 8k = 1.5m ! 8k = 12V

Page 90: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

90

Example

I2

V0 = 2k ! I2 The equivalent circuit source: I0 =

V02!10"3 + 2 !10"3A ------> !

CD: I2 =63+ 6

! I0 =23I0 and V0 = 2k!" I2 ! V0 =

43!103 ! I0

! V0 =43!103 ! V0

2!10"3 + 2 !10"3#

$%

&'(

! V0 = 8V

Page 91: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

91

Example V0 = 12k ! I3

I2I3

• I3 =6

6 +12! I2 ! I3 =

13! I2

• The equivalent circuit source: I0 = 6 !10

"3 + 0.5Ix A ! • I2 =

6 ||126 ||12 + 4

! I0 = 44 + 4

! I0 ! Ix =4

4 + 4! I0 ! Ix = I2

Page 92: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

92

• Ix = 4mA ! I2 = 4mA

• I3 =13! I2 = 4

3mA

• V0 = 12k ! I3 = 16V

I2I3

Page 93: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

93

2.8. Analyzing Circuits Containing V/C Sources and Interconnection of Resistors: Examples

Example

V0 = 2V

Page 94: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

94

I I1

Req=60 ! 3060 + 30

= 20k" V0 = 20k ! I1

• I = 12V20k + 20k

= 0.3mA

• CD : I1 =30

30 + 40 + 20( ) I = 0.1mA ! V0 = 20k!" I1 = 2V

Page 95: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

95

Example

I1

• I1 =3V30k!

= 0.1mA

• CD : I1 =60

60 + 90 + 30( ) IS =13IS ! IS = 3I1 = 0.3mA

Page 96: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

96

Example V1 = 3k ! I1

I1 I2

• The equivalent circuit source: I0 = 10mA

• CD: I1 =ReqRbr

I0 =9k || 6k9k

!10mA = 4mA

• V1 = 3k ! I1 = 12V

Page 97: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

97

Example

I1

I2

I1 =63+ 6

I2

• CD : I2 =12

3 || 6 + 4( )+12 ! 9mA = 6mA

• CD : I1 =63+ 6

I2 = 4mA ! I0 = !I1 = !4mA

Page 98: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

98

Example

I1

I2 I3

• V0 = 5k ! I5k"

• V1 = 4k ! "I3( ) • V2 = 8k ! I4 k"8k

Page 99: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

99

• Equivalent Circuits

I3I2

I1

I1 Req = 10 || 20 + 5 ||10{ } || 4 +12 || 4 + 8( )

6! "# $#

!"#

$#

%&#

'#= 5

I1 =16V3k + 5k

= 2mA

Page 100: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

100

I3I2

I1

10 || 20 + 5 ||10{ }= 10

4 +12 || 4 + 8( )6

! "# $#

= 10

By symmetry I2 = I3 =12I1 = 1mA

Page 101: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

101

I3I2

I1 2mA

1mA1mA

CD: I5k! = 105 +10

I2 =23mA ! V0 = 5k ! I5k" = 3.33V

OL: V1 = 4k ! "I3( ) = "4V

Page 102: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

102

I3I2

I1 2mA

1mA1mA

I4

CD : I4 =12

12 + 4 + 8( ) ! I3 = 0.5mA

V2 = 8k ! I4 = 4V

Answer: V0 = 3.33V , V1 = !4V , V2 = 4V

Page 103: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

103

2.9 Summary of Chapter 2

Page 104: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

104

Page 105: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

105

Page 106: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

106

2.10 Problems ! Tutorials 2 + 3

Page 107: ECE2262 Electric Circuits Chapter 2: Resistive Circuits ...ece.eng.umanitoba.ca/undergraduate/ECE2262/ECE2262.fall/Course_notes_files/Chapter2...ECE2262 Electric Circuits Chapter 2:

107

Georg Simon Ohm

On March 16, 1787, German physicist was born in Erlanger, the son of a master mechanic. After achieving his Ph.D., Ohm was only able to secure a high school teaching position. Needing impressive research publications to get a university post, he began experiments in the new field of electric currents. Lack of funds forced him to make his own wires, which led to experiments on wires of different thicknesses, and his discovery of Ohm’s law [electric current is inversely proportional to resistance and directly to proportional to voltage]. His resistance lead to discovering resistance.