43
ECE 474: Principles of Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University [email protected]

ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

ECE 474:Principles of Electronic Devices

Prof. Virginia AyresElectrical & Computer EngineeringMichigan State [email protected]

Page 2: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Lecture 23:

Chp. 04

Photo-generated carriers – IIIDiffusion current

Examples of each

Page 3: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Lecture 23:

Chp. 04

Photo-generated carriers – IIIDiffusion current

Examples of each

Page 4: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Photo-generated carriers:How to deal with the electron and hole increases that are due to light

Total electrons: n = n0 + δn

Total holes: p = p0 + δp

Page 5: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

New:Doped Si @ 300K + laser light

Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond by laser light on the n-doped Si. τn = τp = 1 μsec. Find the increases in the e-and hole concentrations δn and δp:

goptical = 1017 cm-3 EHP10-6 sec

= 1025 cm-3 s-1

δn = gop τn= (1025 cm-3 s-1)(1 x 10-6 s)= 1019 cm-3

= 100 x 1017 cm-3

δp = δn = 100 x 1017 cm-3

Usual: Doped Si @ 300K

Nd = 1017 cm-3 P atomsFully ionised: Nd = Nd

+

Therefore:

Majority carrier concentration:n0 = 1017 cm-3

Minority carrier concentration:p0 = 2.25 x 103 cm-3

Page 6: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Comparison:Doped Si @ 300K versus Doped Si @ 300K + laser light

n0 = 1x1017 cm-3

n = 101 x 1017 cm-3

=> increase factor: 102

p0 = 2.25x103 cm-3

p ≈ 100 x 1017 cm-3

=> increase factor: 1015

Some increase in majority carrier concentration and a HUGE increase in minority carrier concentration!

Page 7: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Fermi energy level => 2 Quasi-Fermi energy levels Fn and Fp .(They’re called “quasi” because they only exist as long as the light is on. Especially the one for the minority carriers.)

EF

Ei

EV

EC

Egap=

1.1 eV

n = ni exp(Fn-Ei)/kT

p = ni exp(Ei-Fp)/kT

(note: np = ni2 does not work)

0.407 eV

For this example:

Fn

Ei

EV

EC

Egap=

1.1 eV

Fp

0.526 eV

0.526 eVFn

Ei

EV

EC

Egap=

1.1 eV

Fp

0.526 eV

0.526 eV

Page 8: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Time dependence is possible when EHPs are created by an ON/OFF flash of light rather than a continuous application of light. Look for clue in the problem wording: “ created at t = 0”.

Fig. 4-7 is a flash situation.The x-axis is time (ns).

Page 9: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Aside: note that this Streetman example is for a p-type semiconductor.

Page 10: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

New:Doped Si @ 300K + laser light

Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond by laser light on the n-doped Si. τn = τp = 1 μsec. Find the increases in the e-and hole concentrations δn and δp:

goptical = 1017 cm-3 EHP10-6 sec

= 1025 cm-3 s-1

δn = gop τn= (1025 cm-3 s-1)(1 x 10-6 s)= 1019 cm-3

= 100 x 1017 cm-3

δp = δn = 100 x 1017 cm-3

Usual: Doped Si @ 300K

Nd = 1017 cm-3 P atomsFully ionised: Nd = Nd

+

Therefore:

Majority carrier concentration:n0 = 1017 cm-3

Minority carrier concentration:p0 = 2.25 x 103 cm-3

This example assumes that gop never changes its value

Page 11: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Example 01 (time):Doped Si @ 300K + laser light flash

Given: optical generation rate goptical(t=0) = 1025 cm-3 s-1

δn(t=0) = gop (t=0) τn= (1025 cm-3 s-1)(1 x 10-6 s)= 1019 cm-3

= 100 x 1017 cm-3

δp(t=0) = δn(t=0) = 100 x 1017 cm-3

n(t=0) = Δn = 101 x 1017 cm-3

=> increase factor: 102

p(t=0) = Δp ≈ 100 x 1017 cm-3

=> increase factor: 1016

Doped Si @ 300K

Nd = 1017 cm-3 P atomsFully ionised: Nd = Nd

+

Therefore:

Majority carrier concentration:n0 = 1017 cm-3

Minority carrier concentration:p0 = 2.25 x 103 cm-3

Even if gop(t) does change,its value at t=0 is calculated exactly the same:

Page 12: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Example 01 (time):Doped Si @ 300K + laser light flash

Given: optical generation rate goptical(t=0) = 1025 cm-3 s-1

δn(t=0) = gop (t=0) τn= (1025 cm-3 s-1)(1 x 10-6 s)= 1019 cm-3

= 100 x 1017 cm-3

δp(t=0) = δn(t=0) = 100 x 1017 cm-3

n(t=0) = Δn = 101 x 1017 cm-3

=> increase factor: 102

p(t=0) = Δp ≈ 100 x 1017 cm-3

=> increase factor: 1016

Doped Si @ 300K

Nd = 1017 cm-3 P atomsFully ionised: Nd = Nd

+

Therefore:

Majority carrier concentration:n0 = 1017 cm-3

Minority carrier concentration:p0 = 2.25 x 103 cm-3

Note: same n and p, butspecial new names at t = 0:

Page 13: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011 Time (ns)

1020

105

100

1010

1015

Example 01:Put a dashed line across for the n0 and p0 values

Put a dot at t = 0 for then(t=0) ≡ Δnp(t=0) ≡ Δp

values

0

n0

p0

Δn

Δp

Page 14: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011 Time (ns)

1020

105

100

1010

1015

Example 01:Put a dashed line across for the n0 and p0 values

Put a dot at t = 0 for then(t=0) ≡ Δnp(t=0) ≡ Δp

values.

Over time, the light generated carriers are not maintained. So the concentration drop back down to just the doped + temp concentrations

0

n0

p0

Δn

Δp

Page 15: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Example 02 (time):Doped Si @ 300K + laser light flash

Given: optical generation rate goptical(t=0) = 1015 cm-3 s-1

δn(t=0) = gop (t=0) τn= 109 cm-3

δp(t=0) = δn(t=0) = 109 cm-3

n(t=0) ≈ 1017 cm-3

p(t=0) ≈ 109 cm-3

Doped Si @ 300K

Nd = 1017 cm-3 P atomsFully ionised: Nd = Nd

+

Therefore:

Majority carrier concentration:n0 = 1017 cm-3

Minority carrier concentration:p0 = 2.25 x 103 cm-3

Page 16: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011 Time (ns)

1020

105

100

1010

1015

0

n0

p0

Δn

Δp

Example 02:Put a dashed line across for the n0 and p0 values

Put a dot at t = 0 for then(t=0) ≡ Δnp(t=0) ≡ Δp

values

Page 17: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011 Time (ns)

1020

105

100

1010

1015

0

n0Δn

Δp

p0

Example 02:Put a dashed line across for the n0 and p0 values

Put a dot at t = 0 for then(t=0) ≡ Δnp(t=0) ≡ Δp

values.

Over time, the light generated carriers are not maintained. So the concentration drop back down to just the doped + temp concentrations

Page 18: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Streetman Example:

Page 19: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Streetman Example:

Majority carrier concentration:p0 = 1.0 x 1015 cm-3

Minority carrier concentration:n0 = (2 x 106 cm-3)2/1015 cm-3

= 4 x 10-3 cm-3

δn(t=0) = Δn = gop(t=0) τn= (gop cm-3 s-1)(1 x 10-8 s)= 1014 cm-3

δp(t=0) = Δp = gop τn = 1014 cm-3

p(t=0) = 1.0 x 1015 cm-3 + 1014 cm-3

= 1.1 x 1015 cm-3

n(t=0) = 4 x 10-3 cm-3 + 1014 cm-3

≈ 1014 cm-3

Page 20: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011 Time (ns)

1015

100

10-5

105

1010

0

n0

n

p

Δn

Δp p0

Streetman Example 03:Put a dashed line across for the n0 and p0 values

Put a dot at t = 0 for then(t=0) ≡ Δnp(t=0) ≡ Δp

values

Page 21: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011 Time (ns)

1015

100

10-5

105

1010

0

n0

p0

np

Streetman Example 03:Put a dashed line across for the n0 and p0 values

Put a dot at t = 0 for then(t=0) ≡ Δnp(t=0) ≡ Δp

values.

Over time, the light generated carriers are not maintained. So the concentration drop back down to just the doped + temp concentrations

Δn

Δp

Page 22: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011 Time (ns)

1015

100

10-5

105

1010

All that remains is to work out an expression for the dramatic drop of the minority carrier back to its doped + temp concentration.

Follow the derivation in Streetman pp. 125-126.

For the “low level injection”conditions, it is:

If Holes p(t) = MajorityThen Electrons n(t) = Minority

0

n0

p0

np

n

t

ntn τ−

Δ= exp)(

n

t

ntn τ−

Δ= exp)(

Δn

Δp

Page 23: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011 Time (ns)

1020

105

100

1010

1015

0

n0n

p

p0

In our Example 02:

If Electrons n(t) = MajorityThen Holes p(t) = Minority

p

t

ptp τ−

Δ= exp)(

p

t

ptp τ−

Δ= exp)(

Δn

Δp

Note: usual in Streetman:τp = τn

Page 24: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Lecture 23:

Chp. 04

Photo-generated carriers – IIIDiffusion current

Examples of each

Page 25: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

High power n-channel field effect transistor:Note Idrift ____ and Idiffusion ____ regions.

n np

Wilkipedia

OFF

Page 26: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

High power n-channel field effect transistor:Note Idrift ____ and Idiffusion ____ regions.

n np

Wilkipedia

ON

Page 27: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Si

np

n

Si

np

n

Si

np

n

OFF

I

V

I

V

Transistor: a device for binary logic (Chp. 06)

ONSaturation regime

Typically not used:Linear (ohmic) regime

I

V

Page 28: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Si

np

n Getting a good OFF is Key

OFF is achieved by this 2 pnjunctions + depletion region energy barrier design(Chp. 05)

OFF is NOT achieved by just using the bandgap of Si

= 1.11 eV

Page 29: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

ON and Diffusion Current (Chp. 04):

VDS = IRWhere is the line of charge that creates the potential drop?

Si

np

nn

VDS

Si

np

nn

VDS

Page 30: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

ON and Diffusion Current:

VDS = IRWhere is the line of charge that creates the potential drop? At the Ohmic contacts (Chp. 05)

Si

np

nn

VDS

Si

np

nn

VDS

Page 31: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

ON and Diffusion Current:

VDS = IRThe rest (blue) is just ordinary n-type material.Carriers move by diffusion, not VDS = IR: no VDS.

Si

np

nn

VDS

Si

np

nn

VDS

Page 32: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Idrift = q(n0 <velocityelectron>+ p0<velocityhole>) Area

Idrift = q(n0 μn + p0 μp ) E Area

Jdrift = Idrift/Area = q(n0 μn + p0 μp ) E = σ E

From Lecture 21:

There’s more:

Page 33: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Diffusion Current:(Si @300K, Doping yes, laser light no)

Consider putting 2 different n-type doping concentrations together in the same block of Si. What happens?

n0

= 1017 cm-3

n0

= 1013 cm-3

x

z

y

Page 34: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Consider putting 2 different n-type doping concentrations together in the same block of Si. What happens?

n0

= 1017 cm-3

n0

= 1013 cm-3

Lots of e- Less e-

x

z

y

Diffusion Current:

Page 35: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

n0

= 1017 cm-3

n0

= 1013 cm-3

Let’s go! e- Less e-

A current Idiff starts to flow based on the concentration imbalance

x

z

y

Diffusion Current:

Page 36: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

n0

= 1017 cm-3

n0

= 1013 cm-3

NOTE: now you are piling up P+

P+ e-x

z

y

Diffusion Current:

Page 37: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

n0

=

1017

cm-3

P+ e-

P+ e-

P+ e-

P+ e-

n0

=

1013

cm-3

An internal E-field E develops that hangs on to the e- , so the diffusion comes to a halt: Idiff = Jdiff = 0

+ E -

Diffusion Current:

x

z

y

Page 38: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

n0

=

1017

cm-3

P+ e-

P+ e-

P+ e-

P+ e-

n0

=

1013

cm-3

Another way to say that an internal E-field E develops: an energy barrier is created.

+ E -

Diffusion Current:

x

z

y

Page 39: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Example 01: describe the energy barrier: individually:

EF

Ei

EV

EC

Egap=

1.1 eV

EF

Ei

EV

EC

Egap=

1.1 eV

0.407 eV0.2 eV

n0= 1017 cm-3 n0= 1013 cm-3

Page 40: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

Line the Fermi energy levels up

EF

Ei

EV

EC

Egap=

1.1 eV

EF

Ei

EV

EC

Egap=

1.1 eV

0.407 eV 0.2 eV

n0= 1017 cm-3 n0= 1013 cm-3

Page 41: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

EF straight across

EF

Ei

EC

EV

Egap=

1.1 eV

EF

Ei

EV

EC

Egap=

1.1 eV

0.407 eV 0.2 eV

n0= 1017 cm-3 n0= 1013 cm-3

Page 42: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

0.2 eV

Connect: far left to far right:

EV

EC

Egap=

1.1 eV

EF

Ei

EV

EC

Egap=

1.1 eV

0.407 eV

n0= 1017 cm-3 n0= 1013 cm-3

Ei

Page 43: ECE 474: Principles of Electronic Devices · V.M. Ayres, ECE474, Spring 2011 New: Doped Si @ 300K + laser light Given: 1017 cm-3 e- hole pairs (EHPs) are generated every microsecond

V.M. Ayres, ECE474, Spring 2011

0.2 eV

Finished diagram:

EV

EC

Egap=

1.1 eV

EF

Ei

EV

EC

Egap=

1.1 eV

0.407 eV

n0= 1017 cm-3 n0= 1013 cm-3

Ei