52
hyperfine interactions at hyperfine interactions at 111 111 In-doped Sc In-doped Sc 2 2 O O 3 3 semiconductor and semiconductor and comparison with comparison with ab initio ab initio calculations calculations E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 , L. A. Errico 1 and M. Rentería 1 1 Departamento de Física and IFLP (CONICET), La Plata, Argentina, 2 Instituto de Pesquisas Energéticas y Nucleares, São

E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 , L. A. Errico 1 and M. Rentería 1

  • Upload
    ull

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

PAC study of dynamic hyperfine interactions at 111 In-doped Sc 2 O 3 semiconductor and comparison with ab initio calculations. E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 , L. A. Errico 1 and M. Rentería 1. 1 Departamento de Física and IFLP (CONICET), La Plata, Argentina, - PowerPoint PPT Presentation

Citation preview

Page 1: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

PAC study of dynamic PAC study of dynamic hyperfine interactions at hyperfine interactions at

111111In-doped ScIn-doped Sc22OO33 semiconductor and semiconductor and

comparison with comparison with ab initioab initio calculationscalculations

E. L. Muñoz1, D. Richard1, A.W. Carbonari2,

L. A. Errico1 and M. Rentería1

1Departamento de Física and IFLP (CONICET), La Plata, Argentina, 2 Instituto de Pesquisas Energéticas y Nucleares, São Paulo, Brazil

Page 2: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

MotivationsMotivations The inclusion of impurities in semiconductors have broad significance for the basic and applied research.

Page 3: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

MotivationsMotivations The inclusion of impurities in semiconductors have broad significance for the basic and applied research. The experimental characterizations at impurity sites in oxides have a fundamental importance for the evaluation of the ab initio electronic structure calculation predictions of structural and electronic properties in doped systems.

Page 4: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

MotivationsMotivations The inclusion of impurities in semiconductors have broad significance for the basic and applied research. The experimental characterizations at impurity sites in oxides have a fundamental importance for the evaluation of the ab initio electronic structure calculation predictions of structural and electronic properties in doped systems. To correctly understand the underlying physics of the phenomenological model used in perturbation factors it is necessary a theoretical study based in first-principles calculations.

Page 5: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

OutlineOutline Studied systemStudied system PAC techniquePAC technique Experimental results Experimental results FP-APW+lo FP-APW+lo calculationscalculations

Final remarksFinal remarks

Page 6: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

OutlineOutline Studied systemStudied system PAC technique Experimental results FP-APW+lo calculations

Final remarks

Page 7: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

Studied system: Studied system: ScSc22OO33

Site D Site C

• The Sc2O3 oxide crystallizes in the bixbiyte structure and presents two cation sites: C and D.• The relative abundance is fC

/fD=3:1.

• The ONN coordination is 6 for both sites. • The D site is axially symmetric and the C site presents high asymmetry.

Page 8: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

Studied system: Studied system: ScSc22OO33

Site D Site C

Method a (Å) -u x y z

Experimental [1] 9.845 0.03546 0.39137 0.15477 0.38137

FP-APW+lo (LDA) 9.708 0.0364 0.3915 0.1545 0.3810FP-APW+lo (WC-GGA) 9.798 0.0361 0.3913 0.1543 0.3812[1] M. Marezio, Acta Cryst. 20, 723 (1966).

• The Sc2O3 oxide crystallizes in the bixbiyte structure and presents two cation sites: C and D.• The relative abundance is fC

/fD=3:1.

• The ONN coordination is 6 for both sites. • The D site is axially symmetric and the C site presents high asymmetry.

Page 9: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

OutlineOutline Studied system PAC techniquePAC techniqueExperimental results FP-APW+lo calculations

Final remarks

Page 10: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

3

122022 )),(cos()()()(

nQnn

s tSStG

, 40

, 33

eQV

Q 11 22

33

V VV

PAC PAC techniquetechnique

180 , 90 ,2

180 , 2 90 ,

C t C tR t

C t C t

Spin orientation at time t

Spin orientation at time t+t

Substates m

Page 11: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

111111Cd probe and sample Cd probe and sample preparationpreparation

Some drops of 111InCl3 were deposited onto a Sc2O3 (99.999% purity) powder pellet. The 111In thermal diffusion was performed in N2 atmosphere (3x108 Pa) in steps from 423 K to 1073 K. The temperature dependence of the EFG was measured in the temperature range 10 K – 900 K.

Page 12: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

111111Cd probe and sample Cd probe and sample preparationpreparation

Some drops of 111InCl3 were deposited onto a Sc2O3 (99.999% purity) powder pellet. The 111In thermal diffusion was performed in N2 atmosphere (3x108 Pa) in steps from 423 K to 1073 K. The temperature dependence of the EFG was measured in the temperature range 10 K – 900 K.

estable

Parent isotope used in this work

3.6 days

K-electron capture

electron

Initial stage

final stage

hole

Auger electron

Page 13: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

Dynamic Hyperfine Dynamic Hyperfine Interactions:Interactions:

Bäverstam and Othaz modelBäverstam and Othaz model)()()( 222222 tGtGtG ds

t

rgr

d rgr

g

g etG )(22 )(

r

g )1(

td etG )1()(22

r: Abragam and Pound constantg: recovery constant (g

-1=g)

rg

rg

r

Page 14: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

Dynamic Hyperfine Dynamic Hyperfine Interactions:Interactions:

Bäverstam and Othaz modelBäverstam and Othaz model)()()( 222222 tGtGtG ds

t

rgr

d rgr

g

g etG )(22 )(

State with electronic holes

State without electronic holes

r

g )1(

td etG )1()(22

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.90

20

40

60

80

100

120

140

DO

S (A

. U.)

E (eV)

Sc2O

3:Cd

EF

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.90

20

40

60

80

100

120

140

DO

S (A

. U.)

E (eV)

Sc2O

3:Cd

EF

r: Abragam and Pound constantg: recovery constant (g

-1=g)

rg

rg

r

Page 15: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

OutlineOutline Studied system PAC technique Experimental resultsExperimental results FP-APW+lo calculations

Final remarks

Page 16: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

0 50 100 150 200 250 300 350

-0.02

0.00

0.02

0.04

0.06

0.08

A22

tns

-0.02

0.00

0.02

0.04

0.06

0.08

-0.02

0.00

0.02

0.04

0.06

0.08

-0.02

0.00

0.02

0.04

0.06

0.08

-0.02

0.00

0.02

0.04

0.06

0.08

-0.02

0.00

0.02

0.04

0.06

0.08

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

0.020

Am

plitu

de (A

. U.)

(Grad/s)

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

900 K

650 K

450 K

295 K

100 K

10 KPAC spectra PAC spectra

of of 111111In-In-doped Scdoped Sc22OO33

The PAC measurements reported by Bartos et al. [A. Bartos, et al., Phys. Lett. A 157, 513 (1991)] do not present results of the HFI parameters vs. T.

Page 17: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

Hyperfine Parameters Hyperfine Parameters vs. T vs. T

0 200 400 600 8000

3

6

9

12

V33

(1021

V/m

2 )

T (K)

0.00.20.40.60.81.0

0

20

40

60

80

f (%

)

0.00

0.02

0.04

0.06

0.08

g (1/n

s)

0.000.040.080.120.160.20

r (1/n

s)

Site D Site C

Page 18: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

Hyperfine Parameters Hyperfine Parameters vs. T vs. T

0 200 400 600 8000

3

6

9

12

V33

(1021

V/m

2 )

T (K)

0.00.20.40.60.81.0

0

20

40

60

80

f (%

)

0.00

0.02

0.04

0.06

0.08

g (1/n

s)

0.000.040.080.120.160.20

r (1/n

s)

Site D Site C

0 200 400 600 800

0.0

0.1

0.2

T (K)

(1/

ns)

0.00.20.40.60.81.0

Site D Site C

Page 19: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

OutlineOutline Studied system PAC technique Experimental results FP-APW+lo FP-APW+lo calculationscalculations

Final remarks

Page 20: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

FP-APW+lo results in pure FP-APW+lo results in pure ScSc22OO33

5 6 7 8 9 10

-28058

-28057

-28056

-3.2-3.1-3.0-2.9

4.44.54.64.74.8

E (R

y)

RKMAX

Sitio D Sitio C

V33

(1021

V/m

2 )

-0.01

0.00

0.01

0.69

0.70

-3 -2 -1 0 1 2 3 4 50

40

80

120

160

Cd-4d

Sc2O3:Cd - site C

Energy (eV)

0

40

80

120

160

DOS

(A. U

.)

0

20

40

60

80

Sc2O3:Cd - site D

pure Sc2O3O-2pSc-3d

Cd-4d acceptor state

EF

Page 21: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

FP-APW+lo results in pure FP-APW+lo results in pure ScSc22OO33

5 6 7 8 9 10

-28058

-28057

-28056

-3.2-3.1-3.0-2.9

4.44.54.64.74.8

E (R

y)

RKMAX

Sitio D Sitio C

V33

(1021

V/m

2 )

-0.01

0.00

0.01

0.69

0.70

Parameters AproxSite D Site C

dNN V33 dNN V33

Experimental LDA 2.12 +4.53 0.00 2.08 -2.98 0.71CW 2.12 +4.52 0.00 2.08 -2.97 0.69

refined LDA 2.12 +4.69 0.00 2.09 -3.11 0.53CW 2.12 +4.59 0.00 2.09 -2.92 0.52

PAC in 44Sc results [1] 4.19(2) 0.00 2.741(7) 0.630(3)

Comparison between APW+lo results using experimental and refined structural parameters

[1] D. Richard, et al., PRB 82, 035206

(2010).[V33]=1021 V/m2;

[dNN]=Å

-3 -2 -1 0 1 2 3 4 50

40

80

120

160

Cd-4d

Sc2O3:Cd - site C

Energy (eV)

0

40

80

120

160

DOS

(A. U

.)

0

20

40

60

80

Sc2O3:Cd - site D

pure Sc2O3O-2pSc-3d

Cd-4d acceptor state

EF

Page 22: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

FP-APW+lo results in pure FP-APW+lo results in pure ScSc22OO33

5 6 7 8 9 10

-28058

-28057

-28056

-3.2-3.1-3.0-2.9

4.44.54.64.74.8

E (R

y)

RKMAX

Sitio D Sitio C

V33

(1021

V/m

2 )

-0.01

0.00

0.01

0.69

0.70

Parameters AproxSite D Site C

dNN V33 dNN V33

Experimental LDA 2.12 +4.53 0.00 2.08 -2.98 0.71CW 2.12 +4.52 0.00 2.08 -2.97 0.69

refined LDA 2.12 +4.69 0.00 2.09 -3.11 0.53CW 2.12 +4.59 0.00 2.09 -2.92 0.52

PAC in 44Sc results [1] 4.19(2) 0.00 2.741(7) 0.630(3)

Comparison between APW+lo results using experimental and refined structural parameters

[1] D. Richard, et al., PRB 82, 035206

(2010).[V33]=1021 V/m2;

[dNN]=Å

-3 -2 -1 0 1 2 3 4 50

40

80

120

160

Cd-4d

Sc2O3:Cd - site C

Energy (eV)

0

40

80

120

160

DOS

(A. U

.)

0

20

40

60

80

Sc2O3:Cd - site D

pure Sc2O3O-2pSc-3d

Cd-4d acceptor state

EF

Page 23: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

FP-APW+lo results in pure FP-APW+lo results in pure ScSc22OO33

5 6 7 8 9 10

-28058

-28057

-28056

-3.2-3.1-3.0-2.9

4.44.54.64.74.8

E (R

y)

RKMAX

Sitio D Sitio C

V33

(1021

V/m

2 )

-0.01

0.00

0.01

0.69

0.70

-3 -2 -1 0 1 2 3 4 50

40

80

120

160

Cd-4d

Sc2O3:Cd - site C

Energy (eV)

0

40

80

120

160

DOS

(A. U

.)

0

20

40

60

80

Sc2O3:Cd - site D

pure Sc2O3O-2pSc-3d

Cd-4d acceptor state

EF

Parameters AproxSite D Site C

dNN V33 dNN V33

Experimental LDA +4.53 0.00 2.08 -2.98 0.71CW 2.12 +4.52 0.00 2.08 -2.97 0.69

refined LDA 2.12 +4.69 0.00 2.09 -3.11 0.53CW 2.12 +4.59 0.00 2.09 -2.92 0.52

PAC in 44Sc results [1] 4.19(2) 0.00 2.741(7) 0.630(3)

Comparison between APW+lo results using experimental and refined structural parameters

[1] D. Richard, et al., PRB 82, 035206

(2010).[V33]=1021 V/m2;

[dNN]=Å

Page 24: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

Total Density of States Total Density of States ScSc22OO33:Cd :Cd Neutral cell (Cd0)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.00

2

4

6

O-2p

E (eV)

O

0

2

4

6

Sc-3d

Sc

Sc-3p

0

2

4

6

DOS

(U. A

.)

Cd

Cd-4d

0

40

80

120 Sc2O3:CdSite C

O-2p

Page 25: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.00

2

4

6

O-2p

E (eV)

O

0

2

4

6

Sc-3d

Sc

Sc-3p

0

2

4

6

DOS

(U. A

.)

Cd

Cd-4d

0

40

80

120 Sc2O3:CdSite C

O-2p

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.00

2

4

6

O-2p

E (eV)

O

0

2

4

6

Sc-3d

Sc

Sc-3p

0

2

4

6

DOS

(U. A

.)

Cd

Cd-4d

0

40

80

120Sc2O3:CdSite C

O-2p

Neutral cell (Cd0) Charged cell (Cd-1)

Total Density of States Total Density of States ScSc22OO33:Cd :Cd

Page 26: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

System APWApprox.

Site D Site C

dNN V33 Dir. V33 dNN V33 Dir. V33

Pure Sc2O3 LDA 2.12 4.63 0.0 [111]

2.082.122.16

-2.98 0.71 [0 -1 0.7]

Unrelaxed Sc2O3:Cd LDA 2.12 8.65 0.0 [111]

2.082.122.16

-4.91 0.65 [0 -1 0.7]

Relaxed Sc2O3:Cd LDA 2.28 8.05 0.0 [111]

2.172.302.31

6.75 0.74 [0 -0.9 1]

PAC results (T=900 K) 8.221 0.0 [111] - 6.561 0.701 [0 -1 1]

FP-APW+lo results in Cd-FP-APW+lo results in Cd-doped Scdoped Sc22OO33 for the unrelaxed for the unrelaxed

and relaxed cell*and relaxed cell*

* Cd-doped Sc2O3 results for the charged cell (Cd-1) [V33]=1021 V/m2; [dNN]=Å

Page 27: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

System APWApprox.

Site D Site C

dNN V33 Dir. V33 dNN V33 Dir. V33

Pure Sc2O3 LDA 2.12 4.63 0.0 [111]

2.082.122.16

-2.98 0.71 [0 -1 0.7]

Unrelaxed Sc2O3:Cd LDA 2.12 8.65 0.0 [111]

2.082.122.16

-4.91 0.65 [0 -1 0.7]

Relaxed Sc2O3:Cd LDA 2.28 8.05 0.0 [111]

2.172.302.31

6.75 0.74 [0 -0.9 1]

PAC results (T=900 K) 8.221 0.0 [111] - 6.561 0.701 [0 -1 1]

FP-APW+lo results in Cd-FP-APW+lo results in Cd-doped Scdoped Sc22OO33 for the unrelaxed for the unrelaxed

and relaxed cell*and relaxed cell*

* Cd-doped Sc2O3 results for the charged cell (Cd-1) [V33]=1021 V/m2; [dNN]=Å

Page 28: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

System APWApprox.

Site D Site C

dNN V33 Dir. V33 dNN V33 Dir. V33

Pure Sc2O3 LDA 2.12 4.63 0.0 [111]

2.082.122.16

-2.98 0.71 [0 -1 0.7]

Unrelaxed Sc2O3:Cd LDA 2.12 8.65 0.0 [111]

2.082.122.16

-4.91 0.65 [0 -1 0.7]

Relaxed Sc2O3:Cd LDA 2.28 8.05 0.0 [111]

2.172.302.31

6.75 0.74 [0 -0.9 1]

PAC results (T=900 K) 8.221 0.0 [111] - 6.561 0.701 [0 -1 1]

FP-APW+lo results in Cd-FP-APW+lo results in Cd-doped Scdoped Sc22OO33 for the unrelaxed for the unrelaxed

and relaxed cell*and relaxed cell*

* Cd-doped Sc2O3 results for the charged cell (Cd-1) [V33]=1021 V/m2; [dNN]=Å

Page 29: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

EFG dependence of the EFG dependence of the charge state of the Cd charge state of the Cd

impurityimpurityCell

ChargeState

APWAppro

x.

Site D Site C

dNN V33 Dir. V33 dNN V33 Dir. V33

Uncharged Cell WC 2.22 +8.24 0.00 [111]

2.102.242.32

+3.06 0.64 [0 0 1]

Neutral Cell WC 2.25 +8.32 0.00 [111]

2.142.282.32

-3.81 0.34 [0 -0.7 1]

Charged Cell WC 2.28 +8.16 0.00 [111]

2.192.312.32

+6.50 0.71 [0 -0.8 1]

These results were checked with the others approximations, LDA and GGA [V33]=1021 V/m2; [dNN]=Å

Uncharged cell (Cd+1): 1 removed electron in the cellNeutral cell (Cd0):neutral Cd atomCharged cell (Cd-1): 1 added electron in the cell

Page 30: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

EFG dependence of the EFG dependence of the charge state of the Cd charge state of the Cd

impurityimpurityCell

ChargeState

APWAppro

x.

Site D Site C

dNN V33 Dir. V33 dNN V33 Dir. V33

Uncharged Cell WC 2.22 +8.24 0.00 [111]

2.102.242.32

+3.06 0.64 [0 0 1]

Neutral Cell WC 2.25 +8.32 0.00 [111]

2.142.282.32

-3.81 0.34 [0 -0.7 1]

Charged Cell WC 2.28 +8.16 0.00 [111]

2.192.312.32

+6.50 0.71 [0 -0.8 1]

These results were checked with the others approximations, LDA and GGA [V33]=1021 V/m2; [dNN]=Å

Uncharged cell (Cd+1): 1 removed electron in the cellNeutral cell (Cd0): neutral Cd atomCharged cell (Cd-1): 1 added electron in the cell

Page 31: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

EFG dependence of the EFG dependence of the charge state of the Cd charge state of the Cd

impurityimpurityCell

ChargeState

APWAppro

x.

Site D Site C

dNN V33 Dir. V33 dNN V33 Dir. V33

Uncharged Cell WC 2.22 +8.24 0.00 [111]

2.102.242.32

+3.06 0.64 [0 0 1]

Neutral Cell WC 2.25 +8.32 0.00 [111]

2.142.282.32

-3.81 0.34 [0 -0.7 1]

Charged Cell WC 2.28 +8.16 0.00 [111]

2.192.312.32

+6.50 0.71 [0 -0.8 1]

These results were checked with the others approximations, LDA and GGA [V33]=1021 V/m2; [dNN]=Å

Uncharged cell (Cd+1): 1 removed electron in the cellNeutral cell (Cd0): neutral Cd atomCharged cell (Cd-1): 1 added electron in the cell

Page 32: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

EFG contributions EFG contributions Cd at D site

Uncharged Cell Neutral Cell Charged CellV11 V22 V33 V11 V22 V33 V11 V22 V33

p -3.34 -3.34 6.68 -3.18 -3.18 6.36 -3.00 -3.00 6.00d -0.89 -0.89 1.78 -1.08 -1.08 2.16 -1.17 -1.17 2.35

s-d 0.10 0.10 -0.20 0.10 0.10 -0.20 0.10 0.10 -0.20total -4.13 -4.13 8.26 -4.16 -4.16 8.32 -4.07 -4.07 8.15

[Vii]=1021 V/m2

Page 33: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

EFG contributions EFG contributions Cd at D site

Uncharged Cell Neutral Cell Charged CellV11 V22 V33 V11 V22 V33 V11 V22 V33

p -3.34 -3.34 6.68 -3.18 -3.18 6.36 -3.00 -3.00 6.00d -0.89 -0.89 1.78 -1.08 -1.08 2.16 -1.17 -1.17 2.35

s-d 0.10 0.10 -0.20 0.10 0.10 -0.20 0.10 0.10 -0.20total -4.13 -4.13 8.26 -4.16 -4.16 8.32 -4.07 -4.07 8.15

[Vii]=1021 V/m2

Page 34: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

EFG contributions EFG contributions Cd at D site

Uncharged Cell Neutral Cell Charged CellV11 V22 V33 V11 V22 V33 V11 V22 V33

p -3.34 -3.34 6.68 -3.18 -3.18 6.36 -3.00 -3.00 6.00d -0.89 -0.89 1.78 -1.08 -1.08 2.16 -1.17 -1.17 2.35

s-d 0.10 0.10 -0.20 0.10 0.10 -0.20 0.10 0.10 -0.20total -4.13 -4.13 8.26 -4.16 -4.16 8.32 -4.07 -4.07 8.15

Cd at C site Uncharged Cell Neutral Cell Charged Cell

V11 V22 V33 V11 V22 V33 V11 V22 V33

p 9.60 -6.47 -3.12 -2.24 7.46 -5.22 -1.20 -3.67 4.87d -10.32 4.20 6.12 3.46 -4.86 1.39 0.25 -2.03 1.78

s-d 0.17 -0.21 0.05 0.04 0.15 -0.19 0.02 0.13 -0.15total -0.5 -2.53 3.03 1.25 2.57 -3.82 -0.93 -5.57 6.50

[Vii]=1021 V/m2

Page 35: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

EFG contributions EFG contributions Cd at D site

Uncharged Cell Neutral Cell Charged CellV11 V22 V33 V11 V22 V33 V11 V22 V33

p -3.34 -3.34 6.68 -3.18 -3.18 6.36 -3.00 -3.00 6.00d -0.89 -0.89 1.78 -1.08 -1.08 2.16 -1.17 -1.17 2.35

s-d 0.10 0.10 -0.20 0.10 0.10 -0.20 0.10 0.10 -0.20total -4.13 -4.13 8.26 -4.16 -4.16 8.32 -4.07 -4.07 8.15

Cd at C site Uncharged Cell Neutral Cell Charged Cell

V11 V22 V33 V11 V22 V33 V11 V22 V33

p 9.60 -6.47 -3.12 -2.24 7.46 -5.22 -1.20 -3.67 4.87d -10.32 4.20 6.12 3.46 -4.86 1.39 0.25 -2.03 1.78

s-d 0.17 -0.21 0.05 0.04 0.15 -0.19 0.02 0.13 -0.15total -0.5 -2.53 3.03 1.25 2.57 -3.82 -0.93 -5.57 6.50

[Vii]=1021 V/m2

Page 36: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

0

1

2

3

4

PD

OS

(U. A

.)

Cd+1 at site D Cd total Cd d dz2 dx2-y2 dxy dxz dyz

0

1

2

3

4

PD

OS

(U. A

.)

Cd0 at site D Cd total Cd d dz2 dx2-y2 dxy dxz dyz

-0.2 -0.1 0.0 0.1 0.2

0

1

2

3

4

PD

OS

(U.A

.)

E (eV)

Cd-1 at site D Cd total Cd d dz2 dx2- y2 dxy dxz dyz

0

1

2

3

4

PD

OS

(U. A

.)

Cd+1 at site C Cd total Cd d dz2 dx2-y2 dxy dxz dyz

0

1

2

3

4

PD

OS

(U. A

.)

Cd0 at site C Cd total Cd d dz2 dx2-y2 dxy dxz dyz

-0.2 -0.1 0.0 0.1 0.2

0

1

2

3

4

PD

OS

(U. A

.)

E (eV)

Cd-1 at site C Cd total Cd d dz2 dx2-y2 dxy dxz dyz

Partial Density of States Partial Density of States Cd-4Cd-4dd

Page 37: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

CellCharg

eState

APWApprox.

Site D Site C

V33 V33

Cd+1 WC-GGA +8.24 0.00 +3.06 0.64

Cd0 WC-GGA +8.32 0.00 -3.81 0.34

Cd-1 WC-GGA +8.16 0.00 +6.50 0.710 200 400 600 8000

3

6

9

12

V33

(1021

V/m

2 )

T (K)

0.00.20.40.60.81.0

0

20

40

60

80

f (%

)

0.00

0.02

0.04

0.06

0.08

g (1/

ns)

0.000.040.080.120.160.20

r (1/

ns) Sitio D

Sitio C

Comparison of the results Comparison of the results

Page 38: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

CellCharg

eState

APWApprox.

Site D Site C

V33 V33

Cd+1 WC-GGA +8.24 0.00 +3.06 0.64

Cd0 WC-GGA +8.32 0.00 -3.81 0.34

Cd-1 WC-GGA +8.16 0.0 +6.50 0.710 200 400 600 8000

3

6

9

12

V33

(1021

V/m

2 )

T (K)

0.00.20.40.60.81.0

0

20

40

60

80

f (%

)

0.00

0.02

0.04

0.06

0.08

g (1/

ns)

0.000.040.080.120.160.20

r (1/

ns) Sitio D

Sitio C

Comparison of the results Comparison of the results

Page 39: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

CellCharg

eState

APWApprox.

Site D Site C

V33 V33

Cd+1 WC-GGA +8.24 0.00 +3.06 0.64

Cd0 WC-GGA +8.32 0.0 -3.81 0.34

Cd-1 WC-GGA +8.16 0.0 +6.50 0.710 200 400 600 8000

3

6

9

12

V33

(1021

V/m

2 )

T (K)

0.00.20.40.60.81.0

0

20

40

60

80

f (%

)

0.00

0.02

0.04

0.06

0.08

g (1/

ns)

0.000.040.080.120.160.20

r (1/

ns) Sitio D

Sitio C

Comparison of the results Comparison of the results

Page 40: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

CellCharg

eState

APWApprox.

Site D Site C

V33 V33

Cd+1 WC-GGA +8.24 0.0 +3.06 0.64

Cd0 WC-GGA +8.32 0.0 -3.81 0.34

Cd-1 WC-GGA +8.16 0.0 +6.50 0.710 200 400 600 8000

3

6

9

12

V33

(1021

V/m

2 )

T (K)

0.00.20.40.60.81.0

0

20

40

60

80

f (%

)

0.00

0.02

0.04

0.06

0.08

g (1/

ns)

0.000.040.080.120.160.20

r (1/

ns) Sitio D

Sitio C

Comparison of the results Comparison of the results

Page 41: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

CellCharg

eState

APWApprox.

Site D Site C

V33 V33

Cd+1 WC-GGA +8.24 0.0 +3.06 0.64

Cd0 WC-GGA +8.32 0.0 -3.81 0.34

Cd-1 WC-GGA +8.16 0.0 +6.50 0.710 200 400 600 8000

3

6

9

12

V33

(1021

V/m

2 )

T (K)

0.00.20.40.60.81.0

0

20

40

60

80

f (%

)

0.00

0.02

0.04

0.06

0.08

g (1/

ns)

0.000.040.080.120.160.20

r (1/

ns) Sitio D

Sitio C

Comparison of the results Comparison of the results EFG calculated in Cd at site D does not present charge state dependence. EFG in Cd at site C has a strong charge state dependence. The Abragam and Pound constant at site C is larger of that of site D in all the temperature range.

Page 42: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

OutlineOutline Studied system PAC technique Experimental results FP-APW+lo calculations

Final remarksFinal remarks

Page 43: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

From this experimental and ab initio approach, we can conclude that the dynamic interaction observed at Cd impurities located at C sites is more intense than the dynamic interaction at the D site. These behavior of the EFG is attributed to the symmetry of the each site.

Final remarks Final remarks

Page 44: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

From this experimental and ab initio approach, we can conclude that the dynamic interaction observed at Cd impurities located at C sites is more intense than the dynamic interaction at the D site. These behavior of the EFG is attributed to the symmetry of the each site. We can see that the increase of the EFG dependence with the charge state of the impurity is correlated with an increase of the strength of the dynamic interaction.

Final remarks Final remarks

Page 45: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

From this experimental and ab initio approach, we can conclude that the dynamic interaction observed at Cd impurities located at C sites is more intense than the dynamic interaction at the D site. These behavior of the EFG is attributed to the symmetry of the each site. We can see that the increase of the EFG dependence with the charge state of the impurity is correlated with an increase of the strength of the dynamic interaction. Finally, we conclude that an ab initio study can help to understand the underlying physics described by the phenomenological Abragam and Pound model.

Final remarks Final remarks

Page 46: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1
Page 47: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1
Page 48: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1
Page 49: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

0.0 0.2 0.4 0.6 0.8 1.00.000

0.005

0.010

0.015

0.020

0.025

T = 873 K

Am

plitu

d (U

.A.)

(Grad/s)0 50 100 150 200 250 300 350

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

R (t

)

t (ns)

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.000

0.005

0.010

0.015

0.020

0.025

T = 700 K

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.000

0.005

0.010

0.015

0.020

0.025

T = 550 K

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.000

0.005

0.010

0.015

0.020

0.025

T = 475 K

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.000

0.005

0.010

0.015

0.020

0.025

T = 400 K

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.000

0.005

0.010

0.015

0.020

0.025

T = 150 K

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.000

0.005

0.010

0.015

0.020

0.025

T = 100 K

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.000

0.005

0.010

0.015

0.020

0.025

T = 10 K10 K

100 K

150 K

400 K

475 K

550 K

700 K

873 K

Cd- doped InCd- doped In22OO33

Page 50: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

0 100 200 300 400 500 600 700 800 9005

6

7

8

V33

(10

21 V

/m2 )

T (K)

0.00.20.40.60.81.0

0

20

40

60

80

f (%

)

0.0

0.1

0.2

0.3

0.4

(1/

ns)

0.0

0.3

0.6

0.9

1.2

1.5

Sitio D Sitio C

0 100 200 300 400 500 600 700 800 9005

6

7

8

V33

(10

21 V

/m2 )

T (K)

0.00.20.40.60.81.0

0

20

40

60

80

f (%

)

0.00

0.04

0.08

0.12

g (1

/ns)

0.000.050.100.150.200.250.30

r (1/

ns)

Sitio D Sitio C

InIn22OO33:Cd – HFIs vs. :Cd – HFIs vs. TT

Page 51: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

0 50 100 150 200 250 300 350

0.00

0.03

0.06

0.0 0.2 0.4 0.60.00

0.01

0.02

TM = 900K

A 22G 2(t)

t(nsec)

Am

plitu

de (A

. U.)

(Grad/s)

TM = 800K

TM = 700K

TM = 600K

TM = 500K

TM = 375K

TM = 225K

TM = 150K

TM = 20K

Cd-doped Cd-doped SnOSnO

20 K

150 K

225 K

375 K

500 K

600 K

700 K

800 K

900 K

Page 52: E. L. Muñoz 1 , D. Richard 1 , A.W. Carbonari 2 ,  L. A. Errico 1  and M. Rentería 1

Charge state Aprox. dNN (Å) h V33 (10

21V/m

2)

Descargada LDA 2.257 0.000 +7.79

Neutra LDA 2.266 0.000 +5.26

Cargada LDA 2.368 0.000 -4.52

0 100 200 300 400 500 600 700 800 9004

6

8

HFI1 HFI2

V 33 (1

021V

/m2 )

T (K)

0.0

0.2

0.4

0.6

0

20

40

60

80

100

f (%

)

0.00.20.40.60.81.0

(a

dim

.)

0.000

0.025

0.050

0.075

0.100

(1/

ns)

0 100 200 300 400 500 600 700 800 9004

6

8

HFI1 HFI2

V 33 (1

021V

/m2 )

T (K)

0.0

0.2

0.4

0.6

0

20

40

60

80

100

f (%

)

0.00

0.03

0.06

0.09

r (1/n

s)

0.00

0.02

0.04

0.06

g (1/n

s)

HFI2HFI1