80
) 1231652 :

ê · - auto.tongji.edu.cnauto.tongji.edu.cn/themes/0/userfiles/download/2017/9/28/... · both before and after the test , summarizes the system optimization scheme and related products

  • Upload
    phamque

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

)

1231652

:

A dissertation submitted to

Tongji University in conformity with the requirements for

the degree of Master of Engineering

Oct., 2015

Candidate: Yuan Yuan

Student Number: 1231652

School/Department: School of Automotive Studies

Discipline: Engineering Master

Major: Automotive Engineering

Supervisor: Prof. Jin Xiaoxiong

Vice Supervisor : Gao Le

The Research on Dynamic Test and Optimization for Front End Accessory Drive system

2016 1 18

2016 1 18

I

FEAD

1

FEAD

2

Tongji University Master of Philosophy Abstract

II

ABSTRACT

Front End Accessory Drive System (FEAD) is an important part of engine and

vehicle, whose transmission efficiency effect the engine working efficiency and it is

also the main noise resource of vehicle for comfortable ride. A reasonable design of

the front-end accessory system can obviously reduce the noise level of the engine

power train system, prolong the service life of the engine and other parts, and can

meet many vehicle matching conditions.

In this dissertation, analysis of the whole system of various influencing

parameters and corresponding optimized products is based on the dynamic test and

the working principle explanation, compared the indicators and the actual result from

both before and after the test , summarizes the system optimization scheme and

related products aiming at the problem of the system. The most content are as follows

1. Based on a large number of references, the research status of FEAD system at

home and abroad is illustrated systematically. At the same time, the dynamic test

methods of FEAD system are discussed.

2. Through subject investigated according to influencing parameters, a number

of test data and technical references about the FEAD system problem and the

optimization scheme are obtained. It also summed up the optimization product

working principle and design method.

A summary to all problems that encountered during FEAD development: Effect

of automobile alternator inertial mass analyzed the OAP and OAD; Effect of belt

tension summarized the asymmetric damping tensioner, hydraulic tensioner and

stiffness optimized new material belt; Effect of crankshaft torsional vibration to the

system introduced the crankshaft torsional vibration decoupler.

In the finality, it discusses the direction of further research in FEAD, and the

latest development trend, in order to improve the research on system optimization.

Key Words: Front End Accessory Belt Drive System, dynamic test, automotive

alternator, belt tension, crankshaft torsion vibration, optimization

III

........................................................1

1.1 ........................................................1

1.2 ..................................2

1.3 ..............................5

1.3.1 ..............................................5

1.3.2 ..............................6 1.4 ..........................................8

1.4.1 ........................................8

1.4.2 ........................................8 ............................9

2.1 FEAD ...........................................9

2.1.1 ....................................9

2.1.2 ...........................................10

2.2 .........................................14

2.2.1 ...................................14

2.2.2 .............................18

.................................21

3.1 .....................................21

3.1.1 OAP OAD ....................................21

3.1.2 .....................................22

3.2 .........................................24

3.2.1 ...................................25

3.2.2 ...............................25

3.3 .....................................28

3.3.1 .......................................28

3.3.2 OAP OAD ............................30

3.4 .............................34

.......................................34

4.1 .........................35

4.1.1 .............................35

4.1.2 ...................36

IV

4.2 ...........................37

4.2.1 ............................37

4.2.2 ..........................39

4.2.3 ...........................40

4.3 .................................40

4.3.1 ..........................41

4.3.2 ......................41

4.3.3 ...................................43 4.4 .....................................43

4.4.1 .............................44

4.4.2 ...................................48

4.5 ...............................49

.......................................50

5.1 ...........................50

5.1.1 ...........................50

5.1.2 .....................................52

5.2 PYD ...........................................53

5.2.1 ...................................53

5.2.2 .....................................56

5.3 ...................................58

5.3.1 .....................................58

5.3.2 ...........................58

5.3.3 .............................59

.................................................61

6.1 .......................................................61

6.2 .......................................................62

..............................................................64

..........................................................65

........................68

1

1

1.1

FEAD Front End

Accessory Drive System 1979

V ”[1]

(3 )

[2]

2

1.

2.

1.2

1.

[3,4]

1

3

[5]

Hwang [6]

[7]

Parker[8]

2.

[9 10 11

12 13 14]

Beikmann[15]

1 2 Sakaguchi Nishio[16]

[17] AVL-ETD

NVH

Fujii Yonemoto [18]

4

1/2

Melas[19]

HONDA Takazawa[20]

Meckstroth[21]

Minjie Xu[22]

DOE FEA

3.

[23]

[24] CA6110

[25] 6BTAA

[26] (Overrunning Alternator Decoupler

OAD

OAD

OAD

1

5

[27]

OAD

OAD

OAD [28]

Minkowski

[29]

Peter Solfrank[33]

1.3

1.3.1

6

1.3.2

1.1

1

7

1.1

( )

8

1.4

1.4.1

NVH

1.4.2

8

2

9

2.1 FEAD

FEAD

2.1.1

2

2.1

10

Rotec

2.2

2.1

2.2

2

1

2

11

2.3 a

b

a) b)

2.3

2.4

a) b)

2.4

12

2.5 FMA force measuring adapter a

strain body strain gauge

b

a) FMA b)

2.5

Clavis

2.1.2

LMS NI Rotec

RS232

2

13

220V 50 12~14V 2

10

2.6 Rotec

a 12 b

a) 12 b)

2.6 Rotec

Rotec RASnbk

FFT Waterfall Plot FFT

Campbell Plot single order

3

ICP

50~150

2.7

14

2.7

2.2

2.2.1

10% ±5%

1500N

2.1

2.2

2

15

1.5~2%

4%

2.4 2.5 2.6

i

1/min; ,

1/min; ,1/min; ,

(2.2) %100S

(2.1) %100S

Re

Re

Re

f

p

B

f

pf

B

pB

n

nn

innin

innin

;;

;/

2.4 4 22

mLHzf

mkgNF

fLF

T

T

TT

1/min;,1/min;,

,1/min; 1/min;

2.3 /

max

min

nnnn

nn

mean

mean

16

FR FMA FMA

2.7

2 2.8

2.8 FMA

190 2.7

180

25 2.1

2.7 2

-180 cosF2F TR

TF99238.12190-180

cosF2F TR

npkmkg

mkgkgm

mLL

mn

R

R

;//;/

2.6 1 2.5 ..

0

0

2

17

2.1

[ kg.m2 ] [ N.m ] [ º ] 0.002~0.005 15 150º

0.002~0.004 22 120º 0.001~0.002 24 100º

0.0005~0.001 3 30 60

2.8

2.11

2.11

(2.10) 1

0:

.

(2.9) .,,1

(2.8)

2

2

22

2

2

2

2

2

2

22

2

2

2

2

ty

cxy

tydx

xySdx

xy

xyS

c

txpx

ycty

xyTc

pdxTdxx

Ttydx

18

L x

2ymsinkx, 2.13

2.11

2.2.2

)/ ( T

,V L

.

(2.12)

(2.11) 21

0

0

0

2

0

mkg

c

Tc

cvc

Lfn

),2

(

,/2 2.13 t cos]sin2[y

nl

kllkkxym

2

19

2.13

0~100Km/h

20

/

2.9 2000 /

2.9

/ /

/ s

3

21

——

2~3

OAP (Overrunning

Alternator Pulley OAD (Overrunning Alternator

Decoupler )

3.1

OAP OAD

3.1.1 OAP OAD

p a,

c Jp Ja

J=Ja+Jp

1

22

3.1

OAP OAD

OAP

OAD 2

OAP 3.1

a) b)

3.1 OAP

OAD OAP

a= p c>0

p< a c=0

c=0

a= p

3

23

OAD

a) b)

3.2 OAD

3.1.2

T N·m

P KW

n (1/min)

J

(3.1) n9550T p

24

mi ri

SI

kg·m2

M

OAD

OAP

OAP

50N.m

3.2

150A

150A

(3.2) J 2

iirm

(3.3) dmJ 22 dVrr

(3.4) MdtdJJ

3

25

3.2.1

AP11 AP13

a) AP11 b) AP13

3.3

AP11

3.4a

1000N 0N

0N

26

a)

b)

3.4 AP11

AP13

3.5

0N

0 N

0 N

/ s

/ s

/ N

/ /

/ %

/ /

/ N

3

27

b) -

3.5 AP13

3.2.2

-

a)

>1.5% 0 N

/ N

/ / / /

10%

/

- /

/ /

/ /

28

15º~ 30

3

2000

3.3

3.3.1

AP11 OAP

OAD 500N~1000N

/ /

a)

/ /

/ N / N

OAP

OAD

3

29

b)

3.6 AP11

“0N

AP13

OAP OAD

a)

OAP

OAD

/ / / /

/ N

/ N

/ s

/ s

/ N

/ N

OAP OAD

30

b) -

3.7 AP13

3.7 OAP OAD -

0N

OAP OAD

3.3.2 OAP OAD

3.8

/ /

/ /

/

- /

-

OAP OAD

3

31

a

1500N 0N

c) OAD

3.8

b OAP ”

OAP

c OAD

a)

b) OAP

OAP

OAD

OAP

/ /

/ N

/ N

/ N

/ /

/ /

32

AP11

10 10

a)

b) OAP

/

/ N

/ N

/

3

33

a

10 b OAP c

OAD

OAP OAD OAD

3.10 AP11

OAP OAD

c) OAD

3.9

OAP

OAD

/ /

() /

/ N

/

OAP OAD

34

OAD

3.4

OAP OAD

OAP

35

2.7

“N neutral

4.1

4.1

4.1

N.m

-A +A 0

unloadload

nomnom

nomnom

DDMMM

MMM

/F /D

/D

Asy.

minunload

maxload

36

4.1

Dload

Dunload FAsy.

4.1.1

HDT

1.8-3

4.1.2

HDT

4.2

4.2 HDT

4.3 +A

Push

F_srp Sum_R P_R

L_R support Sum Length

Push

4

37

-A Push

F_srp L_R Sum_R P_R

F_R Length Push Sum

Friction

4.3

4.2

1.5L DVVT L2B

HDT

4.2.1

4.4 300N

(1800 ) 300

200 4.1

+A -A +A -A

38

4.1

4.4 L2B

4.5

0

b)

4.5

4.6

- 207.16 1.273

- 191.01 2.570 -

311.70 1.973

a)

/ N

/

/

/

/

/ N

4

39

a) b)

4.6

4.2.2

4.7a 0.2

0.2 20

0.2 2

b

() / N

() / N

/ / / /

40

a b)

4.7

4.2.3

4.3

/

/ N.m

/ s

0

4

41

4.3.1

4.8

4.8

20~30Mpa

2

4.3.2

H 4.9

1945

42

4.9 H

4.10 25 4

750 / N 0.5

70

4.10

750 / 1000 / 1500N

21

70

/

/ N

4

43

OAP

4.1

[34] 4.11

a b)

4.11

H 4.9

4.3.3

4.4

4.12

44

4.12

4.4.1

Aramid --

H16B

PE OAP

4.13

1500 /

2500N 196 10%

1 |

2 | EPDM

3 |

4 |

5 | EPDM

6 |

4

45

b) c) -

4.13 PE

4.14

1

4.15

PE 150

160 4

f=n/30 6000 /

200 150 2/3 100 3000 /

a)

/

/ /

10%

/ / / /

/ N

/

46

4500 / 160

4800 / PE

2.3 PE

4.14 4.13

1 2000N

4500 /

b) c) -

4.14 Aramid

a)

/ l/min

/ N

/

/ l/min

/

/ l/min

4

47

a) PE b) Aramid

4.15

OAP 4.16

PE

1945

190[33]

OAP

a)

/ /

150Hz 160Hz

48

b) c) -

4.16 PE OAP

4.4.2

-

NVH

/

/ /

/ l/min

/ N

4

49

4.5

4.17a

a) b)

4.17

b

/

/ N

50

5.1

0

0

TVD Torsion Vibration Damper

5.1.1

PYD ( pulley decouple )

5.1a b

5

51

TVD

TVD

c

40

c) d)

5.1 LUK

a) b)

/ º

/ Nm

52

d

TVD

5.1.2

OAD

5.2

5.2

Metaldyne 5.3 a

TVD 3

65% b

c) d)

5.3

/ l/min

/ º

5

53

PYD

5.2 PYD

4

2

720 180

240 6 120

5.2.1

V6

/

5.4

2

54

Non-Uniformity

0 1000 2000 3000 4000 5000 6000CR Speed / rpm

0

5

10

15

20

25

30

35

40

Non

-Uni

form

ity, p

eak-

to-p

eak

[%, r

ef. A

v. S

peed

]

5.4

1.0T

5.5 a

1000 / 15% b

25% PYD 5%

a)

1000 /

/ l03/min

/ l02/m

in

/ l/min

/ %

5

55

Non-Uniformity

0 1000 2000 3000 4000 5000 6000CR Speed / rpm

0

5

10

15

20

25

30

35

40N

on-U

nifo

rmity

, pea

k-to

-pea

k [%

, ref

. Av.

Spe

ed]

n_CR_Primary, Sum-pp n_CR_Secondary, Sum-pp

b) 1.0T

5.5 1.0T

14V 120A

2.5 OAP

5.1

5.6 1.0T

- 204.2 1.491

- 378.8 2.500 -

261.3 2.003

1000 / 25% 5%

/ %

/ l/min

PYD

56

5.2.2

5.7

a) b)

5.7 1.0T

( 1.5 )

5.8 a 1000 / 4 0.5

90% 1°

b 4.5 OAD

1.7 PYD

a) PYD

Engine PYD Alt AC WP

/ l/min / l/min

/ º

/ N

/ l/min

/ º

5

57

b) OAD

5.8

5.9

a) SMF b) DMF

5.9

5.10 a 1004 / 917 /

743 / 855 / b OAD

PYD

OAD

/ º

/ l/min

/ l/min

/ l/min

58

/ l/min

PYD

a) PYD b) OAD

5.10 PYD OAD

5.3

5.3.1

PYD

(Metaldyne)

5.3.2

[35]

297N PYD 188N

5.11 NEDC ECE15 EUDC

1%

/ l/min

5

59

c) EUDC

5.11

5.3.3

a) NEDC b) ECE15

60

6

61

6.1

1.

OAP OAD

2.

3.

6.1

62

6.1

6.2

NVH

1.

2.

/

+OAP

+ OAP

+

+

6

63

3.

64

2012

2015 10

65

[1] Cassidy RL, Fan SK, MacDonald RS. et al. Serpentine—Extended Life Accessory Drive [C] SAE Technical Paper, 790699, 1979.

[2] Jean W. Zu. [J]. 2001 23 8~12. [3] Leonard Meirovitch. Elements of Vibration Analysis 2nd Edition [M] .USA: Donnelley & Sons Ltd, 1986. [4] Willam T. Thomson, Marie Dillon Dahleh. Theory of Vibration with Applications 5th Edition [M]. Beijing: Tsinghua University Press, 2005.12. [5] . [J]. 2003 20(1):149~152. [6] S.J. Hwang,N.C. Perkins et al.Rotational Response and Slip Prediction of

Serpentine Belt Drive Systems [J]. Vib Acous, 1994, 116 1 71~78. [7] . [J]. 2009 45 11 235~239. [8] Parker. R. G. LY. Parametric Instability of Axially Moving Media Subjected to Multi-frequency Tension and Speed Fluctuations [C].ASME Journal of Applied

Mechanics.2001,(68): 49~57. [9] . [M].

2010.12. [10] . [M]. 2002.5 [11] -- [M]. 2006.6. [12] [M]. 2009. [13] Anders Brandt. Noise and Vibration Analysis [M]. UK: John Wiley & Sons Ltd,2011. [14] BOSCH. Automotive Handbook 7th Edition [M]. Germany: John Wiley & Sons Ltd, 2007. [15] Randall S. Beikmann. Static and Dynamic Behavior of Serpentine Belt Drive systems:

Theory and experiment [D]: [Ph.D. Thesis]. Michigan: Mechanical Engineering, University of Michigan, 1992.

[16] Motoyasu Sakaguchi, Tomoaki Nishio et al. Study of the Mechanism of Accessory Drive Belt Noise [C]. SAE Paper 2009-01-0186. [17] . [J].

2009 8 30~33. [18] Atsuo Fujii, Shougo Yonemoto et al. Analysis of the Accessory Belt Lateral Vibration in

Automotive Engines [C]. JSAE Paper 20024007: 41~47.

66

[19] D. A. Melas, I. I. Esat, I. A. Craighead. A Method for Identifying the Natural Frequency of the Timing Belt [C] . SAE Paper 2002-01-1188.

[20] Hiroki Takazawa. Evaluation Condition for Auxiliary Belt Tension Fluctuation in Engine Bench Test [C] . Honda R&D Technical Review, 2012: 60~68.

[21] R. J. Meckstroth, R. Ahoor. Belt Tracking Experiment [C] . SAE Paper 901770,1990. [22] Minjie Xu, James B. Castle, William F. Breig et al. Finite Element Simulation and

Experimental Validation of V-Ribbed Belt Tracking [C]. SAE Paper 2001-01-0661. [23] . [J]. , 1997 2 5~11. [24] . CA6110 [J].

2002 11 1~5. [25] . 6BTAA [J].

2012 8 9~16. [26]

[J]. 2012 30 2 179~185. [27] . [J]. 2012 18 3

21~24. [28] [J]. 2008 1

5~9. [29] . CN1554000A[P].

2004:1~20. [30] J2198 APR2013, (R) Glossary - Automatic Belt Tensioner [S] [31] ISO 9980:2012(E), Belt drives — Grooved Pulleys for V-belts (system based on effective

width) — Geometrical Inspection of Grooves [S] [32] Peter Solfrank, Peter Kelm. The Dynamic Simulation of Automobile Accessory

Drives [Z]. Germany: VDI Berichte Nr 1467, 1999. [33] Lionel Manina, Guilhem Michon et al. From transmission error measurement to pulley–belt

slip determination in serpentine belt drives: In uence of tensioner and belt characteristics [J] . Mechanism and Machine Theory 44 (2009) 813–821

[34] [J].2014 36 2 204~209.

[35] Kibong Yoon, Inje Oh et al. A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley[C].SAE Paper 2013-01-2514.

[36] [J]. 2004 25(1): 124-128. [37] [J].

2007 25 11 991-994. [38] [J].

2011 07 46-48. [39] F Zhu R. G. Parker. [J].

2012,26 1 38-48.

67

[40] . CN101813030[P]. 2010:1~15. [41] Hartmut Bach, Michael Triebel et al. [J].

2008,22 3 3-16. [42] P. J. A. . CN101061328[P]. 2007:1~33. [43] . CN102174949[P]. 2012:1~15. [44] Reza Farshidi, Jean W. Zu et al. Variable Stiffness Tensioner for a Belt Driven Transmission

System [C]. Canada: IMECE 2010-38417. [45] Weiming Zhang, Tomio Koyama. A Study on Noise in Synchronous Belt Drives [J]. Journal

of Mechanical Design, 2003, 125 773~778.

68

1980 1

2003 7 2003 8 2006 8 2006 8 2007 9 2007 10 2011 11 2011 11 2012 3

[1] . . 2015 02 :31-33.