156
Dynamic Modelling and Simulation of Power Systems Claudio Canizares Dept. Electrical and Computer Engineering www.power.uwaterloo.ca www.wise.uwaterloo.ca Grid Science Winter School, Santa Fe, NM, Jan. 7, 2019

Dynamic Modelling and Simulation of Power Systems · sequence), the detailed machine model can be reduced to phasor models useful for stability and steady state analysis. • Phasor

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Dynamic Modelling and Simulation of Power

    SystemsClaudio CanizaresDept. Electrical and Computer Engineeringwww.power.uwaterloo.cawww.wise.uwaterloo.ca

    Grid Science Winter School, Santa Fe, NM, Jan. 7, 2019

    http://www.power.uwaterloo.ca/http://www.wise.uwaterloo.ca/

  • The University of Waterloo

    2

  • Waterloo Quick Facts• 6 Faculties: Applied Health

    Sciences, Arts, Environmental Studies, Science, Math, Engineering.

    • 29000 undergraduate students, 4800 graduate students (4500 international), 1100 faculty members, 2184 staff.

    • Largest co-operative education program in the world:– 18,500/yr students enrolled– 5200 employers– Students earned $225M (2014)

    3

  • Waterloo Quick Facts• $190 M annual research• World’s largest centre for education in math

    & computer sciences (Waterloo and Stanford = largest source of computer science talent recruitment in North America)

    • World’s largest concentration of quantum information research

    • Canada’s largest Engineering faculty• WatCar – largest auto research centre in

    Canada (125 researchers)• Waterloo Institute for Nanotechnology (70+

    researchers)• Water Institute (125 researchers)• Waterloo Institute for Sustainable Energy

    (100+ researchers)• Top research university six years in a row

    (Comprehensive category) Research Infosource

    4

  • Waterloo Quick Facts• Canada’s largest engineering

    university• Eight departments:

    – Chemical Engineering– Civil and Environmental

    Engineering– Electrical and Computer

    Engineering– Management Sciences– Mechanical and Mechatronics

    Engineering– Systems Design Engineering– School of Architecture– Conrad Business and

    Entrepreneurship• 100% co-operative study

    6554 Undergraduate Students700 International Students

    1829 Graduate Students286 Faculty202 Staff

    5

  • Overview• Power systems:

    – Structure– Supply technologies

    • Basic elements:– Generators– Transmission system:

    • Transformers• Transmission lines

    – Loads:• Inductions motors• Aggregate loads

    – Flexible AC Transmission Systems (FACTS)– Solar Photo-Voltaic Generation (SPVG)– Wind Generation (WG)

    • Application example

    6

  • Power System• Operated by independent system operators (e.g.

    IESO):

    Generator(station)

    Transmission Lines

    Connecting Buses or Nodes

    Load

    Transformer

    683 GW Cogeneration Gas Plant Halton Hills

    Transformer PowerStream

    (Alectra)

    500kV Milton

    7

  • Power System• Ontario’s grid:

    8

  • Power System• Generator station:

    – Synchronous machine, exciter, primary voltage regulator and stabilizer.

    – Turbine (e.g. thermal, gas, hydro) and primary frequency controls (governor).

    – Fuelling system and controls (e.g. boiler, reservoir, valves)

    – Owned and run by generation companies or GENCOS (e.g. OPG).

    9

  • Power System• Transmission system:

    – High voltage transmission lines: overhead wires and towers, underground cables.

    – Transformers: step-up or step-down voltage levels to reduce transmission losses.

    – Switching stations (buses/nodes): connections, breakers, protections, etc.

    – Owned and maintained by transmission companies or TRANSCOS (e.g. Hydro One).

    10

  • Power System• Loads:

    – Large industrial customers and distribution networks.

    – Represent aggregate models of the distribution grid, including motors, lighting, heating, feeders, etc.

    – Owned by large customers and/or local distribution companies or LDCs (e.g. Toronto Hydro)

    11

  • Power System• Renewable Energy (RE) generation:

    – Mostly wind and SPV generation:• Wind mostly at the transmission system level as wind farms.• Solar mostly at the distribution system level as rooftop and ground-mounted.

    – Wind generation more significant than SPVG at most jurisdictions, with a few exceptions where solar resources are high (e.g. Hawaii, Arizona, Australia).

    – Mostly interfaced to the system through power electronic converters.– Generation technologies are relatively mature but new installations,

    connection standards, and controls are still under development, with system impacts not yet fully understood and thus being still studied.

    – Mostly privately owned by GENCOS (wind farms) and consumers (SPVG rooftop/ground-mounted).

    12

  • Peak demand (Dec.):411.0 GW

    • Europe’s electrical energy supply and demand [UCTE/ENTSO-E]:

    Supply Technologies

    13

  • Supply Technologies• US electricity supply and demand [US gov.]:

    0

    500

    1,000

    1,500

    2,000

    2,500

    3,000

    3,500

    4,000

    4,500

    5,000

    TWh

    year

    Others

    G/S/W/B

    Nuclear

    Thermal

    Hydro

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    200520042003200220012000199919981997199619951994

    year

    GW

    DemandReserves

    14

    Chart2

    19901990199019901990

    19911991199119911991

    19921992199219921992

    19931993199319931993

    19941994199419941994

    19951995199519951995

    19961996199619961996

    19971997199719971997

    19981998199819981998

    19991999199919991999

    20002000200020002000

    20012001200120012001

    20022002200220022002

    20032003200320032003

    20042004200420042004

    2005P2005P2005P2005P2005P

    Hydro

    Thermal

    Nuclear

    G/S/W/B

    Others

    year

    TWh

    292865846

    2103780605

    576861678

    357238072

    3615663

    288994189

    2103262931

    612565087

    357773453

    4738849

    253088003

    2138704811

    618776263

    326857825

    3719887

    280494008

    2230741008

    610291214

    356707290

    3487156

    260125733

    2270132580

    640439832

    336660876

    3666925

    310832748

    2293908429

    673402123

    384798133

    4103808

    347162063

    2346018207

    674728546

    422957667

    3571279

    356453295

    2430319913

    628644171

    433636114

    3611990

    323335661

    2547065197

    673702104

    400424067

    3571410

    319536029

    2569669781

    728254124

    398959031

    4023773

    275572597

    2692478478

    753892940

    356478571

    4793914

    216961044

    2677004758

    768826308

    294946101

    4689931

    264328832

    2730166178

    780064087

    351250924

    5713991

    275806328

    2758649951

    763732695

    363216797

    6120827

    268417308

    2825010758

    788528387

    358825769

    6678560

    265077680

    2903275650

    780464675

    357165661

    3650896

    US Generation

    Table 8.2a  Electricity Net Generation:  Total (All Sectors), 1949-2005

                            (Sum of Tables 8.2b and 8.2d; Thousand Kilowatthours)

    YearFossil FuelsRenewable EnergyOther 9Total

    Hydro-

    Nuclearelectric

    Coal 1Petroleum 2TotalElectricPumpedConventionalBiomassSolar 8WindTotal

    NaturalOtherPowerStorage 5HydroelectricGeo-

    Gas 3Gases 4Power Wood 6Waste 7thermalDemand in MWh

    1949135,451,32028,547,23236,966,709NA200,965,2610[10]94,772,992386,036NANANANA95,159,028NA296,124,289

    1950154,519,99433,734,28844,559,159NA232,813,4410[10]100,884,575389,585NANANANA101,274,160NA334,087,601

    1951185,203,65728,712,11656,615,678NA270,531,4510[10]104,376,120390,784NANANANA104,766,904NA375,298,355

    1952195,436,66629,749,76168,453,088NA293,639,5150[10]109,708,251481,647NANANANA110,189,898NA403,829,413

    1953218,846,32538,404,44979,790,975NA337,041,7490[10]109,617,396389,418NANANANA110,006,814NA447,048,563

    1954239,145,96631,520,17593,688,271NA364,354,4120[10]111,639,772263,434NANANANA111,903,206NA476,257,618

    1955301,362,69837,138,30895,285,441NA433,786,4470[10]116,235,946276,469NANANANA116,512,415NA550,298,862

    1956338,503,48435,946,772104,037,208NA478,487,4640[10]125,236,621151,678NANANANA125,388,299NA603,875,763

    1957346,386,20740,499,357114,212,525NA501,098,0899,670[10]133,357,930176,678NANANANA133,534,608NA634,642,367

    1958344,365,78140,371,540119,759,302NA504,496,623164,691[10]143,614,545175,003NANANANA143,789,548NA648,450,862

    1959378,424,21046,839,719146,619,391NA571,883,320188,101[10]141,154,533152,877NANANANA141,307,410NA713,378,831

    1960403,067,35747,986,893157,969,787NA609,024,037518,182[10]149,440,035140,166NA33,368NANA149,613,569NA759,155,788

    1961421,870,66948,519,376169,285,998NA639,676,0431,692,149[10]155,536,444125,734NA94,021NANA155,756,199NA797,124,391

    1962450,249,23848,879,536184,301,293NA683,430,0672,269,685[10]172,015,646127,796NA100,462NANA172,243,904NA857,943,656

    1963493,926,71952,001,610201,602,073NA747,530,4023,211,836[10]168,990,140127,940NA167,953NANA169,286,033NA920,028,271

    1964526,230,01956,953,712220,038,479NA803,222,2103,342,743[10]180,301,506148,076NA203,791NANA180,653,373NA987,218,326

    1965570,925,95164,801,224221,559,434NA857,286,6093,656,699[10]196,984,345268,804NA189,214NANA197,442,363NA1058385671

    1966613,474,80078,926,172251,151,562NA943,552,5345,519,909[10]197,937,538333,926NA187,988NANA198,459,452NA1147531895

    1967630,483,36389,270,724264,805,785NA984,559,8727,655,214[10]224,948,605315,688NA316,309NANA225,580,602NA1217795688

    1968684,904,580104,275,833304,432,723NA109361313612,528,419[10]225,873,158375,062NA435,826NANA226,684,046NA1332825601

    1969706,001,240137,847,152333,278,945NA117712733713,927,839[10]253,468,237319,933NA614,710NANA254,402,880NA1445458056

    1970704,394,479184,183,402372,890,063NA126146794421,804,448[10]250,957,442136,000220,450525,183NANA251,839,075NA1535111467

    1971713,102,454220,225,423374,030,784NA130735866138,104,545[10]269,531,459111,330199,869547,752NANA270,390,410NA1615853616

    1972771,131,265274,295,961375,747,796NA142117502254,091,135[10]275,928,828130,859199,7741,452,795NANA277,712,256NA1752978413

    1973847,651,470314,342,926340,858,192NA150285258883,479,463[10]275,430,574130,403197,8901,965,713NANA277,724,580NA1864056631

    1974828,432,921300,930,538320,065,088NA1449428547113,975,740[10]304,211,80568,523182,1542,452,636NANA306,915,118NA1870319405

    1975852,786,222289,094,900299,778,408NA1441659530172,505,075[10]303,152,67317,551173,5683,246,172NANA306,589,964NA1920754569

    1976944,390,993319,988,137294,623,911NA1559003041191,103,531[10]286,924,23884,386182,0783,616,407NANA290,807,109NA2040913681

    1977985,218,596358,178,822305,504,859NA1648902277250,883,283[10]223,598,687307,634173,2713,582,335NANA227,661,927NA2127447487

    1978975,742,083365,060,441305,390,836NA1646193360276,403,070[10]283,465,224197,193140,4342,977,630NANA286,780,481NA2209376911

    19791075037091303,525,209329,485,107NA1708047407255,154,623[10]283,075,976299,859198,1923,888,968NANA287,462,995NA2250665025

    19801161562368245,994,189346,239,900NA1753796457251,115,575[10]279,182,090275,366157,7975,073,079NANA284,688,332NA2289600364

    19811203203232206,420,775345,777,173NA1755401180272,673,503[10]263,844,664245,201122,6285,686,163NANA269,898,656NA2297973339

    19821192004204146,797,490305,259,749NA1644061443282,773,248[10]312,374,013195,940124,9794,842,865NANA317,537,797NA2244372488

    19831259424279144,498,593274,098,458NA1678021330293,677,119[10]335,290,855215,867162,7456,075,101NA2,668341,747,236NA2313445685

    19841341680752119,807,913297,393,596NA1758882261327,633,549[10]324,311,365461,411424,5407,740,5045,2486,490332,949,558NA2419465368

    19851402128125100,202,273291,945,965NA1794276363383,690,727[10]284,310,538743,294639,5789,325,23010,6305,762295,035,032NA2473002122

    19861385831452136,584,867248,508,433NA1770924752414,038,063[10]294,005,219491,509685,23410,307,95414,0324,189305,508,137NA2490470952

    19871463781289118,492,571272,620,803NA1854894663455,270,382[10]252,856,093783,088693,94110,775,46110,4973,541265,122,621NA2575287666

    19881540652774148,899,561252,800,704NA1942353039526,973,047[10]226,100,803935,986738,25810,300,0799,094871238,085,091NA2707411177

    1989111583779139164,517,957352,628,8667,862,4182108788380529,354,717[10]271,976,93627,236,6689,162,88714,593,443250,6012,112,043325,332,5783,829,8492967305524

    19901594011479126,621,142372,765,15410,382,8302103780605576,861,678-3,507,741292,865,84632,521,88913,260,37915,434,271367,0872,788,600357,238,0723,615,6633037988277

    19911590622748119,751,573381,553,01711,335,5932103262931612,565,087-4,541,435288,994,18933,725,35815,664,74615,966,444471,7652,950,951357,773,4534,738,8493073798885

    19921621206039100,154,163404,074,37213,270,2372138704811618,776,263-4,176,582253,088,00336,528,66217,816,03516,137,962399,6402,887,523326,857,8253,719,8873083882204

    19931690070232112,788,180414,926,79812,955,7982230741008610,291,214-4,035,572280,494,00837,623,40718,333,03116,788,565462,4523,005,827356,707,2903,487,1563197191096

    19941690693864105,900,983460,218,68213,319,0512270132580640,439,832-3,377,825260,125,73337,937,36419,128,59515,535,453486,6223,447,109336,660,8763,666,92532475223885068886400

    1995170942646874,554,065496,057,94513,869,9512293908429673,402,123-2,725,131310,832,74836,521,08220,404,97113,378,258496,8213,164,253384,798,1334,103,80833534873625167173600

    1996179519559381,411,225455,055,57614,355,8132346018207674,728,546-3,088,078347,162,06336,800,31020,911,33614,328,684521,2053,234,069422,957,6673,571,27934441876215277356880

    1997184501573692,554,873479,398,67013,350,6342430319913628,644,171-4,039,905356,453,29536,948,44121,709,07314,726,102511,1683,288,035433,636,1143,611,99034921722835417087640

    19981873515690128,800,173531,257,10413,492,2302547065197673,702,104-4,467,280323,335,66136,338,38422,447,93514,773,918502,4733,025,696400,424,0673,571,41036202954985589633360

    19991881087224118,060,838556,396,12714,125,5922569669781728,254,124-6,096,899319,536,02937,040,73422,572,17514,827,013495,0824,487,998398,959,0314,023,77336948098105727787320

    20001966264596111,220,965601,038,15913,954,7582692478478753,892,940-5,538,860275,572,59737,594,86623,131,31414,093,158493,3755,593,261356,478,5714,793,91438021050435965043160

    20011903955943124,880,222639,129,1209,039,4732677004758768,826,308-8,823,445216,961,04435,199,90521,764,56413,740,501542,7556,737,332294,946,1014,689,93137366436535911537080

    2002193313035394,567,394691,005,74611,462,6852730166178780,064,087-8,742,928264,328,83238,665,04022,856,63214,491,310554,83110,354,279351,250,9245,713,99138584522526100253760

    20031973736750119,405,640649,907,54115,600,0202758649951763,732,695-8,535,065275,806,32837,529,09823,735,67214,424,231534,00111,187,467363,216,7976,120,82738831852056103547520

    20041978620218120,645,844[R]708978606[R]16,766,0902825010758788528387[R]-8,488,210268,417,308[R]37,576,418[R]23,302,172[R]14,810,975[R]575,15514,143,741[R]358,825,7696,678,560[R]39705552646069874080

    2005P2014172634121,910,223751,549,11115,643,6822903275650780,464,675-6,568,160265,077,68037,828,37923,996,55615,124,491541,39214,597,163357,165,6613,650,89640379887226539077200

    1Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel.9Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, and miscellaneous technologies.

    2Distillate fuel oil, residual fuel oil, petroleum coke, jet fuel, kerosene, other petroleum, and waste oil.10Included in "Conventional Hydroelectric Power."

    3Natural gas, plus a small amount of supplemental gaseous fuels that cannot be identified separately.11Through 1988, all data except hydroelectric are for electric utilities only; hydroelectric data through 1988

    include industrial plants as well as electric utilities.  Beginning in 1989, data are for electric utilities, independent

    power producers, commercial plants, and industrial plants.

    4Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels.R=Revised.  P=Preliminary.  NA=Not available.  (s)=Less than 0.05 billion killowatthours.  

    5Pumped storage facility production minus energy used for pumping.Notes:  ·  See Note 1, "Coverage of Electricity Statistics," at end of section.  ·  Totals may not equal sum of

    components due to independent rounding.

    6Wood, black liquor, and other wood waste.Web Page:  For related information, see http://www.eia.doe.gov/fuelelectric.html.

    7Municipal solid waste, landfill gas, sludge waste, tires, agricultural byproducts, and other biomass.Sources:  ·  1949-1988Table 8.2b for electric power sector, and Table 8.1 for industrial sector.  ·  1989

    forwardTables 8.2b and 8.2d.

    8Solar thermal and photovoltaic energy.

    US Generation

    Hydro

    Thermal

    Nuclear

    G/S/W/B

    Others

    year

    TWh

    US Demand

    Table 3.2. Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, Summer, 1994 through 2005

    (Megawatts)

    Region and Item200520042003200220012000199919981997199619951994

    ECAR[1]

    Net Internal Demand[2]NA953009848710125110023598651940729235991103885738564384967

    Capacity Resources[3]NA127919123755119736113136115379107451105545105106104953103003101605

    Capacity Margin (percent)[4]NA25.520.415.411.414.512.512.513.315.616.916.4

    ERCOT

    Net Internal Demand[2]590605853159282558335510653649516975025447746456364499043630

    Capacity Resources[3]667247385074764768497079769622654235978855771552305507454219

    Capacity Margin (percent)[4]11.520.720.727.322.222.92115.914.417.418.319.5

    FRCC

    Net Internal Demand[2]459504224340387379513893235666348323456232874318683164930537

    Capacity Resources[3]502004857946806433424229043083406453970839613382373828237577

    Capacity Margin (percent)[4]8.51313.712.47.917.214.3131716.717.318.7

    MAAC[1]

    Net Internal Demand[2]NA5204953566542965401551358493254762646548456284522444571

    Capacity Resources[3]NA6616765897636195953360679578315551156155567745688156271

    Capacity Margin (percent)[4]NA21.318.714.79.315.414.714.217.119.620.520.8

    MAIN[1]

    Net Internal Demand[2]NA5049953617532675303251845471654557045194444704322942611

    Capacity Resources[3]NA6567767410670256595064170559845272252160528805211250963

    Capacity Margin (percent)[4]NA23.120.520.519.619.215.813.613.415.91716.4

    MRO (U.S.)[5]

    Net Internal Demand[2]382662909428775288252712528006306062976628221272982748726855

    Capacity Resources[3]467923583033287342593227134236353733477334027331213266532267

    Capacity Margin (percent)[4]18.218.813.615.915.918.213.514.417.117.615.916.8

    NPCC (U.S.)

    Net Internal Demand[2]574025158053936551645588854270534505176050240489504829047465

    Capacity Resources[3]722587153270902662086376063376630776043960729585926236861906

    Capacity Margin (percent)[4]20.627.923.916.712.314.415.314.417.316.522.623.3

    ReliabilityFirst[6]

    Net Internal Demand[2]190200NANANANANANANANANANANA

    Capacity Resources[3]220000NANANANANANANANANANANA

    Capacity Margin (percent)[4]13.5NANANANANANANANANANANA

    SERC

    Net Internal Demand[2]186049153024148380154459144399151527142726138146134968109270105785101885

    Capacity Resources[3]219749182861177231172485171530169760160575158360155016126196127562120044

    Capacity Margin (percent)[4]15.316.316.310.515.810.711.112.812.913.417.115.1

    SPP

    Net Internal Demand[2]410793938339428382983880739056378073640237009590175795156395

    Capacity Resources[3]463764800045802472334553046109431114255443591693446935469198

    Capacity Margin (percent)[4]11.41813.918.914.815.312.314.515.114.916.418.5

    WECC (U.S.)

    Net Internal Demand[2]1284641212051208941170321072941169131121771116411044861017289961299724

    Capacity Resources[3]160026155455150277142624124193141640136274135270135687135049130180127533

    Capacity Margin (percent)[4]19.72219.617.913.617.517.717.52324.723.521.8

    Contiguous U.S.

    Net Internal Demand[2]746470692908696752696376674833680941653857638086618389602438589860578640

    Capacity Resources[3]882125875870856131833380788990808054765744744670737855730376727481711583

    Capacity Margin (percent)[4]15.420.918.616.414.515.714.614.316.217.518.918.7

    [1] ECAR, MAAC, and MAIN dissolved at the end-of-2005.  Utility membership joined other reliability regional councils. Also, see Footnote 6.

    [2] Net Internal Demand represents the system demand that is planned for, which is set to equal Internal Demand less Direct Control Load Management and Interruptible Demand by the electric power industry`s reliability authority.  See Technical Notes for d

    [3] Capacity Resources:  Utility- and IPP-owned generating capacity that is existing or in various stages of planning or construction, less inoperable capacity, plus planned capacity purchases from other resources, less planned capacity sales.

    [4] Capacity Margin is the amount of unused available capability of an electric power system at peak load as a percentage of capacity resources.

    [5] Regional name has changed from Mid-Continent Area Power Pool to Midwest Reliability Organization.

    [6] ReliabilityFirst Corporation (RFC) came into existence on January 1, 2006, and submitted a consolidated filing covering the historical NERC regions of ECAR, MAAC, and MAIN.  Many of the former utility members joined RFC.

    NA = Not available.

    Notes: • NERC Regional Council names may be found in the Glossary reference. • Represents an hour of a day during the associated peak period. • The summer peak period begins on June 1 and extends through September 30. • The MRO, SERC, and SPP regional b

    Sources: Energy Information Administration, Form EIA-411, "Coordinated Bulk Power Supply Program."

    US Demand

    Demand

    Capacity

    year

    GW

    Canada

    Electricity Generation and Consumption in Canada (in billions of kilowatt-hours)

    19931994199519961997199819992000200120022003

    Net Generation518.1539.7544.1557.2556.9545562.2587.9570.9582.2566.3

       hydroelectric320.3326.4332.6352.1347.2328.6342.1354.7329.7346.8322.5

       nuclear90.1102.49388.177.967.769.869.272.971.870.8

       geo/solar/wind/biomass4.55.45.35.55.96.37.57.588.58.5

       conventional thermal103.2105.5113.3111.5126142.4142.8156.5160.3155.2154.5

    Net Consumption455.1458.1467.9477.9482.4479.1492.9510.6508.6518.3520.9

    Imports2.70.92.51.97.511.71312.716.11323.6

    Exports29.444.840.642.24339.542.948.838.436.129.3

    Canada

    Hydro

    Thermal

    Nuclear

    G/S/W/B

    Consumption

    year

    TWh

    Chart2

    20052005

    20042004

    20032003

    20022002

    20012001

    20002000

    19991999

    19981998

    19971997

    19961996

    19951995

    19941994

    Demand

    Reserves

    year

    GW

    746470

    882125

    692908

    875870

    696752

    856131

    696376

    833380

    674833

    788990

    680941

    808054

    653857

    765744

    638086

    744670

    618389

    737855

    602438

    730376

    589860

    727481

    578640

    711583

    Sheet1

    Table 3.2. Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, Summer, 1994 through 2005

    (Megawatts)

    Region and Item200520042003200220012000199919981997199619951994

    ECAR[1]

    Net Internal Demand[2]NA953009848710125110023598651940729235991103885738564384967

    Capacity Resources[3]NA127919123755119736113136115379107451105545105106104953103003101605

    Capacity Margin (percent)[4]NA25.520.415.411.414.512.512.513.315.616.916.4

    ERCOT

    Net Internal Demand[2]590605853159282558335510653649516975025447746456364499043630

    Capacity Resources[3]667247385074764768497079769622654235978855771552305507454219

    Capacity Margin (percent)[4]11.520.720.727.322.222.92115.914.417.418.319.5

    FRCC

    Net Internal Demand[2]459504224340387379513893235666348323456232874318683164930537

    Capacity Resources[3]502004857946806433424229043083406453970839613382373828237577

    Capacity Margin (percent)[4]8.51313.712.47.917.214.3131716.717.318.7

    MAAC[1]

    Net Internal Demand[2]NA5204953566542965401551358493254762646548456284522444571

    Capacity Resources[3]NA6616765897636195953360679578315551156155567745688156271

    Capacity Margin (percent)[4]NA21.318.714.79.315.414.714.217.119.620.520.8

    MAIN[1]

    Net Internal Demand[2]NA5049953617532675303251845471654557045194444704322942611

    Capacity Resources[3]NA6567767410670256595064170559845272252160528805211250963

    Capacity Margin (percent)[4]NA23.120.520.519.619.215.813.613.415.91716.4

    MRO (U.S.)[5]

    Net Internal Demand[2]382662909428775288252712528006306062976628221272982748726855

    Capacity Resources[3]467923583033287342593227134236353733477334027331213266532267

    Capacity Margin (percent)[4]18.218.813.615.915.918.213.514.417.117.615.916.8

    NPCC (U.S.)

    Net Internal Demand[2]574025158053936551645588854270534505176050240489504829047465

    Capacity Resources[3]722587153270902662086376063376630776043960729585926236861906

    Capacity Margin (percent)[4]20.627.923.916.712.314.415.314.417.316.522.623.3

    ReliabilityFirst[6]

    Net Internal Demand[2]190200NANANANANANANANANANANA

    Capacity Resources[3]220000NANANANANANANANANANANA

    Capacity Margin (percent)[4]13.5NANANANANANANANANANANA

    SERC

    Net Internal Demand[2]186049153024148380154459144399151527142726138146134968109270105785101885

    Capacity Resources[3]219749182861177231172485171530169760160575158360155016126196127562120044

    Capacity Margin (percent)[4]15.316.316.310.515.810.711.112.812.913.417.115.1

    SPP

    Net Internal Demand[2]410793938339428382983880739056378073640237009590175795156395

    Capacity Resources[3]463764800045802472334553046109431114255443591693446935469198

    Capacity Margin (percent)[4]11.41813.918.914.815.312.314.515.114.916.418.5

    WECC (U.S.)

    Net Internal Demand[2]1284641212051208941170321072941169131121771116411044861017289961299724

    Capacity Resources[3]160026155455150277142624124193141640136274135270135687135049130180127533

    Capacity Margin (percent)[4]19.72219.617.913.617.517.717.52324.723.521.8

    Contiguous U.S.

    Net Internal Demand[2]746470692908696752696376674833680941653857638086618389602438589860578640

    Capacity Resources[3]882125875870856131833380788990808054765744744670737855730376727481711583

    Capacity Margin (percent)[4]15.420.918.616.414.515.714.614.316.217.518.918.7

    [1] ECAR, MAAC, and MAIN dissolved at the end-of-2005.  Utility membership joined other reliability regional councils. Also, see Footnote 6.

    [2] Net Internal Demand represents the system demand that is planned for, which is set to equal Internal Demand less Direct Control Load Management and Interruptible Demand by the electric power industry`s reliability authority.  See Technical Notes for d

    [3] Capacity Resources:  Utility- and IPP-owned generating capacity that is existing or in various stages of planning or construction, less inoperable capacity, plus planned capacity purchases from other resources, less planned capacity sales.

    [4] Capacity Margin is the amount of unused available capability of an electric power system at peak load as a percentage of capacity resources.

    [5] Regional name has changed from Mid-Continent Area Power Pool to Midwest Reliability Organization.

    [6] ReliabilityFirst Corporation (RFC) came into existence on January 1, 2006, and submitted a consolidated filing covering the historical NERC regions of ECAR, MAAC, and MAIN.  Many of the former utility members joined RFC.

    NA = Not available.

    Notes: • NERC Regional Council names may be found in the Glossary reference. • Represents an hour of a day during the associated peak period. • The summer peak period begins on June 1 and extends through September 30. • The MRO, SERC, and SPP regional b

    Sources: Energy Information Administration, Form EIA-411, "Coordinated Bulk Power Supply Program."

    Sheet1

    Demand

    Capacity

    year

    GW

    Sheet2

    Sheet3

  • Supply Technologies• Canada’s electricity supply and demand [NRC]:

    0

    100

    200

    300

    400

    500

    600

    700

    1993 19941995 19961997 1998 19992000 20012002 2003

    year

    TWh

    0

    10

    20

    30

    40

    50

    60

    70

    80

    GW

    G/S/W/BNuclearThermalHydroGW Consumption

    15

    Chart6

    199319931993199352.6736111111

    199419941994199453.0208333333

    199519951995199554.1550925926

    199619961996199655.3125

    199719971997199755.8333333333

    199819981998199855.4513888889

    199919991999199957.0486111111

    200020002000200059.0972222222

    200120012001200158.8657407407

    200220022002200259.9884259259

    200320032003200360.2893518519

    Hydro

    Thermal

    Nuclear

    G/S/W/B

    GW Consumption

    year

    TWh

    GW

    320.3

    103.2

    90.1

    4.5

    326.4

    105.5

    102.4

    5.4

    332.6

    113.3

    93

    5.3

    352.1

    111.5

    88.1

    5.5

    347.2

    126

    77.9

    5.9

    328.6

    142.4

    67.7

    6.3

    342.1

    142.8

    69.8

    7.5

    354.7

    156.5

    69.2

    7.5

    329.7

    160.3

    72.9

    8

    346.8

    155.2

    71.8

    8.5

    322.5

    154.5

    70.8

    8.5

    US Generation

    Table 8.2a  Electricity Net Generation:  Total (All Sectors), 1949-2005

                            (Sum of Tables 8.2b and 8.2d; Thousand Kilowatthours)

    YearFossil FuelsRenewable EnergyOther 9Total

    Hydro-

    Nuclearelectric

    Coal 1Petroleum 2TotalElectricPumpedConventionalBiomassSolar 8WindTotal

    NaturalOtherPowerStorage 5HydroelectricGeo-

    Gas 3Gases 4Power Wood 6Waste 7thermal

    1949135,451,32028,547,23236,966,709NA200,965,2610[10]94,772,992386,036NANANANA95,159,028NA296,124,289

    1950154,519,99433,734,28844,559,159NA232,813,4410[10]100,884,575389,585NANANANA101,274,160NA334,087,601

    1951185,203,65728,712,11656,615,678NA270,531,4510[10]104,376,120390,784NANANANA104,766,904NA375,298,355

    1952195,436,66629,749,76168,453,088NA293,639,5150[10]109,708,251481,647NANANANA110,189,898NA403,829,413

    1953218,846,32538,404,44979,790,975NA337,041,7490[10]109,617,396389,418NANANANA110,006,814NA447,048,563

    1954239,145,96631,520,17593,688,271NA364,354,4120[10]111,639,772263,434NANANANA111,903,206NA476,257,618

    1955301,362,69837,138,30895,285,441NA433,786,4470[10]116,235,946276,469NANANANA116,512,415NA550,298,862

    1956338,503,48435,946,772104,037,208NA478,487,4640[10]125,236,621151,678NANANANA125,388,299NA603,875,763

    1957346,386,20740,499,357114,212,525NA501,098,0899,670[10]133,357,930176,678NANANANA133,534,608NA634,642,367

    1958344,365,78140,371,540119,759,302NA504,496,623164,691[10]143,614,545175,003NANANANA143,789,548NA648,450,862

    1959378,424,21046,839,719146,619,391NA571,883,320188,101[10]141,154,533152,877NANANANA141,307,410NA713,378,831

    1960403,067,35747,986,893157,969,787NA609,024,037518,182[10]149,440,035140,166NA33,368NANA149,613,569NA759,155,788

    1961421,870,66948,519,376169,285,998NA639,676,0431,692,149[10]155,536,444125,734NA94,021NANA155,756,199NA797,124,391

    1962450,249,23848,879,536184,301,293NA683,430,0672,269,685[10]172,015,646127,796NA100,462NANA172,243,904NA857,943,656

    1963493,926,71952,001,610201,602,073NA747,530,4023,211,836[10]168,990,140127,940NA167,953NANA169,286,033NA920,028,271

    1964526,230,01956,953,712220,038,479NA803,222,2103,342,743[10]180,301,506148,076NA203,791NANA180,653,373NA987,218,326

    1965570,925,95164,801,224221,559,434NA857,286,6093,656,699[10]196,984,345268,804NA189,214NANA197,442,363NA1058385671

    1966613,474,80078,926,172251,151,562NA943,552,5345,519,909[10]197,937,538333,926NA187,988NANA198,459,452NA1147531895

    1967630,483,36389,270,724264,805,785NA984,559,8727,655,214[10]224,948,605315,688NA316,309NANA225,580,602NA1217795688

    1968684,904,580104,275,833304,432,723NA109361313612,528,419[10]225,873,158375,062NA435,826NANA226,684,046NA1332825601

    1969706,001,240137,847,152333,278,945NA117712733713,927,839[10]253,468,237319,933NA614,710NANA254,402,880NA1445458056

    1970704,394,479184,183,402372,890,063NA126146794421,804,448[10]250,957,442136,000220,450525,183NANA251,839,075NA1535111467

    1971713,102,454220,225,423374,030,784NA130735866138,104,545[10]269,531,459111,330199,869547,752NANA270,390,410NA1615853616

    1972771,131,265274,295,961375,747,796NA142117502254,091,135[10]275,928,828130,859199,7741,452,795NANA277,712,256NA1752978413

    1973847,651,470314,342,926340,858,192NA150285258883,479,463[10]275,430,574130,403197,8901,965,713NANA277,724,580NA1864056631

    1974828,432,921300,930,538320,065,088NA1449428547113,975,740[10]304,211,80568,523182,1542,452,636NANA306,915,118NA1870319405

    1975852,786,222289,094,900299,778,408NA1441659530172,505,075[10]303,152,67317,551173,5683,246,172NANA306,589,964NA1920754569

    1976944,390,993319,988,137294,623,911NA1559003041191,103,531[10]286,924,23884,386182,0783,616,407NANA290,807,109NA2040913681

    1977985,218,596358,178,822305,504,859NA1648902277250,883,283[10]223,598,687307,634173,2713,582,335NANA227,661,927NA2127447487

    1978975,742,083365,060,441305,390,836NA1646193360276,403,070[10]283,465,224197,193140,4342,977,630NANA286,780,481NA2209376911

    19791075037091303,525,209329,485,107NA1708047407255,154,623[10]283,075,976299,859198,1923,888,968NANA287,462,995NA2250665025

    19801161562368245,994,189346,239,900NA1753796457251,115,575[10]279,182,090275,366157,7975,073,079NANA284,688,332NA2289600364

    19811203203232206,420,775345,777,173NA1755401180272,673,503[10]263,844,664245,201122,6285,686,163NANA269,898,656NA2297973339

    19821192004204146,797,490305,259,749NA1644061443282,773,248[10]312,374,013195,940124,9794,842,865NANA317,537,797NA2244372488

    19831259424279144,498,593274,098,458NA1678021330293,677,119[10]335,290,855215,867162,7456,075,101NA2,668341,747,236NA2313445685

    19841341680752119,807,913297,393,596NA1758882261327,633,549[10]324,311,365461,411424,5407,740,5045,2486,490332,949,558NA2419465368

    19851402128125100,202,273291,945,965NA1794276363383,690,727[10]284,310,538743,294639,5789,325,23010,6305,762295,035,032NA2473002122

    19861385831452136,584,867248,508,433NA1770924752414,038,063[10]294,005,219491,509685,23410,307,95414,0324,189305,508,137NA2490470952

    19871463781289118,492,571272,620,803NA1854894663455,270,382[10]252,856,093783,088693,94110,775,46110,4973,541265,122,621NA2575287666

    19881540652774148,899,561252,800,704NA1942353039526,973,047[10]226,100,803935,986738,25810,300,0799,094871238,085,091NA2707411177

    1989111583779139164,517,957352,628,8667,862,4182108788380529,354,717[10]271,976,93627,236,6689,162,88714,593,443250,6012,112,043325,332,5783,829,8492967305524

    19901594011479126,621,142372,765,15410,382,8302103780605576,861,678-3,507,741292,865,84632,521,88913,260,37915,434,271367,0872,788,600357,238,0723,615,6633037988277

    19911590622748119,751,573381,553,01711,335,5932103262931612,565,087-4,541,435288,994,18933,725,35815,664,74615,966,444471,7652,950,951357,773,4534,738,8493073798885

    19921621206039100,154,163404,074,37213,270,2372138704811618,776,263-4,176,582253,088,00336,528,66217,816,03516,137,962399,6402,887,523326,857,8253,719,8873083882204

    19931690070232112,788,180414,926,79812,955,7982230741008610,291,214-4,035,572280,494,00837,623,40718,333,03116,788,565462,4523,005,827356,707,2903,487,1563197191096

    19941690693864105,900,983460,218,68213,319,0512270132580640,439,832-3,377,825260,125,73337,937,36419,128,59515,535,453486,6223,447,109336,660,8763,666,9253247522388

    1995170942646874,554,065496,057,94513,869,9512293908429673,402,123-2,725,131310,832,74836,521,08220,404,97113,378,258496,8213,164,253384,798,1334,103,8083353487362

    1996179519559381,411,225455,055,57614,355,8132346018207674,728,546-3,088,078347,162,06336,800,31020,911,33614,328,684521,2053,234,069422,957,6673,571,2793444187621

    1997184501573692,554,873479,398,67013,350,6342430319913628,644,171-4,039,905356,453,29536,948,44121,709,07314,726,102511,1683,288,035433,636,1143,611,9903492172283

    19981873515690128,800,173531,257,10413,492,2302547065197673,702,104-4,467,280323,335,66136,338,38422,447,93514,773,918502,4733,025,696400,424,0673,571,4103620295498

    19991881087224118,060,838556,396,12714,125,5922569669781728,254,124-6,096,899319,536,02937,040,73422,572,17514,827,013495,0824,487,998398,959,0314,023,7733694809810

    20001966264596111,220,965601,038,15913,954,7582692478478753,892,940-5,538,860275,572,59737,594,86623,131,31414,093,158493,3755,593,261356,478,5714,793,9143802105043

    20011903955943124,880,222639,129,1209,039,4732677004758768,826,308-8,823,445216,961,04435,199,90521,764,56413,740,501542,7556,737,332294,946,1014,689,9313736643653

    2002193313035394,567,394691,005,74611,462,6852730166178780,064,087-8,742,928264,328,83238,665,04022,856,63214,491,310554,83110,354,279351,250,9245,713,9913858452252

    20031973736750119,405,640649,907,54115,600,0202758649951763,732,695-8,535,065275,806,32837,529,09823,735,67214,424,231534,00111,187,467363,216,7976,120,8273883185205

    20041978620218120,645,844[R]708978606[R]16,766,0902825010758788528387[R]-8,488,210268,417,308[R]37,576,418[R]23,302,172[R]14,810,975[R]575,15514,143,741[R]358,825,7696,678,560[R]3970555264

    2005P2014172634121,910,223751,549,11115,643,6822903275650780,464,675-6,568,160265,077,68037,828,37923,996,55615,124,491541,39214,597,163357,165,6613,650,8964037988722

    1Anthracite, bituminous coal, subbituminous coal, lignite, waste coal, and coal synfuel.9Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, and miscellaneous technologies.

    2Distillate fuel oil, residual fuel oil, petroleum coke, jet fuel, kerosene, other petroleum, and waste oil.10Included in "Conventional Hydroelectric Power."

    3Natural gas, plus a small amount of supplemental gaseous fuels that cannot be identified separately.11Through 1988, all data except hydroelectric are for electric utilities only; hydroelectric data through 1988

    include industrial plants as well as electric utilities.  Beginning in 1989, data are for electric utilities, independent

    power producers, commercial plants, and industrial plants.

    4Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels.R=Revised.  P=Preliminary.  NA=Not available.  (s)=Less than 0.05 billion killowatthours.  

    5Pumped storage facility production minus energy used for pumping.Notes:  ·  See Note 1, "Coverage of Electricity Statistics," at end of section.  ·  Totals may not equal sum of

    components due to independent rounding.

    6Wood, black liquor, and other wood waste.Web Page:  For related information, see http://www.eia.doe.gov/fuelelectric.html.

    7Municipal solid waste, landfill gas, sludge waste, tires, agricultural byproducts, and other biomass.Sources:  ·  1949-1988Table 8.2b for electric power sector, and Table 8.1 for industrial sector.  ·  1989

    forwardTables 8.2b and 8.2d.

    8Solar thermal and photovoltaic energy.

    US Generation

    Hydro

    Thermal

    Nuclear

    G/S/W/B

    Others

    year

    TWh

    US Demand

    Table 3.2. Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Council Region, Summer, 1994 through 2005

    (Megawatts)

    Region and Item200520042003200220012000199919981997199619951994

    ECAR[1]

    Net Internal Demand[2]NA953009848710125110023598651940729235991103885738564384967

    Capacity Resources[3]NA127919123755119736113136115379107451105545105106104953103003101605

    Capacity Margin (percent)[4]NA25.520.415.411.414.512.512.513.315.616.916.4

    ERCOT

    Net Internal Demand[2]590605853159282558335510653649516975025447746456364499043630

    Capacity Resources[3]667247385074764768497079769622654235978855771552305507454219

    Capacity Margin (percent)[4]11.520.720.727.322.222.92115.914.417.418.319.5

    FRCC

    Net Internal Demand[2]459504224340387379513893235666348323456232874318683164930537

    Capacity Resources[3]502004857946806433424229043083406453970839613382373828237577

    Capacity Margin (percent)[4]8.51313.712.47.917.214.3131716.717.318.7

    MAAC[1]

    Net Internal Demand[2]NA5204953566542965401551358493254762646548456284522444571

    Capacity Resources[3]NA6616765897636195953360679578315551156155567745688156271

    Capacity Margin (percent)[4]NA21.318.714.79.315.414.714.217.119.620.520.8

    MAIN[1]

    Net Internal Demand[2]NA5049953617532675303251845471654557045194444704322942611

    Capacity Resources[3]NA6567767410670256595064170559845272252160528805211250963

    Capacity Margin (percent)[4]NA23.120.520.519.619.215.813.613.415.91716.4

    MRO (U.S.)[5]

    Net Internal Demand[2]382662909428775288252712528006306062976628221272982748726855

    Capacity Resources[3]467923583033287342593227134236353733477334027331213266532267

    Capacity Margin (percent)[4]18.218.813.615.915.918.213.514.417.117.615.916.8

    NPCC (U.S.)

    Net Internal Demand[2]574025158053936551645588854270534505176050240489504829047465

    Capacity Resources[3]722587153270902662086376063376630776043960729585926236861906

    Capacity Margin (percent)[4]20.627.923.916.712.314.415.314.417.316.522.623.3

    ReliabilityFirst[6]

    Net Internal Demand[2]190200NANANANANANANANANANANA

    Capacity Resources[3]220000NANANANANANANANANANANA

    Capacity Margin (percent)[4]13.5NANANANANANANANANANANA

    SERC

    Net Internal Demand[2]186049153024148380154459144399151527142726138146134968109270105785101885

    Capacity Resources[3]219749182861177231172485171530169760160575158360155016126196127562120044

    Capacity Margin (percent)[4]15.316.316.310.515.810.711.112.812.913.417.115.1

    SPP

    Net Internal Demand[2]410793938339428382983880739056378073640237009590175795156395

    Capacity Resources[3]463764800045802472334553046109431114255443591693446935469198

    Capacity Margin (percent)[4]11.41813.918.914.815.312.314.515.114.916.418.5

    WECC (U.S.)

    Net Internal Demand[2]1284641212051208941170321072941169131121771116411044861017289961299724

    Capacity Resources[3]160026155455150277142624124193141640136274135270135687135049130180127533

    Capacity Margin (percent)[4]19.72219.617.913.617.517.717.52324.723.521.8

    Contiguous U.S.

    Net Internal Demand[2]746470692908696752696376674833680941653857638086618389602438589860578640

    Capacity Resources[3]882125875870856131833380788990808054765744744670737855730376727481711583

    Capacity Margin (percent)[4]15.420.918.616.414.515.714.614.316.217.518.918.7

    [1] ECAR, MAAC, and MAIN dissolved at the end-of-2005.  Utility membership joined other reliability regional councils. Also, see Footnote 6.

    [2] Net Internal Demand represents the system demand that is planned for, which is set to equal Internal Demand less Direct Control Load Management and Interruptible Demand by the electric power industry`s reliability authority.  See Technical Notes for d

    [3] Capacity Resources:  Utility- and IPP-owned generating capacity that is existing or in various stages of planning or construction, less inoperable capacity, plus planned capacity purchases from other resources, less planned capacity sales.

    [4] Capacity Margin is the amount of unused available capability of an electric power system at peak load as a percentage of capacity resources.

    [5] Regional name has changed from Mid-Continent Area Power Pool to Midwest Reliability Organization.

    [6] ReliabilityFirst Corporation (RFC) came into existence on January 1, 2006, and submitted a consolidated filing covering the historical NERC regions of ECAR, MAAC, and MAIN.  Many of the former utility members joined RFC.

    NA = Not available.

    Notes: • NERC Regional Council names may be found in the Glossary reference. • Represents an hour of a day during the associated peak period. • The summer peak period begins on June 1 and extends through September 30. • The MRO, SERC, and SPP regional b

    Sources: Energy Information Administration, Form EIA-411, "Coordinated Bulk Power Supply Program."

    US Demand

    Demand

    Capacity

    year

    GW

    Canada

    Electricity Generation and Consumption in Canada (in billions of kilowatt-hours)

    19931994199519961997199819992000200120022003

    Net Generation518.1539.7544.1557.2556.9545562.2587.9570.9582.2566.3

       hydroelectric320.3326.4332.6352.1347.2328.6342.1354.7329.7346.8322.5

       nuclear90.1102.49388.177.967.769.869.272.971.870.8

       geo/solar/wind/biomass4.55.45.35.55.96.37.57.588.58.5

       conventional thermal103.2105.5113.3111.5126142.4142.8156.5160.3155.2154.5

    Net Consumption455.1458.1467.9477.9482.4479.1492.9510.6508.6518.3520.9

    Net Consumption (GW)52.673611111153.020833333354.155092592655.312555.833333333355.451388888957.048611111159.097222222258.865740740759.988425925960.2893518519

    Imports2.70.92.51.97.511.71312.716.11323.6

    Exports29.444.840.642.24339.542.948.838.436.129.3

    Canada

    Hydro

    Thermal

    Nuclear

    G/S/W/B

    Consumption GW

    year

    TWh

    GW

  • Supply Technologies• Supply and demand in Ontario-Canada [IESO, ON gov.]:

    16

    2009

  • Supply Technologies• Nuclear power

    generation [European Nuclear Society]: – Clean from green

    house gases emissions point of view.

    – To supply base load since does not control f.

    17

  • Supply Technologies• Coal plant (thermal) [TVA]:

    – “Dirty” from GHG point of view. – Mainly to supply base load given slow response.

    18

  • Supply Technologies• Combined-cycle plant

    (thermal) [power-technology.com]: – Gas + steam turbine.– Cleaner that coal

    plants.– To supply base

    (steam) and peak load (gas).

    19

  • Supply Technologies• Hydro plant [US DOE]:

    – Large and small (run of the river).

    – Supplies base and peak load (fast response)

    20

  • wind turbine

    gears

    generator

    substation

    • Wind power [EON]: Clean, but not yet dispatchable.

    Supply Technologies

    21

  • Supply Technologies– Types of wind power

    units [PSAT]:

    22

  • Supply Technologies• Solar power:

    – PV [an-energy-efficient-home.com] and thermal [acciona-energia.com]

    – Dispatchable with energy storage systems.

    23

  • Supply Technologies• Load supply in Ontario by generator type [MEI]:

    24

  • Generator• Generator components:

    – Generator:– Synchronous machine: AC stator and DC rotor.– Excitation system: DC generator or static converter plus voltage

    regulator and stabilizer.

    25

  • Generator• Generator with DC exciter and associated controls:

    26

  • Generator• Generator with static exciter and associated controls:

    27

  • Synchronous Machine

    28

  • Synchronous Machine• Electrical (inductor) equations:

    where [v] = [vas vbs vcs vF vD vQ1 vQ2]T and similarly for [i] and [λ].• Mechanical (Newton’s) equations:

    29

  • Synchronous Machine• Park’s transformation equations:

    30

  • Synchronous Machine• Detailed dqo equations:

    – Stator equations:

    – Rotor equations:

    31

  • Synchronous Machine– Magnetic flux equations:

    32

  • Synchronous Machine– Mechanical equations:

    33

  • Synchronous Machine• 3-phase short circuit at generator terminals:

    Ea(0) is the open-circuit RMS phase voltage

    34

  • Simplified Models • Assuming balanced operation (null zero

    sequence), the detailed machine model can be reduced to phasor models useful for stability and steady state analysis.

    • Phasor models are based on the following assumptions:– The rotor speed does not deviate “much” from the

    synchronous speed, i.e. ωr ≈ ωs = (2/P) 2 π fo, i.e.θr = ωs t + π/2 + δ

    – The rate of change in rotor speed is “small”, i.e. |dωr/d t | ≈ 0.

    35

  • Simplified Models• Subtransient models capture the full machine

    electrical dynamics, including the “few” initial cycles (ms) associated with the damper windings.

    • Transient models capture the machine electrical dynamics starting with the field and induced rotor core current transient response. Damper windings transients are neglected.

    • Steady sate models capture the machine electrical response when all transients have disappeared after “a few” seconds.

    36

  • Subtransient Model

    37

  • Subtransient Model

    38

  • Subtransient Model• The subtransient reactances (Xq", Xd") and open circuit time

    constants (Tqo", Tdo"), as well as the transient reactances (Xq', Xd') and open circuit time constants (Tqo', Tdo') are directly associated with the machine internal resistances and inductances.

    • In practice, most of these constants are determined from short circuit tests.

    • All the E voltages are “internal” machine voltages directly associated with the “internal” phase angle δ.

    • The internal field voltage Ef is directly proportional to the actual field dc voltage, and is typically controlled by the voltage regulator.

    • The mechanical power Pm is controlled through the governor.

    39

  • Subtransient Model• Typical machine parameters:

    H = π fo M = J ωo/SBXo = 0.1 to 0.7 of Xd"

    rs = Ra

    40

  • Subtransient Model

    41

  • Transient Model• Obtained by eliminating the damper

    winding dynamic equations as follows:

    42

  • Transient Model

    43

  • Transient Model• The damping D in the mechanical

    equations, which is typically a small value, is assumed to be large to indirectly model the significant damping effect of these windings on ωr.

    • It’s the typical model used in stability studies.

    44

  • Transient Model• Neglecting the induced currents in the rotor (winding

    Q2):

    leads to the transient equations:

    45

  • Transient Model• The phasor diagram in this case is:

    46

  • Transient Model• For faults near the generator terminals, the q axis has

    little effect on the system response, i.e. Iqs ≈ 0.• This results in the classical voltage source and transient

    reactance generator model used in most theoretical stability studies:

    47

  • Transient Model

    where:

    48

  • Transient Model• A further approximation in some cases is used by

    neglecting the field dynamics, i.e. Tdo' = 0. • In this case, Ea' is a “fixed “ variable controlled

    directly through the voltage regulator via Ef, i.e. Ea' = Ef.

    • The limits in the voltage regulator are used to represent limits in the field and armature currents.

    • These limits can be “soft”, i.e. allowed to temporarily exceed the hard steady state limits, to represent under- and over-excitation.

    49

  • Controls• A simple voltage regulator model (IEEE

    type 1):

    50

  • Controls• A static voltage regulator model:

    51

  • Controls• A simple governor model (hydraulic valve

    plus turbine):

    52

  • Controls• A governor-steam turbine model:

    53

  • Steady State Model• When all transients are neglected, the generator model

    becomes:

    which, for a round rotor machine (Xd = Xq), leads to the classical steady state generator model:

    54

  • Steady State Model• Based on this simple

    model, the field and armature current limits can be used to define the generator capability curves (for a given terminal voltage Vas = Vt):

    55

  • Steady State Model• Considering the voltage regulator effect, the generator can be

    modeled as a constant terminal voltage within the generator reactive power capability, delivering constant power (Pm).

    • This yields the PV generator model for power flow studies:

    where P = Pm = constant, and V = Vt = constant for Qmin ≤ Q ≤ Qmax; otherwise, Q = Qmax/min and V is allowed to change.

    56

  • Single-phase Transformers

    • The basic characteristics of this device are:– Flux leakage around the transformer windings is represented by a leakage inductance

    Ll.– The core is made of magnetic material and is represented by a magnetization

    inductance (Lm>>Ll), but saturates.– Losses in the windings (Cu wires) and core (hysteresis and induced currents) are

    represented with lumped resistances (r and Gm).– Steps up or down the voltage/current depending on the turn ratio

    a = N1/N2 = V1/V2

    57

  • Single-phase Transformers• The phasor equivalent circuit is, assuming

    Zm >> Zl1:

    58

  • Single-phase Transformers• Or Π form:

    59

  • Single-phase Transformers• Neglecting Zm (Ym is small given the core

    magnetic properties):

    60

  • Single-phase Transformers• Some programs/data formats (e.g. PSAT and IEEE

    common format) model the transformer as follows:

    • This is equivalent to the previous model but seen from the secondary side.

    61

  • Load Tap Changers (LTCs)• Certain transformer have built-in Under-Load Tap Changers (ULTCs) or

    LTCs.• This are either operated manually (locally or remote controlled) or

    automatically with a voltage regulator; the voltage control range is limited (approximately ± 10%) and on discrete steps (about ± 1%).

    • The time response is in the order of minutes, with 1-2 min. delays, due to ULTCs being implemented using electromechanical systems.

    • These are typically used to control the load voltage side, and hence are used at subtransmission substations.

    • Nowadays, power electronic switches are used, leading to Thyristor Controller Voltage Regulators (TCVR), which are faster voltage controllers and are considered Flexible AC Transmission Systems (FACTS).

    • These types of transformers are modeled using the same transformer models, but a may be assumed to be a discrete controlled variable through a voltage regulator with a dead-band.

    62

  • Phase Shifters• Transformers with special

    connections and under-load tap changers can also be used for phase shift control and are known as Phase Shifters:

    63

  • Phase Shifters• These control the phase shift difference between the two terminal voltages

    within approximately ± 30o, thus increasing the power capacity of a transmission line.

    • It is also used to eliminate “loop” currents, i.e. “normalize” a system (e.g. interconnection between Ontario and Michigan/NY).

    • Phase shifters are modeled using a similar model but the tap is a phasor as opposed to a scalar:

    • A Π equivalent circuit cannot be used in this case.

    64

  • Three-phase Transformers

    65

  • Three-phase Transformers• The 3 single-phase transformers form a

    3-phase bank that induces a phase shift, depending on the connection:

    66

  • Three-phase Transformers

    67

  • Three-phase Transformers• In balanced, “normal” systems, the net phase shift between

    the generation and load sides is zero, and hence is neglected during system analyses:

    • In these systems, the p.u. per-phase models of the transformers are identical to the equivalent single-phase transformer models.

    68

  • Saturation• The magnetization inductance Lm changes with

    the magnetization current due to saturation of the magnetic core.

    • Saturation occurs due to a reduction on the number of “free” magnetic dipoles in the enriched core.

    • This results in the core behaving more like air than a magnet, i.e. magnetic “conductivity” decreases.

    • It’s typically represented using a piece-wise linear model.

    69

  • Transmission Lines (and Cables)

    70

  • Transmission Lines• In transmission systems, most lines are overhead lines,

    like for example the 500 kV near the 401 in Milton:

    71

  • Transmission Lines• If a line is transposed to balance the phases, the length

    of the barrel B must be much less than the wavelength (s/f ≈ 5,000 km @ 60 Hz ) B ≈ 50 km), thus leading to:

    72

  • Transmission Lines• Sequence transformation: Vopn = Ts-1 Vabc

    Iopn = Ts-1 Iabc

    • Similarly for [yopn] = Ts-1 [yabc] Ts.

    73

  • Transmission Lines• Positive sequence (per-phase) phasor model:

    74

  • Transmission Lines

    Dm is the GMD of the 3 phases:

    Rb' is the GMR of the bundled (Nb) and wires:

    Rb is the GMR of the bundled:

    75

  • Transmission Lines• This can be converted into the Π

    equivalent circuit:

    76

  • Loads• Load classification by demand level:

    – Residential: lighting and heating (RL + controls); AC (motor + controls); appliances (small motors + controls)

    – Commercial: similar types of devices as residential.– Industrial: motor drives (induction and dc motor-based mostly); arc

    furnaces; lighting; heating; others (e.g. special motor drives).• By type:

    – RLC + controls– Drives: ac/dc motors + electronic controls– Special (e.g. arc furnaces).

    • Most controls are implemented using a variety of power electronic converters.

    • Aggregate load models are necessary at the transmission system modeling level; only large loads are represented with their actual models.

    77

  • Induction Motor

    78

  • Induction Motor• Assuming a balanced, fundamental frequency (ω =ωo) system, the

    model can be reduced to a p.u. “transient” model (3rd order model):

    79

  • Induction Motor

    80

  • Induction Motor• If the electromagnetic transients are neglected,

    the system can be reduced to the following quasi-steady state equivalent circuit model:

    81

  • Induction Motor• Or equivalently:

    • Plus the mechanical equations.

    82

  • Induction Motor• This simplification can be justified from the point

    of view of the Torque-speed characteristic:

    83

  • Induction Motor• If the mechanical dynamics are ignored, the slip S becomes a

    fixed value, and hence the equivalent circuit can be reduced to a simple equivalent reactive impedance, i.e. a Z load.

    • For loads with multiple IMs, an equivalent motor model can be used to represent these motors.

    • Neglecting the motor dynamic equations in large or equivalent aggregate motors can lead to significant modeling errors, as the transient model and mechanical time constants can be on the same range as the generator time constants.

    • Double-cage IMs can be modeled by introducing an additional inductance on the rotor side, which leads to a “subtransient” model.

    84

  • Impedance Load Models• Ignoring “fast” and “slow” transients, certain loads can

    be represented using an equivalent impedance.• A Z load model is typically used for a variety of

    dynamic analysis of power systems.• Using these load models, an equivalent impedance

    can be readily obtained for all loads connected at a particular bus at the transmission system level.

    • ULTCs are used to connect distribution systems (subtransmission and LV systems and the loads connected to these) to the transmission system to control the steady state voltage on the load side.

    85

  • Power Load Models• Hence, for “slow” dynamic analysis of balanced, fundamental

    frequency system models:

    • This is typically referred as a constant PQ model.

    86

  • Power Load Models• Load recovery of certain loads (e.g thermostatic) with

    respect to voltage changes can be modeled as:

    87

  • Power Load Models• This results in the following time response:

    88

  • Power Load Models• Certain loads have been shown to behave in steady

    state as follows:

    89

  • Power Load Models• ZIP model:

    90

  • Power Load Models• Mixed dynamic model:

    91

  • FACTS

    92

  • • SVC and TCSC controllers are based on the following basic circuit topology:

    TCR-FC

    FC

    TCR

    + v(t) -

    93

  • TCR-FC• Each thyristor is “fired” every half cycle.• The firing angle α is “synchronized” with

    respect to the zero-crossing of the voltage (or current).

    • Hence, 90o ≤ α ≤ 180o for the TCR, since:

    94

  • TCR-FC• For α = 90o ⇒ full XL (inductive)

    LL

    95

  • TCR-FC• For α = 120o ⇒ less inductive, more capacitive

    LL

    96

  • TCR-FC• For α = 160o ⇒ mostly capacitive, since iL(t) ≈ 0

    LL

    97

  • SVC

    98

  • SVC• Assuming a sinusoidal bus voltage under

    balanced, fundamental frequency operation, the controller can be modeled as:

    99

  • SVC• This yields the following steady state

    control characteristic:

    100

  • TCSC

    101

  • TCSC• The controller has a resonant point that must to

    be avoided, as the controller becomes an open circuit:

    102

  • TCSC• Thus, the controller limits on α have two regions

    to avoid the resonant point (harmonics are high near this point).

    • Assuming a sinusoidal line current, the balanced, fundamental frequency model for this controllers is:

    103

  • TCSC• Most stability programs use a variable

    impedance model to represent the TCSC, with limits defined by the corresponding α limits.

    • The typical control for this type of model is:

    104

  • TCSC• The power flow or “slow” control is designed to

    maintain a constant controller impedance.• The stability or “fast” control is usually designed to

    reduced system oscillations after contingencies.• The typical use of this type of controller in practice

    is for the control of inter-area oscillations (e.g. North-South ac interconnection in Brazil).

    • For simple series compensation, MSC are a much cheaper option; however, these can lead to Sub-synchronous Resonance (SSR) problems.

    105

  • TCVR & TCPAR• TCVR and TCPAR are basically ULTC and

    phase-shifters, respectively, with thyristor switching as opposed to electromechanical switching.

    • Thus, these controllers have better dynamic response, i.e. smaller time constants, than the corresponding electromechanical-based devices.

    • Controls are typically discrete, but with certain designs these can be continuous.

    106

  • TCVR & TCPAR• The typical topology is:

    107

  • TCVR & TCPAR– Valves 1 and 7 (positive cycle), and 2 and 8

    (negative cycle) add Vc to Vo.– Valves 3 and 5 (positive cycle), and 4 and 6

    (negative cycle) add -Vc to Vo.– Valves 1 and 5 (positive cycle), and 2 and 6

    (negative cycle) cancel Vc; similarly for 3-4 and 7-8.

    • These devices are typically modeled as ULTC and phase-shifters in dynamic and steady state studies.

    108

  • VSC• Typical six pulse VSC with IGBT/GTO switches:

    109

  • VSC• Switching scheme:

    110

  • VSC• Modeling full commutation:

    111

  • VSC

    • Observe the high content of harmonics in the ac voltages and currents.

    112

  • VSC• Pulse-width modulation (PWM) control

    techniques may also be used (“popular” in low voltage level applications).

    • Beside the control advantages, this technique eliminates certain lower harmonics, although it creates high level harmonics.

    • For example, for a 6-pulse VSC:

    113

  • VSCFire valves when carrier and

    modulation signals crossCARRIER:

    MODULATION:

    114

  • VSC• This results on:

    • Changing the modulation ratio, i.e. the magnitude of the modulation signal, results in changes of the ac voltage magnitudes.

    • Shifting the modulation signal leads to phase shifts on the ac voltages.

    115

  • STATCOM

    116

  • STATCOM• It is basically a VSC controlling the bus

    voltage.• The phase-locked loop (PLL) is needed to

    reduce problems with spurious zero voltage crossings associated with the high harmonic content of the signals for this controller, especially with PWM controls.

    117

  • STATCOM• Two types of controls can be implemented:

    – Phase control in a multi-pulse VSC: By controlling the phase angle of the voltage, the capacitor can be charged (α < δ ⇒ controller absorbs P) or discharged (α > δ ⇒ controller delivers P), thus controlling the voltage output Vi.

    118

  • STATCOM• PWM control in a 6-pulse VSC: the voltage

    output Vi can be controlled through the modulation ratio m independently of its phase angle α, which in turn controls Vdc.

    119

  • STATCOM• The typical steady state control strategy is:

    • The current limits are due to the valve current limitations.

    120

  • STATCOM• Assuming balanced,

    fundamental frequency operation, the controller can be modeled as:

    121

  • SSSC

    122

  • SSSC• Similar to the STATCOM but connected in

    series and synchronized with respect to the line current.

    • A phase angle β control charges and discharges of the capacitor, thus controlling the output voltage Vi.

    • PWM controls can be decoupled or coupled:

    123

  • SSSC– Decoupled PWM controls:

    124

  • SSSC– Coupled PWM controls (better overall performance):

    125

  • SSSC• Assuming balanced,

    fundamental frequency operation, the controller can be modeled as:

    126

  • UPFC

    127

  • UPFC• This controller is basically the STATCOM and

    SSSC combined, with independent controls, especially for PWM:– The STATCOM controls the sending-end voltage

    Vk and dc voltage Vdc.– The SSSC controls the power on the line Pl and

    Ql.• There is a “demo” UPFC controller in Ohio

    (AEP-EPRI venture).

    128

  • IPFC• A combination of 2 SSSCs connected independently to 2 lines is referred to

    as an Interline Power Flow Controller (IPFC):

    • In this case the power on both lines can be controlled independently.

    129

  • CSC• A combination of 2 SSSC and 2 STATCOMS

    connected to 2 independent lines is referred to as a Convertible Static Compensator (CSC).

    • In this case the control possibilities are many, as it can work as a STATCOM, SSSC, UPFC and IPFC.

    • The CSC has been implemented in NY to relief congestion (NYPA-EPRI venture) [E. Uzunovic et al, “NYPA convertible static compensator (CSC) application phase I: STATCOM,” Proc. Trans. & Dist. Conf. and Expo., vol. 2, 2001, pp. 1139-1143]:

    130

  • CSC

    131

  • HVDC Light• Based on VSCs as opposed to the current sourced converters (CSCs) used

    in classical HVDC:

    • IGBTs (Insulated-gate bipolar transistors have a FET gate and a BJT switch) instead of GTOs are used as switches; have lower losses, higher frequency switching capacity, are cheaper, but have less reverse voltage blocking capacity.

    • These switches allow using PWM controls, which yield greater control flexibility.

    132

  • HVDC Light• The reduced reverse voltage blocking capacity of IGBTs

    versus GTOs reduces the overall power capacity of the link; this is the reason for the “light” label.

    • The overall costs of the link are lower, allowing for wider applications of this technology.

    • Classical HVDC is most cost effective at power ranges above ~250 MW, whereas HVDC Light ratings are typically in the order of a few tens of MW (the technology current upper limits are 1,200 MW and ±320 kV).

    • Visit http://www.abb.com/industries/us/9AAC30300394.aspxfor more details and actual projects.

    133

    http://www.abb.com/industries/us/9AAC30300394.aspx

  • SPVG~100 MWpeak solar farm connected to Bluewater Powerdistribution system

    134

  • SPVG Controls• Original PQ controls:

    – P output kept at maximum using an MPPT control of the dc-dc converter VI output:

    – Q = 0 (unity power factor) with Q/V control of PWM VSC, so it is not a Q load for the system with negative impact on voltage.

    135

  • SPVG Controls• RE generators were required

    to disconnect under faults, which created low voltage and frequency problems with loss of power.

    • Now they are required to provide reactive power during fault conditions via Low-Voltage Ride-Through (LVRT)/ or Fault Ride-Through (FTR) control, i.e. converter Q injection.

    • More jurisdictions are now requiring full V output control like standard generators.

    LVRT/FTR converteroutput characteristics

    136

  • SPVG Controls• Some jurisdictions are

    also requiring nowadays some frequency control:– MPPT control is

    deactivated to allow some limited P control, thus de-rating the generator.

    – Some manufactures are providing controls so that generator provide also virtual inertia, such as the Synchronous Power Controller (SPC):

    137

  • WG• Ripley-Kincardine WG plant: 76 MW with 38x2

    MW Enercon Tyep 4/D SGPM generators connected at 230kV.

    138

  • WG• Type 1/A: Fixed speed with pitch control.

    Generator

    P controls

    Pitch

    Gear Box

    vw

    ωm

    β

    PmTm

    139

  • WG• Type 2/B: Doubly Fed Induction Generator (DFIG) with variable

    speed through variable rotor resistance, plus pitch control.

    Generator

    P controls

    Pitch

    Gear Box

    vw

    ωm

    β

    PmTm

    140

  • WG• Type 3/C: DFIG with rotor converters plus pitch controls.

    Generator

    DC Link

    P and V/Q controls

    Pitch

    DC link controls

    VSC VSC

    Gear Box

    ωm

    β

    Pm

    VtItPtQt

    VdcIdc

    VRIR

    vw

    Tm

    141

  • WG• Type 4/D: Permanent Magnet Synchronous Generator (PMSG) or IG

    with ac-dc-ac full converter interface, similar to SPCG.

    Generator

    DC Link

    P controls

    Pitch

    Q/V controls

    VSC VSC

    vw

    ωm

    β

    PmVtItPtQt

    VdcIdc

    VGIG

    Tm

    142

  • WG Controls• Depend on technology:

    – Type 1/A: Only slow pitch controls to keep torque and/or turbine speed at rated values and/or within limits to avoid turbine problems.

    – Type 2/B: Slow pitch control plus some fast P control through variable resistors.

    – Type 3/C: Slow pitch control plus fast P and Q/V control through rotor ac-dc-ac converter.

    – Type 4/D: Slow pitch control plus fast P and Q/V control through full ac-dc-ac converter interface.

    143

  • WG Controls• Type 3/C and 4/D P control:

    – MPPT based on:

    – MPPT deactivated for some frequency control, de-rating the WG.

    144

  • SPVG and WG Simplified Models

    • Simplified model, based on WECC wind generator phasor (average) model:

    • V and f droop controls for this model:

    145

  • Dynamic Grid Studies• Time domains of dynamic studies (IEEE PES PSDPC TF on

    “Stability Definitions and Characterization of Dynamic Behavior in Systems With High Penetration Of Power Electronic Interfaced Technologies”):

    146

  • Dynamic Grid Studies• Tools:

    – Wave and electromagnetic phenomena: PSCAD/EMTDC, EMTP, ATP, and others.

    – Electromechanical phenomena: DSATools, PSS/E, PSAT, DIgSILENT PowerFactory, and many others (e.g. ETAP).

    – Thermodynamic phenomena: partially DSATools, PSS/E, and others.

    147

  • Dynamic Grid Studies• Techniques:

    – Steady and quasi-steady state:• Power flows.• PV curves.• Eigenvalues and eigenvectors.

    – Transients:• Detailed time-domain simulations for unbalanced and

    converter systems.• Transient stability simulations of phasor-based,

    balanced system models.

    148

  • Dynamic Grid Studies• Grid stability studies (IEEE/CIGRE Joint Task Force on Stability Terms and

    Definitions, “Definition and Classification of Power System Stability”, IEEE Trans. Power Systems and CIGRE Technical Brochure 231, 2003):

    • These definitions and classification are being updated in the context of faster dynamics (e.g. converter-based systems).

    149

  • Dynamic Grid Study Example• For the IEEE 145-bus, 50-machine test system:

    150

  • Dynamic Grid Study Example– For an impedance load model, the PV curves yield:

    151

  • Dynamic Grid Study Example– Hence, a line 90-92 outage yields:

    152

  • Dynamic Grid Study Example– This has been typically solved by adding Power

    System Stabilizers (PSS) to the voltage controllers in “certain” generators, so that the equilibrium point is made stable, i.e. the Hopf is removed (FACTS may also be used to address this problem):

    153

    AVR

    Vref

    Vt

    +

    +_

  • Dynamic Grid Study Example– A participation factor analysis in this case yields:

    154

  • Dynamic Grid Study Example– The line 90-92 outage with PSS at generators 93 and

    104 yields:

    155

  • Dynamic Grid Study Example• More details regarding this example can

    be found in: N. Mithulananthan, C. A. Cañizares, J. Reeve, and G. J. Rogers, “Comparison of PSS, SVC and STATCOM Controllers for Damping Power System Oscillations,” IEEE Transactions on Power Systems, Vol. 18, No. 2, May 2003, pp. 786-792.

    156

    Dynamic Modelling and Simulation of Power SystemsThe University of WaterlooWaterloo Quick FactsWaterloo Quick FactsWaterloo Quick FactsOverviewPower SystemPower SystemPower SystemPower SystemPower SystemPower SystemSupply TechnologiesSupply TechnologiesSupply TechnologiesSupply TechnologiesSupply TechnologiesSupply TechnologiesSupply TechnologiesSupply TechnologiesSupply TechnologiesSupply TechnologiesSupply TechnologiesSupply TechnologiesGeneratorGeneratorGeneratorSynchronous MachineSynchronous MachineSynchronous MachineSynchronous MachineSynchronous MachineSynchronous MachineSynchronous MachineSimplified Models Simplified ModelsSubtransient ModelSubtransient ModelSubtransient ModelSubtransient ModelSubtransient ModelTransient ModelTransient ModelTransient ModelTransient ModelTransient ModelTransient ModelTransient ModelTransient ModelControlsControlsControlsControlsSteady State ModelSteady State ModelSteady State ModelSingle-phase TransformersSingle-phase TransformersSingle-phase TransformersSingle-phase TransformersSingle-phase TransformersLoad Tap Changers (LTCs)Phase ShiftersPhase ShiftersThree-phase TransformersThree-phase TransformersThree-phase TransformersThree-phase TransformersSaturationTransmission Lines �(and Cables)Transmission LinesTransmission LinesTransmission LinesTransmission LinesTransmission LinesTransmission LinesLoadsInduction MotorInduction MotorInduction MotorInduction MotorInduction MotorInduction MotorInduction MotorImpedance Load ModelsPower Load ModelsPower Load ModelsPower Load ModelsPower Load ModelsPower Load ModelsPower Load ModelsFACTSTCR-FCTCR-FCTCR-FCTCR-FCTCR-FCSVCSVCSVCTCSCTCSCTCSCTCSCTCSCTCVR & TCPARTCVR & TCPARTCVR & TCPARVSCVSCVSCVSCVSCVSCVSCSTATCOMSTATCOMSTATCOMSTATCOMSTATCOMSTATCOMSSSCSSSCSSSCSSSCSSSCUPFCUPFCIPFCCSCCSCHVDC LightHVDC LightSPVGSPVG ControlsSPVG ControlsSPVG ControlsWGWGWGWGWGWG ControlsWG ControlsSPVG and WG Simplified ModelsDynamic Grid StudiesDynamic Grid StudiesDynamic Grid StudiesDynamic Grid StudiesDynamic Grid Study ExampleDynamic Grid Study ExampleDynamic Grid Study ExampleDynamic Grid Study ExampleDynamic Grid Study ExampleDynamic Grid Study ExampleDynamic Grid Study Example