128
8936 Mechanical Project MATV: Memorial All Terrain Vehicle FINAL REPORT JONATHAN COLE FABIO FARAGALLI TREVOR DWYER APRIL 9, 2010

DWYER APRIL 9, 2010jcole/FRep.pdfsmall all‐terrain vehicle, capable of navigating rough terrain and water obstacles, typical of a rural NL location. Basic vehicle specifications

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • [Type text]  

     

     

     

     

    8936  

    Mechanical Project    

    MATV: Memorial All Terrain Vehicle  

    FINAL REPORT

      

    JONATHAN COLE FABIO FARAGALLI TREVOR DWYER 

    APRIL 9, 2010 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Page i  

    Table of Contents 

    1 Introduction ..........................................................................................................................................1

    1.1 MATV Specifications ....................................................................................................................1

    1.1.1 Platform...................................................................................................................................1

    1.1.2 Drive‐train ...............................................................................................................................2

    1.1.3 Controls ...................................................................................................................................3

    2 System Design .......................................................................................................................................3

    2.1 Hydraulic Design ..........................................................................................................................3

    2.2 Hydrostatic Transmission ............................................................................................................3

    2.3 Gasoline Engine ...........................................................................................................................4

    2.4 Platform.......................................................................................................................................5

    2.5 Drive Shaft Design .......................................................................................................................7

    2.6 Drive Train Component Selection................................................................................................8

    2.7 Suspension Design .......................................................................................................................9

    2.8 Wheel and Hub Design ................................................................................................................9

    3 Finite Element Analysis ....................................................................................................................... 10

    3.1 Suspension Members ................................................................................................................10

    3.2 Drive Shafts................................................................................................................................13

    4 Weight Estimate..................................................................................................................................14

    5 Cost Estimate ......................................................................................................................................16

    6 Project Deliverables ............................................................................................................................17

    7 Recommendations and Conclusions ...................................................................................................17

     

    Appendices 

    Appendix I – Sauer‐Danfoss BDU‐21H Appendix II – Honda GX690 Appendix III – Technical Drawings – Frame Members and Mounts Appendix IV – Technical Drawings – Drive Shafts, Gears, and Bearings Appendix V ‐ Technical Drawings – Suspension, Wheels & Hubs Appendix VI –  McMaster‐Carr Technical Drawings 

     

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Page ii  

    Figures 

    Figure 1: MATV Inner Frame.........................................................................................................................5 Figure 2: MATV Transmission Mount ...........................................................................................................6 Figure 3: MATV Suspension ..........................................................................................................................6 Figure 4: MATV Upper Driveshaft .................................................................................................................7 Figure 7: Displacement 20kN load ..............................................................................................................10 Figure 8: Strain of 20 kN load......................................................................................................................11 Figure 9: Displacement of 10 kN load .........................................................................................................12 Figure 10: Strain of 10 kN load....................................................................................................................12 Figure 11: Displacement momentum force ................................................................................................13 Figure 12: Strain momentum force.............................................................................................................14 Figure 13: MATV Weight Estimate..............................................................................................................15 Figure 14: MATV Fuel Calculation...............................................................................................................15 Figure 15: MATV Cost Estimate ..................................................................................................................16  

     

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 1  

    1 Introduction  

    Project MATV  began  as  a  suitable  Term  8  design  project  for  a  group  of  students  in  search  for  an 

    interesting  and  challenging  senior  project.    The  project  has  undergone  a  number  of  large  design 

    iterations,  and  currently  has  the  potential  to  grow  into  a  faculty  oriented, multi‐disciplinary  design 

    project incorporating autonomous controls into a mechanically sound vehicle design. 

    At this point in time, Project MATV is at the end of its 3rd design iteration of the term, and of the project 

    as a whole.  This paper will serve to document the current design package developed for Project MATV, 

    and provide recommendations for its potential future development.   

    The  introductory  section of  this paper  is written with  an unfamiliar  audience  in mind  to  account  for 

    potential future project groups, while the detailed section of this report is written with the assumption 

    that  the  reader  has  some  knowledge  of  the  project,  as  outlined  in  the  introductory  section  and 

    supporting documentation. 

    1.1 MATV Specifications  

    Design specifications for project MATV have stayed relatively constant during the entire design process, 

    despite  the  large changes  in drive  train orientation and basic power  train.   The MATV  is essentially a 

    small all‐terrain vehicle, capable of navigating  rough  terrain and water obstacles,  typical of a  rural NL 

    location.    Basic  vehicle  specifications  include  six  independently  sprung  wheels  utilizing  a  skid‐steer 

    system,  and  a  water‐tight  main  platform  with  ample  room  for  controls  equipment,  navigation 

    equipment, cameras, and other required cargo.   Performance specifications are  laid out to ensure the 

    vehicle can navigate unforeseen obstacles at full design weight. 

    1.1.1 Platform  

    Original design specifications for the platform  include a weight restriction, a size restriction, and some 

    functional usability restrictions.   The original weight restriction for the entire vehicle was 300lbs plus a 

    payload of 50lbs.  This restriction has been one of the more difficult specifications to deliver throughout 

    the project, and has prompted at  least one of the overall design  iterations for the project.   The major 

    issue with the weight restriction has been  that components able to support the vehicles performance 

    specifications are often much heavier than the 300lb weight restriction allows. 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 2  

    One  recommendation  for  the  future  development  of  this  project  is  a  closer  look  at  the  weight 

    restrictions  in  relation  to  the  performance  restrictions.    A  general  trend  has  been  that  light weight 

    components cannot support the performance specifications, while heavier components are essentially 

    overdesigned  for  both  the  performance  and weight  specifications.    Although  sometimes  difficult  to 

    grasp in a design project, component availability often governs design specifications when attempting to 

    work under budget constraints. 

    The initial size restraint for Project MATV was simply the ability to fit through an “average” sized door.  

    When  defining  an  average  sized  door  as  an  exterior  door  or  industrial  sized  door,  typical  of  the 

    university for example, a rough assumption can be 36”.  During the first design iteration at the beginning 

    of  the  term,  this width was  increased  to 48”,  to allow  for  the  larger hydraulic components and a‐arm 

    suspension concept.   

    Initial ground clearance specifications allowed for the ability to climb stairs.   This figure was quantified 

    with  the  first design and  increased  to 12‐14”  to allow  for navigation of  larger obstacles.   Throughout 

    design, the six wheel vehicle with skid‐steer concept has been maintained. 

    Physical platform dimensions have not been restricted during design, with the exception of the overall 

    vehicle width and weight restrictions.   The  internal cargo space available  for equipment however, has 

    been restricted to 2ft3 or greater regardless of vehicle design. 

    1.1.2 Drivetrain  

    Initially  the MATV was envisioned  to utilize an electrically powered drive  train with electric batteries 

    driving  dual  electric  motors,  chain  driving  the  6  independently  sprung  wheels.    This  concept  was 

    amended during the first project redesign to allow for a hydraulically powered drive train.  Although the 

    hydraulic  system has undergone  two design  iterations,  specifications have always  included a gasoline 

    engine powering the hydraulics, which have mechanically powered the wheels. 

    Power  specifications  have  evolved  from  the  requirement  of  the  vehicle  to  climb  stairs,  to  the 

    requirement  for  the vehicle  to  lift  its  front wheels up a vertical obstacle  (model 30°  slope),  to  finally 

    requiring  the  vehicle  to  climb a 45°  slope at  full design weight.   The maximum design  speed  for  the 

    vehicle has remained constant at 30km/h. 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 3  

    1.1.3 Controls  

    During initial proposal of Project MATV, the vehicle was to operate under remote control initially, with 

    potential  future  expansion  for  autonomous  control.    Throughout  the  course  of  this  project,  design 

    deliverables for the term have shifted from a functional prototype to a complete virtual design package.  

    As such, control of the MATV has not been  included  in this design  iteration, and  is recommended as a 

    future component of the project. 

    Autonomy period has been  specified during  the project as 24 hours.   This period  is governed by  the 

    amount of fuel that the vehicle carries, and the amount of fuel that the engine consumes per hour.  Fuel 

    volumes have been specified with the design package, but have not been included in operational weight 

    calculations, as per  recommendation  from  the  instructor, and  to account  for  the  constantly  changing 

    volumes with engine specification. 

    2 System Design  

    2.1 Hydraulic Design  

    A hydraulic system regression analysis and justification for the selection of system operating pressures is 

    outlined in “Mini Report #2” of the Project MATV design documentation.  System operating pressure is 

    the largest variable affecting hydraulic system performance, and as a general rule, selecting the highest 

    supported continuous operating pressure for hydraulic components will result  in greatest performance 

    from  the hydraulic  system.   Operating pressure  for  the  current  system design  is 3250psi, which  falls 

    between  the  specified continuous and maximum operating pressures  for  the BDU‐21H Sauer‐Danfoss 

    hydraulic transmission. 

    2.2 Hydrostatic Transmission   

    The hydrostatic  transmission selected  for  the current design  is  the Sauer‐Danfoss BDU‐21H.   Previous 

    selection of  the Sauer‐Danfoss 15 Series  In‐line  transmission was superseded with  this unit, as  the 15 

    Series transmissions have been discontinued.  

     

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 4  

    The maximum theoretical output of this transmission is 72.1 N ∙ m.  We have calculated the real output 

    torque of the transmission to be 63.6 N  ∙ m at the 3250 psi system operating pressure.   The weight of 

    this  unit  is  22  lbs,  and  the  specified  control  torque  for maximum  pump  stroke  is  24.5 N  ∙ m.    Full 

    specifications for the Sauer‐Danfoss BDU‐21H are located in Appendix I of this report.   

    Throughout  the  term,  we  have  maintained  contact  with  a  local  Sauer‐Danfoss  supplier,  Hydraulic 

    Systems Limited.  It is worth noting that this company is also a local supplier for Parker Hydraulics Ltd., a 

    product that had previously been specified for the Project MATV independent wheel motors, as part of a 

    previous design. 

    The contact for this supplier, for future Project MATV reference is: 

    Jim Maloney Technical Sales Representative Hydraulic Systems Limited e: jmaloney@hydraulic‐systems.com Ph: (709) 726‐3490 Cell: (709) 726‐3490 Fax: (709) 726‐3490 

    Unfortunately, this supplier has not delivered a quote for the BDU‐21H units at this time.  Following up 

    on the original request is recommended if the BDU‐21H units are to be used. 

    2.3 Gasoline Engine   

    Due  to  the control  torque requirements of  the BDU‐21H units, a gasoline engine with suitable output 

    torque  had  to  be  selected.    The  selected  engine  was  to  provide  enough  torque  to  stroke  both 

    hydrostatic  transmissions,  and would  preferably be  a unit with published performance  specifications 

    and dependable quality.  The selected unit was the Honda GX690 horizontal shaft V‐twin engine. 

    This engine has a net torque of 48.3 N ∙ m at 2000 rpm and a net power of 22.3 Hp at 3600rpm.  Due to 

    the v‐twin design, we don’t see a large torque drop over the range of operational rpm, and net torque at 

    3600 rpm is approximately 44 N ∙ m.  The weight of this unit is 98 lbs, and fuel consumption is 6.2 L/hr at 

    3600rpm.  Full specifications for the Honda GX690 are located in Appendix II of this report. 

    Early in the term, contact was made with a supplier of Honda small engines for Atlantic Canada.  Initial 

    contact was made via telephone conversation, and some important contact information was obtained. 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 5  

    The name of the company contacted  is “Powerquip A Division of Barrett Marketing Group”,  located  in Dartmouth, NS.  The company was contacted through their published toll free number ‐ (800) 662‐2920.  An  individual  named  David  spoke  with  us,  and  provided  an  e‐mail  contact  for  future  reference  ‐ [email protected]

    This company  indicated  that  they have a program  in place  that allows  for  the donation, or significant 

    discount on small engines  for recognized university projects.   At  the  time of contact, David suggested 

    that  Project MATV  submit  an  official  letter  of  project  recognition  on  university  letterhead  once  an 

    engine model  was  selected,  and  he  would  see  what  applicability  the  program  would  have  for  our 

    project.  As the engine choice for Project MATV changed a number of times throughout the term, and no 

    set  purchase  plan  for  components was  outlined,  Project MATV  did  not  submit  a  request  for  official 

    engine quotation. 

    It  is recommended that Project MATV contact this supplier for quotation and program applicability  if a 

    Honda series small engine is used for the project. 

    2.4 Platform 

     

    Figure 1: MATV Inner Frame 

    The frame shown above  is constructed entirely of 80/20 extruded aluminum, which was chosen for  its 

    high strength to weight ratio.  Shown in appendix III is an exploded view detailing each component used 

    to make the frame and the number of times it is required.   

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 6  

    Modifications may need to be performed to each component  in order for the frame to be assembled.  

    80/20 has a  few options  for  fastening each piece  together, depending on which option  is chosen will 

    determine if the part needs to be altered.  The alterations a relatively simple and would be the same for 

    each member, therefore the machining process will be simple to perform. 

    Mounting  the  transmission  will  be  accomplished  with  mounting  bracket  shown  below;  it  will  be 

    machined  from 316  stainless  steel  to ensure corrosion  resistance.   There are  four holes drilled  in  the 

    bottom that will allow for attachment to the 80/20 frame.   The two holes on the side are for the two 

    fastening rods that will hold the transmission in place.  The fastening rods are black‐oxide steel spacing 

    stud M8X1.25mm, 200mm in length with 35mm thread lengths at either end. 

     

    Figure 2: MATV Transmission Mount 

    The shocks will be held by two mounting brackets, one on the swing arm and the other on the frame as 

    shown  below.    These  brackets will  be machined  from  316  stainless  steel  same  as  the  transmission 

    bracket and will have measurements specified in the drawing “Swing Link” under Appendix V. 

     

    Figure 3: MATV Suspension 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 7  

    2.5 Drive Shaft Design  

    For  the drive  shafts we  recommend using 1566 high  carbon  steel  for  its high  strength and ability  for 

    machining.   We discovered this material through cooperation with another group (Mini Baja) and they 

    have done extensive stimulations on the material and it meets the requirements for our design.  In total 

    there will be 10 separate drive shafts machined, however due to the symmetry of the MATV there are 

    only three different shaft designs.   The bearings and sprockets are  listed  in the attached part  list (cost 

    estimate), and all can be supplied through McMaster – Carr. 

     

    Figure 4: MATV Upper Driveshaft 

    The first shaft which we have named “Drive Shaft”  is shown above  in and will drive the front and rear 

    wheels, as seen in the appendix IV as drawing “Drive Shaft” the shaft is ¾” in diameter with a step down 

    at either end to 5/8”.  The shaft is 11 ¾” in length with two keyed slotted sections 3/16” wide and 3/32” 

    in depth  to allow  for  the  key  for  the gears.   The  two  steps allow  for a place  for  the bearing  to butt 

    against and each end is threaded to secure the bearings and therefore the shaft in place. 

    The  second  shaft  designed  for  the  center wheels  is  referred  to  as  “Drive  Shaft  –  Center”  and  has  a 

    similar design of that of the “Drive Shaft” the only difference is that the center shaft attaches directly to 

    the wheel which causes it to be longer to ensure all the wheels are in the same plane.  The “Drive Shaft‐ 

    Center” ” is attached in appendix IV is 13.88” long and is threaded ½” at the end attached to the bearing 

    and 1.32” at the end that attaches to the hub.   The additional threading  is for the threaded hub.   The 

    “Drive Shaft – Center” also only has one keyed section due to the fact it does not require an outer gear. 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 8  

    The  third  shaft, which  is  titled  “Shaft of Wheel”,  is  the  shaft  that  is  connected  to  the  front and  rear 

    wheels and is driven by the “Drive Shaft” through a chain.  The shaft is 6.88” in length and has a single 

    step for the bearing to butt up against and hold the assembly in place.  The “Shaft of Wheel” shown in 

    the attached appendix IV is keyed a single time at the ¾” end in order to support the gear that drives the 

    shaft. 

    2.6 Drive Train Component Selection  

    When choosing the gears for the drive train we first calculated the required torque at the wheels, from 

    this we determined the necessary gear ratio and holding force at each shaft.  Also due to the complexity 

    of our  shaft design we  choose  to use gears  that  could be mounted  to our  shaft via a  single key and 

    tapered design.    The  shaft  itself  remains  straight however  the  gear  comes  in  two  sections  as one  is 

    secured to the other  it forces the bore diameter to restrict tightening  it on to the shaft.   Copies of the 

    McMaster‐Carr technical drawings are attached in appendix VI.   

    For  the  chain  selection we  used  the  data  gathered  for  the  gears  and  knowing  our working  load we 

    choose a chain that meet the force requirements, we went with the corrosion resistant chain due to our 

    application.  For the bearings we actually ended up using backwards engineering, we had an idea of how 

    we wanted to mount the bearings and what style bearing would work best.  For the bearings that would 

    sit inside the frame we wanted to use pillow block style bearings which would mount easily to our 80/20 

    frame,  for  the  bearings  that would mount  to  the  swing  arm we  opted  to  use  flange mount  and  as 

    mentioned  later  the  swing  arm  selection was dependant on  the  surface  area  required  to mount  the 

    bearings.   

    We had only chosen to use one flange mount bearing per shaft but after speaking with our supervisor, 

    we were asked to use an additional bearing which he thought would give the rigidly required to support 

    the arm.   With these general specifications and the shaft diameter we were able to narrow the search 

    down dramatically  leaving  just a few choices  left and we opted to take the  least expensive which also 

    turned  out  to  be  the  bearing  capable  of  with  standing  the  greatest  radial  load.    Knowing  all  the 

    specifications of the bearing we calculated what load it could with stand and it was far more than what 

    we would require.  The technical drawings and bearing specifications are attached in appendix VI. 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 9  

    2.7 Suspension Design  

    Initially we had decided to use an A‐Arm suspension design, which would have worked fine with the six 

    independent motors.   However when we had to re‐design  in order to save weight and cost the swing 

    arm design became more practical.  The chain drive requires the “Drive Shaft” and “Shaft for Wheel” to 

    remain a set distance apart, this is easily accomplished with the swing arm design.  As seen in Figure 3, 

    there are two mounting brackets that hold the shock, one attached to the swing arm and the other to 

    the frame.  The shocks which we have found online at eshocks.com have 5.33" travel and an extended 

    length of 16.45".  The mounting brackets which have been mentioned earlier will have to be machined 

    and a detailed drawing provided in appendix V.  Initially we thought of using tube steel or aluminum for 

    the swing arm but  to reduce overall size and weight we opted  to use aluminum U‐channel, which we 

    found online at Online Metals.com.  The U‐Channel provides enough surface area to mount the required 

    bearings and by running the chain on the inside we hope to help protect it from any obstructions. 

    2.8 Wheel and Hub Design  

    When  choosing  the wheel  initially we  had  set  an  overall  diameter  of  12”,  after  some  research we 

    decided  to  increase our diameter  to 16‐18”  this would help ensure we met our clearance parameter.  

    Wanting to keep cost and weight to minimum as well as ease of attainment we sourced princess auto.   

    They had and still have a 16” overall diameter wheel and rim retailing for $39.99, this was  lower than 

    any other product we had sourced and because  it was  local would negate any shipping cost.   Checking 

    the specifications of the wheel we found  it was rated for more than an adequate weight and weighing 

    only 9.7lbs each it was perfect for our project.  With the rim chosen we were able to limit our search for 

    a wheel hub, knowing both the shaft diameter and bolt pattern we were able to find a suitable hub at 

    mfgsupply.com.   The hubs are made of steel and weigh only 1.5  lbs each and with a  low cost of only 

    $19.99 each they are more than adequate for the project. 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 10  

    3 Finite Element Analysis 

    3.1 Suspension Members   

    The suspension members are most important to the vehicle when it is traveling at high speeds.  Several 

    testing has been completed  in SolidWorks to demonstrate  if the MATV could undergo  loads and see  if 

    they  can  support  such  forces  in  rough  terrain.   Axial  loads were  the main  forces  that  the  suspension 

    would be subject to.  The FEA analysis of 20 kN and 10 kN forces have been tested. 

    Shown  in  the  figures below, the FEA analysis  illustrates the suspension member that  is subjected to a 

    static loading on the wheel.  The pillow bearings are attached to the frame which gives a restrain onto 

    the movement of  the bearings  and  the  entire  assembly.   A  force  is  applied  to  the wheel, when  the 

    vehicle  falls  from a  certain height, an example of  this  is when  the  rover would  fall  into a ditch.   The 

    assembly that was test could not support the complexity of the mounted bearings onto the swing arm 

    therefore testing without these bearings was obliged.   

    The  first  test was done at a vertical  force of 20 kN  simulating a great  load onto  the wheel  shaft and 

    swing arm.   Figure 57  illustrates  the displacement of  the entire wheel assembly when  subjected  to a 

    load of 20 kN.  The results of the displacement of the wheel shaft are 2.31 inch, which is standard for an 

    immense load onto a light and thin swing arm.   

     

     

    Figure 5: Displacement 20kN load 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 11  

    The  strain  results  shown  in  Figure  68,  demonstrates  that  the  pillow  bearings  and  swing  arms  are 

    subjected  to  stress  and  deformation.    The  stresses  applied  to  the  swing  arms  are  absorbed  by  the 

    mounted  square  bearings  that would  be  attached  to  the  swing  arms  therefore  the  stresses  on  the 

    member would be diminished.   This also would allow to a smaller displacement of the assembly.   The 

    greater stresses occur on the upper portion of the swing arm due to the greater moment forces.   The 

    maximum strain on the suspension member is on the bearings where it indicates a strain of 1.64 ESTRN. 

     

     

    Figure 6: Strain of 20 kN load 

     

    The second test was done at a vertical force of 10 kN this simulates a real situation  loading. Figure 79 

    illustrates the displacement wheel shaft and swing arm.   The results of the displacement of the wheel 

    shaft are 0.8 inch; this is relatively low for a force of 10 kN on a swing arm of 3/16 inch.  The maximum 

    displacement  is  situated  at  the wheel.    This  force  applied  does  not  plastically  deform  the members 

    therefore the components chosen would be able to support  loads that would be subject to  in a rough 

    Newfoundland terrain.  

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 12  

     

    Figure 7: Displacement of 10 kN load 

     

    The  strain  plot  demonstrates  the maximum  strain  of  the  suspension members.    In  Figure  810  the 

    maximum  stress  that  is  applied  is  located  at  the  swing  arm,  this  is due  to  the  thin  thickness of  this 

    member.   Although, the stresses that are subject to the member  is absorbed by the bearings that are 

    located and the upper and  lower section of the swing arm.   Therefore, minimal stress  is acted on the 

    member.   

     

     

    Figure 8: Strain of 10 kN load 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 13  

    3.2 Drive Shafts  

    The force acting on the drive shaft member can also be viewed as a momentum force, where the MATV 

    is traveling at maximum velocity and hits an obstacle where the MATV will come to rest.   This force  is 

    calculated by the momentum equation: 

    F = (m * v) / ∆t  

    m = mass of vehicle 

    v = velocity  

    ∆t = change in time for the vehicle to come at rest 

     

    The diagrams below illustrate a load applied vertically, although the momentum force is applied to the 

    member horizontally.   This does not affect any results  in this section due to symmetry of the member.  

    The  force of momentum calculated  is ~ 10,000 N where  the  time of  impact  is 0.25 sec.   The diagram 

    below  indicates the restriction of the bearings and applied  load.   Figure 911 show the displacement of 

    the drive shaft where the maximum displacement is 0.70 inch, this is the result of the MATV traveling at 

    a speed of 30 km/hr.   

     Figure 9: Displacement momentum force 

     

    The strain plot of the momentum force demonstrates the maximum strain of the suspension members.  

    Although, the strain applied to the member is minimal, the maximum strain is 3.9 *10‐7 situated at the 

    pillow bearings.   This  test demonstrates  that  the  forces of momentum do not plastically deform  the 

    drive shaft and therefore the components chosen will be able to sustain great loads. 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 14  

     

    Figure 10: Strain momentum force 

     

    4 Weight Estimate  

    A weight estimate for Project MATV is outlined below.  As mentioned, the initial weight specification for 

    the  project was  300lbs  plus  a  50lb  payload.    During  the  2nd  project  iteration,  a  regression  analysis 

    supported the suggestion that a total vehicle weight of 500 lbs was more realistic, and easily supported 

    within the selected component performance limits.   

    Although the current components can easily support a weight of 500lbs or more, the design weight of 

    500lbs  has  been  used  as  a  benchmark  for  all  final  design  calculations.    As  the  system  components 

    currently selected for this project are well overdesigned and can support well over 1500 lbs +, weight is 

    not a large concern for system design, however a modest 500 lb weight has been designed for. 

    As mentioned  earlier  in  this  paper,  fuel  volume  and weight  have  not  been  taken  into  consideration 

    during this design.  The justification for this was the changing specifications for engine fuel consumption 

    with engine sizing.   

    The group had identified fuel weight and volume as a large variable for design, and a large weight issue 

    within design,  so by  recommendation  from  the project  supervisor,  the current design was completed 

    without consideration for fuel weight. 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 15  

    Component Description Unit Weight Quantity Weight (lbs)Engine Honda GX 690 98.0 1 98.0Transmissions Sauer-Danfass BDU-21H 22.0 2 44.0Transmission Bracket Bracket machined to hold transmission 4.0 2 8.0Steel Spacing Stud Black-Oxide Steel Spacing Stud M8X1.25mm 0.3 4 1.0Steel Hex Nut Metric 18-8 Stainless Steel Hex Nut M8 Size, 0.1 8 0.4Timing Belt Pullies 1.5 2 2.9Timing Belt 2.0 1 2.0Mating Shaft (trans) 2.0 1 2.0Chain Gears Single-Type QD 5.12" OD 3.0 2 6.0Chain Gears Single-Type QD 4.52" OD 2.5 4 10.0Chain Gears Single-Type QD 2.09" OD 2.0 14 28.0Chain Standard ANSI Roller Chain #50, Single Stran 0.7 30 20.7Roller Chain Links #50 Adding Link for Standard ANSI Roller Ch 0.0 20 0.5Wheels/Tires 16" Overall Diameter Wheel 9.7 6 58.0Swing Arms Aluminum Bare Channel 6061 T6 1.9 5 9.3Axle (Inches) 60" Keyed 3/4" diameter shaft 0.2 120 25.6Hex Nut 5/8" Ultra-Coated Grade 8 Steel Hex Nut 5/8"-18 T 0.1 16 0.8Shocks 5.33" travel 16.45" extended length 8.0 4 32.0Square 80/20 (inches) Extruded Aluminum 1"X1" 0.026 838.6 22.180/20 Connectors Connectors for Extruded Aluminum 1"X1" 15.0Bearings - Pillow 5/8" Base mount double sealed bearing 3.0 6 18.0Bearings - Pillow 3/4" Base mount double sealed bearing 3.0 6 18.0Bearings - Flange Mount Flange mount double sealed bearing 3.0 16 48.0 Al Sheet (Body) 32"X74" 1/16" thickness 15.0 1 15.0 Al Sheet (Body) 26"X54" 1/16" thickness 9.0 1 9.030L Gas Tank Dimensions (cm) 90X20.5X26 6.6 1 6.64L Hydraulic tank 1.0 1 1.0Hydraulic Fluid (Litres) Type F Automatic Transmission Fluid 1.9 4 7.6Hubs Steel Hub for 5/8" live axle 1.5 6 9.0

    Total Weight 518.4

    MATV Weight Estimate

     

    Figure 11: MATV Weight Estimate 

    The specified weight of 518 lbs is very close to the design weight of 500 lbs, and was just pushed over by 

    the additional  flange mount bearings  recommended  for  the outside of  the swing arms, and  the extra 

    weight of the Honda GX690 engine. 

    As a note, the calculation for fuel weight and volume with this particular engine is as follows: 

    Engine Consumption 6.2 L/hrAutonomy Period 24 hrGasoline Specific Gravity 42.5 lb/ft^3Conversion 28.32 L/ft^3

    Fuel Volume = (6.2 L/hr)*(24hr)Fuel Volume = 148.8 L

    Fuel Weight = (148.8 L)*(42.5 lb/ft^3)/(28.32 L/ft^3)Fuel Weight = 223.3 lb

     

    Figure 12: MATV Fuel Calculation 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 16  

    The fuel weight for a 24hr autonomy period with the Honda GX690 engine is just under 50% of the total 

    vehicle design weight before  fuel.   This  is a significant  increase  in weight, and as such,  is viewed as a 

    critical design variable for project design.  This variable alone warrants a closer look at system sizing and 

    desired performance specifications versus system weight for engine sizing. 

    5 Cost Estimate  

    A cost estimate for Project MATV is outlined below.  An analysis of this estimate shows that over 50% of 

    the estimated  cost of  the project  is  for  the engine  and hydrostatic  transmissions alone.    In addition, 

    these prices represent list prices, not accounting for things such as taxes, conversions, shipping, etc. 

    The project team was not happy with this final cost estimate, as it is higher than we would have wanted 

    a project such as this to total.    It  is recommended that a system redesign  (if required)  look at smaller 

    components that may satisfy performance specifications on a smaller scale for both weight and cost.   

    Component Description Supplier Part Number Unit Cost Quantity Cost ($)Engine Honda GX 690 Brand New Engines $1,495.00 1 $1,495.00Transmissions Sauer-Danfass BDU-21H Hydraulic Systems Ltd. $1,500.00 2 $3,000.00Transmission Bracket Bracket machined to hold transmission Tech Services $100.00 2 $200.00Steel Spacing Stud Black-Oxide Steel Spacing Stud M8X1.25mm Sz, 200mm L, 35mm & 35mm93275A038 $3.61 4 $14.44Steel Hex Nut (pkg 50) Metric 18-8 Stainless Steel Hex Nut M8 Size, 1.25mm Pitch 91828A410 $9.98 1 $9.98Chain Gears Single-Type QD 5.12" OD McMaster-Carr 2500T791 $53.75 2 $107.50Chain Gears Single-Type QD 4.52" OD McMaster-Carr 2500T761 $43.29 4 $173.16Chain Gears Single-Type QD 2.09" OD McMaster-Carr 2500T632 $18.03 14 $252.42Chain Standard ANSI Roller Chain #50, Single StranMcMaster-Carr 7210K323 $489.50 1 $489.50Roller Chain Links #50 Adding Link for Standard ANSI Roller Ch McMaster-Carr 7210K325 $1.76 20 $35.20Wheels/Tires 16" Overall Diameter Wheel Princess Auto 2026755 $39.99 6 $239.94Swing Arms Aluminum Bare Channel 6061 T6 OnlineMetals.com $49.08 1 $49.08Axle (Inches) 60" Keyed 3/4" diameter shaft McMaster-Carr 6117K19 $48.56 2 $97.12Hex Nut 5/8" (pkg 25) Ultra-Coated Grade 8 Steel Hex Nut 5/8"-18 Thread, 15/16" Width, 35/64" H93827A255 $14.10 1 $14.10Machining Maching of the above mentioned axles Tech Services $60.00 10 $600.00Shocks 5.33" travel 16.45" extended length eshocks.com BE5-A827-T6 $75.00 4 $300.00Square 80/20 (inches) Extruded Aluminum 1"X1" McMaster-Carr 47065T125/47065T123 $218.6180/20 Connectors Connectors for Extruded Aluminum 1"X1" McMaster-Carr 47065T163 $3.39 100 $339.00Bearings - Pillow 5/8" Base mount double sealed bearing McMaster-Carr 6494K11 $36.49 6 $218.94Bearings - Pillow 3/4" Base mount double sealed bearing McMaster-Carr 6664K22 $34.74 6 $208.44Bearings - Flange Mount Flange mount double sealed bearing McMaster-Carr 6736K22 $27.65 16 $442.40Al Sheet (Body) 32"X74" 1/16" thickness Metal Supermarkets $118.53 1 $118.53Al Sheet (Body) 26"X54" 1/16" thickness Metal Supermarkets $75.09 1 $75.09Hydraulic Fluid (Litres) Type F Automatic Transmission Fluid Wal-Mart $24.99 1 $24.99Hubs Steel Hub for 5/8" live axle mfgsupply 53-681 $19.99 6 $119.94

    Total Cost $8,843.38

    MATV Cost Estimate

     

    Figure 13: MATV Cost Estimate   

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 17  

    6 Project Deliverables  

    Final term deliverables for Project MATV include a final design package, virtual solid model, mechanical 

    stress analysis, and final report.   In addition to these final deliverables, term deliverables  included two 

    term progress reports, two class presentations, a final presentation, and a project website. 

    The final design package consists of the model design drawings outlined  in this report, the component 

    selection details  including  specifications  and  supplier  contact  information, electronic  calculations  and 

    spreadsheet  support  for  system  sizing,  the  finite  element  analysis  for  mechanical  performance  of 

    fabricated parts, and the full system solid model as presented in the Solidworks design package. 

    It  is  anticipated  that with  the  information  outlined  in  this  report  and  supporting  documentation,  a 

    functional prototype of the MATV could be pursued, or an alternate design  iteration performed based 

    on our project specifications.   We  feel that Project MATV was given a good  initial start this term, and 

    potential to expand the project exists for future interested parties. 

    All documentation not included in this paper is available on the project website. 

    http://www.engr.mun.ca/~jcole/ 

    7  Recommendations and Conclusions  

    Now  that  Project  MATV  has  completed  its  third  design  iteration,  there  are  a  number  of 

    recommendations that would like to get passed on to a potential future project group.  If not applicable 

    to  future  groups,  these  recommendations  will  serve  as  final  conclusions  surrounding  this  design 

    iteration. 

    To begin, we recommend that a closer  look at the basic weight and size to performance specifications 

    undergo a review and optimization.  Component availability has been a large issue within design for this 

    project.    It  seems  that  available  hydraulic  components  are  suitable  for  low  performance with  light 

    weight, or high power with a much larger weight. 

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV  Pg 18  

    The  terrain  specifications warrant  a  robust  vehicle  drive  train  and  suspension  for  complex  obstacle 

    navigation.    This  robust design  causes  the  vehicle  to  increase  in  size  and weight  in order  to provide 

    enough travel to conquer the obstacles. 

    As the vehicle increases in size and weight, the hydraulic system must perform at a higher level in order 

    to meet general performance specifications.   Available component performance quickly  runs out, and 

    more  robust  hydraulic  and  mechanical  components  must  be  selected.    As  higher  performance 

    components are selected, weight increases, along with fuel consumption. 

    It  seems  that  torque  requirements warrant  large output  transmissions, which  in  turn  require  a  large 

    torque  engine  with  a  large  fuel  consumption.    These  engines  and  transmissions  are  large  weight 

    components, which drive up  the  torque  requirements once more.    Smaller  components with  smaller 

    diameter tires would lower the torque requirements,, but also result in lower top speeds. 

    It  is  recommended  that  weight  and  performance  specifications  increase  in  order  to  utilize  the  full 

    component  specifications  (as  designed  for  example),  or  both weight  and  performance  specifications 

    decrease  in order  to suit available  lower performance components.   With proper gearing,  the current 

    design can utilize components to carry huge payloads, or alternatively output  large speeds.   Neither of 

    these are desirable for out current design specifications.  Lower performance specifications, resulting in 

    a lower weight may also not be preferable. 

    Following  initial prototype,  a  tubular  frame  and  suspension members may warrant  consideration  for 

    final  design.    The  current  design  utilizing  80/20  and  aluminum  suspension members  is  an  effective 

    compromise between weight and convenience, however a tubular design may offer higher performance 

    characteristics for final design. 

    A review of tire design may be effective, to source an “Argo type” tire that propels the vehicle through 

    water more effectively.   The  current  tire design was  chosen out of availability and  convenience, and 

    suits the general design performance specifications well, however may not be overly effective for water 

    propulsion. 

    Finally, the design and incorporation of a controls system for the MATV should be a large focus for the 

    next design  iteration.   Now that an  initial platform and power train design  is outlined, optimization of 

    design and incorporation of controls can be focussed on.

  • FINAL REPORT MATV 

     

    8936 Mechanical Project – MATV    

    Appendix I – Sauer-Danfoss BDU-21H 

  • BD Series Hydrostatic Transmission

    Technical Information

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationRevisions

    2

    © 2008 Sauer-Danfoss. All rights reserved.

    Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer-Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations aren’t in conflict with agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss and the Sauer-Danfoss logotype are trademarks of the Sauer-Danfoss Group.

    Table of RevisionsDate Page Changed Rev.

    Jan 2009 35 Correction - Text AB

    Jan 2006 - The first edition AA

    HistoRy of Revisions

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationContents

    3

    geneRaL DesCRiPtion

    teCHniCaLsPeCifiCations

    oPeRatingPaRameteRs

    system DesignPaRameteRs

    featuRes anD oPtions

    BD Series Transmission ................................................................................................................................. 5Design , BDU-10S ............................................................................................................................................ 6Design , BDU-21L ............................................................................................................................................ 7Pictorial circuit diagram, BDU-06/10S ..................................................................................................... 8System schematic, BDU-06/10S ................................................................................................................. 8Pictorial circuit diagram, BDU-10L/21L/21H ......................................................................................... 9System schematic, BDU-10L/21L/21H, BDP-10L .................................................................................. 9

    Features and options ..................................................................................................................................10Operating parameters ................................................................................................................................11Fluid specifications ......................................................................................................................................11Efficiency , BDU-06S, 10S ............................................................................................................................12Efficiency , BDU-10L/21L, 21H, BDP-10L ...............................................................................................13

    Overview .........................................................................................................................................................14Input speed ....................................................................................................................................................14System pressure ............................................................................................................................................14Charge pressure ............................................................................................................................................15Charge inlet pressure ..................................................................................................................................15Case pressure .................................................................................................................................................15Hydraulic Fluid...............................................................................................................................................15Temperature and Viscosity ........................................................................................................................16

    Fluid and filtration ........................................................................................................................................17Reservoir ..........................................................................................................................................................17Control shaft force .......................................................................................................................................17Independent braking system ...................................................................................................................17Shaft load ........................................................................................................................................................18

    Shaft options ..................................................................................................................................................19Bypass valve ...................................................................................................................................................21High pressure relief valve (HPRV) and Charge check (Overpressure protection) .................21Charge check valve with orifice ..............................................................................................................22Optional integral reservoir ........................................................................................................................24Filter ..................................................................................................................................................................24Fan .....................................................................................................................................................................24

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationContents

    4

    ComPonent seLeCtion

    moDeLCoDe

    ReCommenDeDinstaLLation &maintenanCe

    instaLLationDRaWings

    Maximum system pressure .......................................................................................................................25 Input power ....................................................................................................................................................26 Unit life .............................................................................................................................................................27

    BDU master model code ............................................................................................................................29 BDP master model code ............................................................................................................................31

    Housing installation ....................................................................................................................................32 Shaft installation ...........................................................................................................................................32 Start up procedure .......................................................................................................................................32Operation ........................................................................................................................................................32Maintenance ..................................................................................................................................................32

    BDU-06S ...........................................................................................................................................................33 BDU-10S ...........................................................................................................................................................35BDU-10L ...........................................................................................................................................................35BDU-21L ...........................................................................................................................................................39BDU-21H ..........................................................................................................................................................39BDP-10L ...........................................................................................................................................................43Optional fan....................................................................................................................................................43

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationGeneral Information

    5

    the BD hydrostatic transmission can be applied for the transfer and control of power. It provides an infinitely variable speed range between zero and maximum in both forward and reverse modes of operation.the BDu transmission is a “ Z” style transmission with a variable displacement pump and a fixed displacement motor. The variable displacement pump features a cradle swashplate with a direct proportional displacement control. Reversing the direction of tilt of the swashplate reverses the flow of oil from the pump and thus reverses the direction of the motor output rotation. The fixed displacement motor uses a fixed swashplate. The pump and motor are of the axial piston design and utilize spherical-nosed pistons which are held against a thrust bearing by internal compression springs. The fluid supply for the BDu-10L/21L/21H transmission is contained in an external reservoir and passes through an external filter prior to entering the transmission and feeding the fixed displacement gerotor charge pump. Excess fluid in the charge circuit is discharged over the charge relief valve back to the charge pump inlet. Constant flow across a small fixed orifice connecting the charge circuit to the transmission housing supplements the cooling flow.the BDu-06s/10s transmission has a self-contained fluid supply and an integral filter. The fluid is forced through the filter by positive “head” on the fluid in the housing reservoir with an assist by the negative pressure created in the pump pistons as they create a vacuum. Charge check valves in the center section are used to control the makeup flow of fluid to the low pressure side of the loop. A spool type bypass valve is utilized in the transmission to permit moving the vehicle over short distances at low speeds without starting the engine.the BDP-10L is a variable displacement pump to utilize the pump kit of the BDu-10L transmission and designed for vehicle application which is for propel or for auxiliary functions where the system pressure requirements and design life can be met within pump rating.

    • Acompletetransmissionfamilytomeettheneedsofsmallvehicleapplication.• 3Transmissionframesizes:6,10,21• PTOCapabilityon“Z”StyleTransmission• VariablePumpVersionof10FrameSizeAvailable(10cm3)• CostEffective,Compact,LightweightDesign• Lownoise• HighEfficiency• WorldwideSalesandService

    BD seRies famiLy

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationGeneral description

    6

    Design BDU SERIES TRANSMISSION cross-section

    BDU-10S

    Tank

    Built-in filter

    Center section

    Output shaft

    Spring

    Spool typebypass valve

    Spring

    Piston

    Cylinder block

    Thrust bearing

    Housing

    Shaft Seal

    Input shaft

    Ball bearing

    Cooling fan

    Cradle swash plate

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationGeneral description

    7

    Design BDU SERIES TRANSMISSION cross-section

    BDU-21L

    Workingloop

    Output shaft

    Suctioncircuit

    Charge check valve Spool type

    bypass valve

    Center section

    Charge pump

    Charge relief

    Charge circuit

    Suction port SpringPiston

    Input shaft

    Ball bearing

    Shaft Seal

    Housing

    Thrust bearing

    Cylinder block

    Workingloop

    Cradle swash plate

    (continued)

  • 520L0935 · Rev AB · Jan 20098

    BD Series Hydrostatic TransmissionTechnical InformationGeneral description

    PiCtoRiaL CiRCuitDiagRam

    BDU-06S, BDU-10S

    system sCHematiC

    BYPASSVALVE

    CYLINDERBLOCKASSEMBLY

    INPUTSHAFT

    VARIABLESWASHPLATE VARIABLE

    DISPLACEMENTPUMP

    BDUHOUSING

    RESERVOIR

    BUILT-INFILTER(BDU-10S)

    CHECK VALVE

    CHECK VALVECYLINDER BLOCKASSEMBLY

    OUTPUTSHAFT

    DISPLACEMENTMOTOR

    FIXEDSWASHPLATE

    CONTROL SHAFT “b”

    CONTROL SHAFT “a”

    HYDRAULIC CIRCUIT

    ø0.7 ø0.8

    ø0.7 ø0.8

    CHECKVALVEWITHø0.7 ORIFICEOPTIONCODE:07

    BALL CHECK VALVE

    OPTIONCODE:BB

    CHECKVALVEWITHø0.8 ORIFICEOPTIONCODE:08

    CHECKVALVEWITHø0.7 ORIFICEOPTIONCODE:07

    BALL CHECK VALVE

    OPTIONCODE:BB

    CHECKVALVEWITHø0.8 ORIFICEOPTIONCODE:08

    Workingloop(high pressure)

    Workingloop(low pressure) Suction line Case drain fluid

    FIXED

  • 520L0935 · Rev AB · Jan 2009

    20.6MPa 17.2MPa 13.7MPa 20.6MPa 20.6MPa

    20.6MPa 17.2MPa 13.7MPa 20.6MPa 20.6MPa

    9

    BD Series Hydrostatic TransmissionTechnical InformationGeneral description

    PiCtoRiaL CiRCuitDiagRam

    BDU-10L, BDU-21L, BDU-21HBDP-10L (part of pump)

    system sCHematiC

    BYPASSVALVE

    CYLINDERBLOCKASSEMBLY

    INPUTSHAFT

    VARIABLESWASHPLATE

    VARIABLEDISPLACEMENTPUMP

    RESERVOIR

    FILTER

    CHECK VALVE

    CHECK VALVE CYLINDER BLOCKASSEMBLY OUTPUT

    SHAFT

    FIXEDSWASHPLATECOOLING

    ORIFICE

    CHARGEPUMP

    CHARGERELIEFVALVE

    SUCTIONPORT

    DRAIN PORTHYDRAULIC CIRCUIT

    CONTROL SHAFT “a”

    CONTROL SHAFT “b”

    BALL CHECK VALVEOPTIONCODE:BB

    CHECKVALVEWITHø1.0 ORIFICEOPTIONCODE:10

    CHECKVALVEWITHø1.2 ORIFICEOPTIONCODE:12

    ø1.0 ø1.2

    CHECKVALVEWITHRELIEF VALVE ANDø0.85 ORIFICEOPTIONCODE:RB

    CHECKVALVEWITHRELIEF VALVE ANDø0.7TWINORIFICEOPTIONCODE:RA

    CHECKVALVEWITHRELIEF VALVE

    OPTIONCODE:R2

    CHECKVALVEWITHRELIEF VALVE

    OPTIONCODE:R1

    CHECKVALVEWITHRELIEF VALVE

    OPTIONCODE:R0

    ø0.85

    ø0.85ø0.7×2

    21L

    21H

    ø0.8

    ø0.7×2

    BDP-10L

    Workingloop(high pressure)

    Workingloop(low pressure)

    Suction line Case drain fluid

    SUCTIONPORT

    DRAIN PORTHYDRAULIC CIRCUIT

    CONTROL SHAFT “a”

    CONTROL SHAFT “b”

    ø0.8

    CHECKVALVEWITHRELIEF VALVE ANDø0.85 ORIFICEOPTIONCODE:RB

    CHECKVALVEWITHRELIEF VALVE ANDø0.7TWINORIFICEOPTIONCODE:RA

    CHECKVALVEWITHRELIEF VALVE

    OPTIONCODE:R2

    CHECKVALVEWITHRELIEF VALVE

    OPTIONCODE:R1

    CHECKVALVEWITHRELIEF VALVE

    OPTIONCODE:R0

    BALL CHECK VALVEOPTIONCODE:BB

    CHECKVALVEWITHø1.0 ORIFICEOPTIONCODE:10

    CHECKVALVEWITHø1.2 ORIFICEOPTIONCODE:12

    ø1.0 ø1.2

    (continued)

    DISPLACEMENTMOTOR

    FIXED

  • 520L0935 · Rev AB · Jan 200910

    BD Series Hydrostatic TransmissionTechnical InformationTechnical specifications

    featuRes anD oPtions

    features unitProduct type & frame

    BDu-06s BDu-10s BDu-10L BDu-21L BDu-21H BDP-10L

    Pump

    Displacementcm³

    [in³]

    6

    [0.37]

    10

    [0.61]

    10

    [0.61]

    21

    [1.28]

    21

    [1.28]

    10

    [0.61]

    Swashplate Angle degree 15 15 15 15 15 15

    Control Shaft degree 15 21 21 22 22 21

    MotorDisplacement

    cm³

    [in³]

    6

    [0.37]

    10

    [0.61]

    10

    [0.61]

    21

    [1.28]

    21

    [1.28]—

    Swashplate Angle degree 15 15 15 15 15 —

    Charge Pump Displacement cm³ [in³] N.A. N.A. 1.9 [0.12] 2.1 [0.13] 3.0 [0.18] 1.9 [0.12]

    Output Speed

    Ratedmini-1

    3000 3000 3600 3600 3600 3600

    Maximum (intermittent) 3200 3200 3800 3800 3800 3800

    Maximum Output Torque (Theoretical)Nm

    [lbf-in]

    9.8

    [87]

    23.4

    [208]

    23.4

    [208]

    49.2

    [436]

    72.1

    [639]—

    Input Power (Maximum)kW

    [ps]

    1.1

    [1.5]

    2.2

    [3.0]

    3.7

    [5.0]

    7.4

    [10.0]

    11.0

    [15.0]

    3.7

    [5.0]

    Weightkgf

    [lbs]

    4

    [9]

    6.3

    [14]

    6.5

    [14]

    10

    [22]

    10

    [22]

    4.6

    [10]

    Control Torque Required

    to Stroke Pump (Maximum)

    Nm

    [lbf-in]

    8.8

    [78]

    19.6

    [174]

    19.6

    [174]

    22.5

    [200]

    24.5

    [217]

    19.6

    [174]

    Mounting See Installation Drawings

    Rotation Clockwise or Counterclockwise

    Suction / Oil Tank Port (SAE O-ring Boss) 7/8-14UNF 7/16-20UNF 9/16-18UNF 7/16-20UNF

    Other ports See Installation Drawings

    Shaft P34, 36 ~ 38, 40 ~ 42

    Bypass Valve O.P. STD STD STD STD STD

    Neutral Valve / Orifice N.A./N.A. N.A./O.P. N.A./O.P. O.P./O.P. O.P./O.P. N.A./O.P.

    High Pressure Relief Valve N.A. N.A. N.A. N.A. STD N.A.

    Filtration W/O built-in ExternalExternal

    (Option, Integrated)External

    Reservoir Integrated Integrated External External External

    Space for the oil in the housing cm3 450 550 550 700 700 250

    *SAE J1926-1 / ISO 11926-1

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationTechnical specifications

    11

    fLuiD sPeCifiCations viscosity mm²/sec (cSt) [SUS]Minimum 7 [49]

    Continous 12 [70] - 60 [278]

    Maximum 1600 [7500]

    oil temperature °C [°F]

    Minimum −10 [14]

    Maximum Continuous 82 [180]

    Maximum Intermittent 104 [219]

    oPeRating PaRameteRs

    Parameter unitProduct type & frame

    BDu-06s BDu-10s BDu-10L BDu-21L BDu-21H BDP-10L

    Input Speed

    Minimum

    min-11000 600 600 600 600 600

    Rated 3000 3000 3600 3600 3600 3600

    Maximum 3200 3200 3800 3800 3800 3800

    System Pressure

    Ratedbar

    [psi]

    105

    [1530]

    150

    [2185]

    210

    [3059]

    150

    [2185]

    Maximum150

    [2185]

    175

    [2549]

    210

    [3059]

    245

    [3569]

    175

    [2549]

    Charge Pressure bar [psi] N.A. 3 [44] ~ 5 [73]

    Charge Inlet Pressure bar [psi] N.A. 0.8 [12] abs

    Case Pressure bar [psi] 0.3 [4]

    Rated bar

    [psi]

    0.3 [4]

    Maximum (Cold Start) 0.7 [10]

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationTechnical specifications

    BDU-06S

    ηvηm

    ηt

    100

    Effic

    ien

    cy

    %

    90

    80

    70

    60

    50

    40

    30

    20

    10

    03 5 7

    Theoretical Output Torpue Nm

    40%

    40%

    50%

    50%

    55%

    55%

    60%

    60%

    65%

    65%

    70%

    70%

    45%

    45%

    10

    5

    0 1000 2000 3000

    BDU-06S

    Ou

    tpu

    t T

    orq

    ue

    Nm

    Output Speed min-1

    BDU-10S

    ηv ηmηt

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    05 9 11 13 17

    Effic

    ien

    cy

    %

    Theoretical Output Torpue Nm

    40%

    45%

    50%

    55%

    60%

    65%

    70%

    73%

    73%

    70%

    65%

    60%55%

    50%45%40%

    20

    10

    0 1000 2000 3000

    BDU-10S

    Ou

    tpu

    t T

    orq

    ue

    Nm

    Output Speed min-1

    Inputspeed:3000min-1Oiltemperature:50°CFull Displacement

    Inputspeed:3000min-1Oiltemperature:50°CFull Displacement

    Inputspeed:3000min-1Oiltemperature:50°C

    Inputspeed:3000min-1Oiltemperature:50°C

    12

    effiCienCy

    Efficiency ( ηv:Volumetric,ηm:Mechanical,ηt:Overall)

    Efficiency ( ηv:Volumetric,ηm:Mechanical,ηt:Overall)

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationTechnical specifications

    BDU-10L

    ηv ηmηt

    1009080

    70

    60

    5040

    30

    20

    10

    05 5 7 9 11 13 15 16 18 20 22

    Effic

    ien

    cy

    %

    Theoretical Output Torpue Nm

    40%

    45%

    50%

    55%

    60%

    65%

    70%

    73%

    73%

    70%

    65%

    60%55%

    50%45%40%

    20

    10

    0 1000 2000 3000

    BDU-10L

    Ou

    tpu

    t T

    orq

    ue

    Nm

    Output Speed min-1

    BDU-21L/21H

    ηv ηmηt

    10090

    8070

    605040

    3020

    100

    11 23 34 46 57 65

    Effic

    ien

    cy

    %

    Theoretical Output Torpue Nm

    40%

    45%

    50%

    55%

    60%

    65%

    70%

    75%

    70%

    75%

    65%

    60%55%

    50%45%40%

    50

    40

    30

    20

    10

    0 1000 2000 3000

    BDU-21L/21H

    Ou

    tpu

    t T

    orq

    ue

    Nm

    Output Speed min-1

    BDP-10L BDP-10L

    35.0

    30.0

    25.0

    20.0

    15.0

    10.0

    5.0

    0.0

    Ou

    tpu

    t flo

    w

    Lite

    r / m

    in

    at no road

    at 105 bar

    70 bar

    105 bar

    1500 1000500 2000 2500 3000

    Input Speed min-11500 1000500 2000 2500 3000

    Input Speed min-1

    100

    9080706050403020

    100

    Effic

    ien

    cy

    %

    Inputspeed:3000min-1Oiltemperature:50°CFull Displacement

    Inputspeed:3000min-1Oiltemperature:50°C

    Inputspeed:3000min-1Oiltemperature:50°C

    BDP-10L BDP-10L

    35.0

    30.0

    25.0

    20.0

    15.0

    10.0

    5.0

    0.0

    Ou

    tpu

    t flo

    w

    Lite

    r / m

    in

    at no road

    at 105 bar

    70 bar

    105 bar

    1500 1000500 2000 2500 3000

    Input Speed min-11500 1000500 2000 2500 3000

    Input Speed min-1

    100

    9080706050403020

    100

    Effic

    ien

    cy

    %

    Oiltemperature:50°C

    (continued)

    Inputspeed:3000min-1Oiltemperature:50°CFull Displacement

    13

    effiCienCy

    Efficiency ( ηv:Volumetric,ηm:Mechanical,ηt:Overall)

    Overall EfficiecyOutput flow - Input Speed

    Efficiency ( ηv:Volumetric,ηm:Mechanical,ηt:Overall)

    Oiltemperature:50°CFull Displacement

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationOperating Parameters

    14

    oveRvieW Maintain operating parameters within prescribed limits during all operating conditions.This section defines operating limits given in the table Operating parameters, page 11.

    minimum speed is the lowest input speed recommended during engine idle condition.Operating below minimum speed limits pump’s ability to maintain adequate flow for lubrication and power transmission.Rated speed is the highest input speed recommended at full power condition.Operating at or below this speed should yield satisfactory product life.maximum speed is the highest operating speed permitted. Exceeding maximum speed reduces product life and can cause loss of hydraulic power and braking capacity. Never exceed maximum speed limit under any operating conditions.

    Warningunintended vehicle or machine movement hazard.Exceeding maximum speed may cause a loss of hydrostatic drive line power and braking capacity. You must provide a braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss.

    system pressure is the differential pressure between system ports A and B. It is the dominant operating variable affecting hydraulic unit life. High system pressure, which results from high load, reduces expected life. Hydraulic unit life depends on the speed and normal operating, or weighted average, pressure that can only be determined from a duty cycle analysis.applied pressure is the chosen application pressure found within the order code for the transmission unit. This is the pressure at which the driveline generates the maximum pull or torque in the application.Rated pressure is the design pressure from the transmission unit. Applications with applied pressures at or below this pressure should yield satisfactory unit life given proper component selection guidelines.maximum pressure (Peak) is the highest intermittent pressure allowed under any ircumstances. Applications with applied pressures between rated and peak should be attempted only with application, duty cycles and life expectation analyses. This requires factory approval.

    All pressure limits are differential pressures referenced to low loop (charge) pressure.Subtract low loop pressure from gauge readings to compute the differential.

    inPut sPeeD

    system PRessuRe

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationOperating Parameters

    15

    CHaRge PRessuRe The charge pressure setting listed in the technical specifications is based on the chargeflow across the charge pressure relief valve at fluid temperature at 50˚C [120˚F].

    Charge pump inlet conditions must be controlled in order to achieve expected life and performance. A continuous inlet vacuum of no less than 0.8 abs bar is recommended. Normal vacuums less than 0.7 abs bar would indicate inadequate inlet design or stricted filter.

    Under normal operating conditions, the maximum continuous case pressure must not exceed 0.3 bar (4PSI). Maximum allowable intermittent case pressure during cold start must not exceed 0.7 bar (10PSI).

    CautionPossible component damage of leakage.Operation with case pressure in excess of these limits may damage seals, gaskets, and/or housings, causing external leakage. Performance may also be affected since charge and system pressure are additive to case pressure.

    Ratings and performance data are based on operating with hydraulic fluids containing oxidation, rust and foam inhibitors. These fluids must possess good thermal and hydrolytic stability to prevent wear, erosion, and corrosion of pump motor components. Never mix hydraulic fluids of different types. Thefollowingfluidsaresuitable:• EngineoilsAPIClassificationSL,SJ(forgasolineengines)andCI-4,CH-4,CG-4, CF-4, CF and CD (for diesel engines) • HydraulicOilISO11158-HM(Sealcompatibilityandvanepumpwearresistanceper DIN51524-2 must be met)• HydraulicOilISO11158-HV(Sealcompatibilityandvanepumpwearresistanceper DIN51524-3 must be met)• HydraulicOilDIN51524-2HLP• HydraulicOilDIN51524-3HVLP

    CHaRge inLet PRessuRe

    Case PRessuRe

    HyDRauLiC fLuiDs

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationOperating Parameters

    16

    Temperature and viscosity requirements must be concurrently satisfied. The data shown in the table, Fluid Specifications, page 11, assume petroleum-based fluids are used.

    The high temperature limits apply at the hottest point in the transmission, which is normally the case drain. The system should generally be run at or below the rated temperature. The maximum temperature is based on material properties and should never be exceeded.

    Cold oil will generally not affect the durability of the transmission components, but it may affect the ability of oil to flow and transmit power; therefore temperatures should remain over 16˚C [30˚F] above the pour point of the hydraulic fluid. The minimum temperature relates to the physical properties of component materials.

    For maximum unit efficiency and bearing life the fluid viscosity should remain in the recommended operating range. The minimum viscosity should be accepted only during brief occasions of maximum ambient temperature and severe duty cycle operation. The maximum viscosity should be permitted only at cold start.

    Heat exchangers should be sized to keep the fluid within these limits. Testing is recommended to verify that these temperature limits are not exceeded.

    temPeRatuRe anDvisCosity

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationSystem design parameters

    17

    fLuiD anD fiLtRation To prevent premature wear, it is imperative that only clean fluid enters the hydrostatic transmission circuit. Therefore an inlet filter better than β20=1.4 is required in the charge pump inlet line. This filter should not have a bypass and should be changed regularly to ensure system reliability. The BD series hydrostatic transmission requires system filtration capable of maintaining fluid cleanliness at ISO 4406-1999 class 22/18/15 or better.

    The BDU-06S and BDU-10S are designed with optional integrated reservoir. A reservoir for BDU-10L and BDP-10L larger than the 2 liter tank size is recommended. A reservoir for BDU-21L/H larger than the 5 liter tank size is recommended. The hoses or piping size is recommended to be larger than 3/8 inch normal tube OD.

    The BDU transmission is designed with direct displacement control (DDC). DDC can be located at either side of the housing. It provides a simple, positive method of control.Movement of the control shaft causes a proportional swashplate movement, thus varying the pump’s displacement from full displacement in one direction to full displacement in the opposite direction.The approximate maximum control torque necessary to rotate the control shaft is shown in the table of technical specifications. A stopper to prevent over-stroke is required at the end of maximum angle of control shaft. The control shaft force should be kept at or below the force in the table below.

    features unitProduct type & frame

    BDu-06s BDu-10s BDu-21L

    Allowable maximum force

    for control shaftNm 10 20 25

    Vehicle propel applications may require a provision for non-linear control input to reduce control sensitivity near neutral. Damping or frictional forces may be necessary to produce the desired control feeling.These units do not include any neutral centering device for the swashplate. It is necessary to provide a force in the machine’s control system that will hold the swashplate at the desired angle. A “ fail safe “ which will return the swashplate to the neutral in the event of linkage failure is recommended.

    Warningunintended vehicle or machine movement hazard.The loss of hydrostatic drive line power, in any mode of operation (forward, neutral, or reverse) may cause the system to lose hydrostatic braking capacity. You must provide a braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss.

    ReseRvoiR

    ContRoL sHaft foRCe

    inDePenDent BRakingsystem

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationFeatures and options

    0 10

    200

    400

    600BDU-06S

    BDU-10S/10L,BDP-10L

    BDU-21L/21H

    200

    400

    600

    800

    200

    400

    600

    800

    1000

    1200

    1400

    20 30

    0 10 20 30 40 50

    0 10-10 20 30 40 50

    18

    sHaft LoaD The maximum allowable radial road of input shaft (Re) is based on the maximum external moment and the distance from the housing surface to the input shaft. Thelimitofradialloadofinputshaftisshownthefigurebelow:

    The maximum shaft thrust in (tin) of input shaft is 18% of allowable radial road (Re) of the input shaft. The shaft thrust out (tout) of the input shaft should be no load. The radial and thrust load of the output shaft should be no load.

    No Load

    No Load

    No Load

    Tout (No Load)

    Re:seefigures

    Tin

    distance (L)

    distance (L) mm →

    distance (L) mm →

    distance (L) mm →

    Re Re

    N →

    Re

    N →

    Re

    N →

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationFeatures and options

    This charge pump housing isapplied only for BDU-10L.

    d D

    D

    D

    19

    sHaft oPtions The BDU transmissions are available with a variety of straight key, JIS Spline, JIS Serra-tion, SAE Spline shaft for input shaft, PTO shaft and output shaft. Details are shown in the Installation Drawings, page 33 through page 43.

    PTO Shaft

    Output Shaft

    Output

    Shaft

    Options

    JIS Spline

    15×13×1.0

    Code:S16

    (BDU-06S)

    (BDU-10S)

    (BDU-10L)

    JIS Spline

    20×18×1.0

    Code:K18

    (BDU-10S)

    (BDU-10L)

    SAE Spline

    32/64-16T

    Input Shaft

    PTO Shaft

    Options

    Input Shaft

    Options

    PTO

    None

    Straight-Keyed D=15mm

    Code:KA0(BDU-06S)

    KB0 (BDU-10S)

    KB1 (BDU-10L)

    Straight-Keyed D=15mmStraight d=12.7mm

    Code:PB2(BDU-10S)

    Code:PB4(BDU-10L)

    Straight-Keyed D=15mm

    JIS

    Serration

    12×23×0.5

    Code:J13

    (BDU-06S)

    (BDU-10S)

    (BDU-10L)

    Code:PB1(BDU-10S)

    Code:PB3(BDU-10L)

    BDU-06S

    BDU-10S

    BDU-10L

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationFeatures and options

    D

    D

    D

    20

    sHaft oPtionsContinueD

    JIS Spline

    20×14×1.25

    Code:S22

    (BDU-21L)

    (BDU-21H)

    JIS Spline

    20×18×1.0

    Code:J18

    (BDU-21L)

    (BDU-21H)

    SAE Spline

    32/64-22T

    Code:KC1(BDU-21L)

    KC2 (BDU-21H)

    Code:J14

    (BDU-21L)

    (BDU-21H)

    BDU-21L

    BDU-21H

    JIS Spline

    15×13×1.0

    SAE Spline

    32/64-16T

    Straight-Keyed D=17mm

    Code:PC1(BDU-21L)

    PC2(BDU-21H)

    Straight-Keyed D=17mm

    Code:PC5(BDU-21L)

    PC6 (BDU-21H)

    PTO Shaft

    Output Shaft

    Output

    Shaft

    Options

    Input Shaft

    PTO Shaft

    Options

    Input Shaft

    Options

    PTO

    None

    Straight-Keyed D=17mm

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationFeatures and options

    21

    ByPass vaLve In some applications, it is desirable to move the vehicle over short distances at low speed without starting the engine. A bypass valve allows oil to be routed from one side of the pump/motor circuit to the other, thus allowing the motor to turn. The bypass valve must be fully closed during normal vehicle operation.BDU series transmissions utilize a spool-type bypass valve. The bypass valve plunger must be depressed manually to open the valve. This connects both sides of the main hydraulic circuit to the housing case and allows fluid to circulate without rotating the pump, prime mover and motor. A spring closes this valve on the 6S, 10L and 10S transmissions, while charge pressure closes the valve on the 21L and 21H transmissions. The BDP-10L pump utilizes a screw-type bypass valve.

    The BDU-21H transmission is available with a combination charge check and high pressure relief valve assembly. High pressure relief valves are available in a range of settings as shown in the Model Code, page29, 30 and 31. Individual port pressure set-tings may be specified. The high pressure relief valve settings are a differential pressure (referenced to charge pressure).

    HigH PRessuReReLief vaLve (HPRv)anD CHaRge CHeCk

    ( oveR PRessuRe) PRoteCtion

    Check and Relief valve for BDu-21H

    option codePressure setting orifice

    bar [psi]

    R0 210 -

    R1 175 -

    R2 140 -

    RA 210 0.7 Twin

    RB 210 0.85

    Charge circuit

    Check and Relief valve

    Bypass valve

    Workingloop(Main hydraulic circuit)

    Check and Relief valve

    BDU-21H Center section

    Workingloop(Main hydraulic circuit)

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationFeatures and options

    22

    The BDU transmissions are equipped with charge check valves. In some applications, it is desirable to use charge check valve with orifice for expanding null dead band, giving both the safety measure to prevent the vehicle movement in the neutral position of the control shaft and easy adjustment of neutral position when connected to vehicle linkage. The orifice connects the working loop, which is a main hydraulic circuit, to a charge circuit. It always allows some internal leakage to ensure the expanding null dead band around neutral position of control shaft. However, it decreases the volumetric efficiency, particularly at high system pressure in the working loop. It is recommended to install the orifice in a specific working loop, which is pressurized when the vehicle moves in reverse. The orifice diameter improves the null dead band but decreases the volumetric efficiency. A cross section and characteristics are shown below. The charge check valves with orifice are available in a range of orifice diameters as shown in the Model Code, page 29, 30 and 31.

    CHaRge CHeCk vaLve WitH oRifiCe

    Inputspeed:3000min-1OilTemp:50˚CNo load

    Features UnitBDU-10S/10L/21L/21H

    WithoutOrifice

    Deadband of

    Control Shaft Angle

    (DB-STD)

    [degree] Approx. 0.1

    Features Unit

    BDU-10S/10L BDU-21L BDU-21LH

    Orifice diameter [mm]

    φ0.7 φ0.8 φ1.0 φ1.2 φ0.85 φ0.7 twin

    Deadband of

    Control Shaft Angle

    (DB-OR)

    [degree]Approx.

    0.5

    Approx.

    0.7

    Approx.

    0.5

    Approx.

    0.7

    Approx.

    0.35

    Approx.

    0.5

    with Orifice

    Reverse

    DB-OR

    Neutral-OR Neutral-STD

    DB-STD

    Control Shaft Angle

    Forward

    Output Flow

  • 520L0935 · Rev AB · Jan 2009

    BD Series Hydrostatic TransmissionTechnical InformationFeatures and options

    BDU-10S/10L

    BDU-21L

    BDU-21H

    23

    CHaRge CHeCk WitH oRifiCe

    Check Valve (Ball) without orifice

    Check Valve with orifice

    Check & Relief without orifice

    Check & Relief with orifice

    BDU-10L Check Valve BDU-10S Check Valve

    orifice

    orifice

    Check Valve (Ball) without orifice

    Check Valve with orifice

    orifice

  • 520L0935 · Rev AB · Jan 20