61
Teaching Students to Think Geriatrically D.W. Reynolds Foundation Annual Meeting October 24, 2011 Amit Shah, MD University of Texas Southwestern Dallas Cynthia Brown, MD, MSPH University of Alabama at Birmingham Houman Javedan, MD Harvard University

D.W. Reynolds Foundation Annual Meeting October 24, 2011 Amit Shah, MD University of Texas Southwestern Dallas Cynthia Brown, MD, MSPH University of Alabama

Embed Size (px)

Citation preview

  • Slide 1

D.W. Reynolds Foundation Annual Meeting October 24, 2011 Amit Shah, MD University of Texas Southwestern Dallas Cynthia Brown, MD, MSPH University of Alabama at Birmingham Houman Javedan, MD Harvard University Slide 2 What is a geriatrician? .as a geriatrician, I am by definition an expert in subtlety and complexity Hazzard, W. I Am a Geriatrician JAGS 52:161, 2004 Slide 3 Teaching with aphorisms and pearls.. Always remember the atypical presentation of disease. The older patient often wont have read the textbook. If youve seen one 80 year old, youve seen one 80 year old. Occams Razor is dangerous Multifactorial etiologies demand multifactorial solutions Slide 4 We can do better Teaching trainees to think Slide 5 Outline for today Background about clinical reasoning Teaching of clinical reasoning in novice trainees (medical students) Teaching and assessment of clinical reasoning in advanced trainees (fellows) Clinical Reasoning Case Practice (in a small group) Slide 6 What is clinical reasoning? AKA: problem-solving decision-making judgment diagnostic reasoning Major domain of clinical competence Thinking and decision-making processes that are used in clinical practice Slide 7 Two Major Types of Clinical Reasoning Analytic (hypothetico-deductive) What is generally emphasized in teaching Bayes' theorem EBM Generation of rules Non-analytic Illness Scripts Pattern recognition Experience Subconscious/automatic Figures from: Eva KW. What every teacher needs to know about clinical reasoning. Medical Education 2004; 39: 98106 Slide 8 Which is better? Non-analytic plays a much larger role in clinical care than we teach Non-analytic has not been shown to be inferior Excessive reliance on pattern recognition can cause diagnostic errors Want to teach students to use both Example: EKG reading teaching study Norman GR, Brooks LR, Colle CL, Hatala RM. The benefit of diagnostic hypotheses in clinical reasoning: experimental study of an instructional intervention for forward and backward reasoning. Cognit Instruct 2000;17:43348 Slide 9 Non-analytic Teaching Can teach illness scripts and pattern recognition One Model: Many cases, rapid fire method KBIT at TCOM (Dr. Frank Papa) Pattern matching and pattern discrimination Diagnostic competence is problem specific disease-specific Explains why PBL/CBLs have limitations Rapid Fire, multiple cases have a role (eg Prognosis app) Papa FJ, Oglesby MW, Aldrich DG, Schaller F, Cipher DJ. Improving diagnostic capabilities of medical students via application of cognitive sciences-derived learning principles. Medical Education, 41:419-425, 2007 Slide 10 Areas of Clinical Reasoning Wong et als analytical model Hypothesis Cues Hypothesis Refinement Testing Threshold Treating Threshold Slide 11 Geriatrically Thinking about Hypothesis Cues Atypical Presentation of Disease Importance of Corollary Informants Picking up subtle clues from the environment Home visits Slide 12 Geriatrically Thinking about Hypothesis Refinement Multifactorial etiologies Syndromal Presentation Incidence specific to age groups Slide 13 Geriatrically Thinking about Testing Thresholds Increased risk of harm from testing Increased likelihood of false positive tests Prognostication Goals of care Cost/benefit Slide 14 Geriatrically Thinking about Treating Thresholds Polypharmacy/non-pharmacologic management Paucity of therapeutic evidence in advanced age groups Individualized threshold/fluctuating threshold Importance of interdisciplinary care Impacts of goals of care Slide 15 Slide 16 The Old Way of Becoming An Expert Slide 17 Mismatch Between Teaching and Practice What is Taught What they observe Step-by-step approaches Book knowledge EBM and Bayesian Analysis Hypothesis testing Thorough/ Luxury of Time Quick, snap judgments Wisdom Experience Fast and Frugal or Flesh and Blood (real world) Pattern recognition and seemingly automatic retrieval from the subconscious Shortcuts Slide 18 Clinical Guidelines and Cookbook Medicine Great for simple, straightforward, typical patient NOT SO GREAT FOR GERIATRICS! Help reduce variability in clinical practice But we teach the heterogeneity of aging : Speed rate new knowledge applied Can be good, but previous disasters with rapid adoption of untested practice/medications in the geriatric patient (eg, Vioxx, RALES trial, etc) Why trainees love them: Clear answer of what to do next Clear targets / goals of treatment Simplify things / take away the uncertainty Slide 19 Problems of Novice Trainees Analytic strategies more rigid and simplistic Over-reliance on algorithms Inability to account for uncertainty What can we do? Teach which hypothesis cues are important in a given context Refining hypotheses when additional data available. Slide 20 How will we teach them? New National Curriculum: POGOe web-GEM Disclaimer: Both myself and Amit Shah are involved in this initiative Teach trainees explicitly about thinking and cognitive errors Our niche as geriatricians, given our patients disproportionately suffer consequences of cognitive errors! Slide 21 POGOe web-GEM Curriculum Standardized Peer-Reviewed Curriculum 34 cases in development Authors from numerous institutions Linked to AAMC Competencies At the 3 rd /4 th year medical student level of detail Have a clerkship home to allow integration for schools without mandatory geriatrics rotation Emphasize core topics important to third year medical students in the cases clerkship home Slide 22 POGOe web-GEMs and Thinking Skills Using the CASUS platform Same platform used by medU (SIMPLE, CLIPP) 1.5 million cases completed to date Clinical Reasoning Features: Hypothesis Generation Diagnostic Networks Hypothesis Refinement Slide 23 Slide 24 Slide 25 Slide 26 POGOe web-GEM Curriculum Explicit focus on teaching novice trainees to think like a geriatrician Syndromal Presentations Atypical Presentations Interprofessional approaches to evaluation and treatment Slide 27 Teaching about Cognitive Errors Well developed literature (from cognitive psychology) about diagnostic errors Popularized by Dr. Jerome Groopman Explicit teaching to novice trainees may: help to develop good thinking habits demystify process of coming to diagnosis Croskerry P. The importance of cognitive errors in diagnosis and strategies to minimize them. Acad Med. 2003;78:775-780. Croskerry P. Cognitive forcing strategies in clinical decision making. Ann Emerg Med. 2003;41:110-120. Redelmeier DA. Improving patient care. The cognitive psychology of missed diagnoses. Ann Intern Med. 2005;142:115-120. Slide 28 How do cognitive errors occur? Typically not in isolation Cascade of sequential cognitive mistakes Much more common that novice trainees think Up to 10% of autopsies reveal a clinically relevant diagnosis that was missed Misdiagnosis occurs 15-20% of the time; about 80% are due to cognitive errors Technology not a solution Increased technology can increase misdiagnosis Slide 29 Types of Cognitive Errors Over 30-40 types of cognitive errors described in literature Common types of error easily taught during care of geriatric patients: Premature Closure Framing or Diagnosis Momentum Availability Representativeness Errors Attribution Commission Bias and Omission Bias Slide 30 Premature Closure or Freezing Once have something that fits you stop thinking Also has been called satisficing error Satisfy + suffice Examples in Geriatrics: Hospital patient with pneumonia who has a MI The fracture most commonly missed is the second Delirious patient with multifactorial etiology (stopping work-up with positive U/A and miss MI or meningitis) Slide 31 Framing or Diagnosis Momentum Once several doctors/specialists agree on a diagnosis it is easier to perpetuate it rather than take the time to question its accuracy In Geriatrics: Chart Lore for PMH ED admits this delirious patient with a UTI from the NH Slide 32 Availability Errors Choosing most likely or most memorable diagnosis Over-estimation of frequency of vivid or easily recalled events Under-estimation of frequency of ordinary or hard to recall events Slide 33 Representativeness Removing a disease from differential diagnosis list because it does not match standard or usual presentation A major problem in diagnosis of patients in whom atypical presentations are common, like geriatrics Slide 34 Commission Bias (inability to follow geriatric mantra: Dont just do something, stand there) Urge to act rather than do nothing even when nothing is preferable. Rooted in belief that beneficence involves active intervention Omission Bias (They are just old) The tendency towards inaction Events attributed to natural events of disease better than those related to a physicians intervention Rooted in non-malfescence Slide 35 Attribution Errors Stereotyping Judgmental Gender Bias Racial Bias Age Bias Slide 36 Teaching avoidance of cognitive errors Make thinking explicit Think out loud! Feedback Reflective Practice Become comfortable with uncertainty Acknowledgement we get it wrong at least 10% and up to 20% of time Metacognition: Cognitive Pills for Cognitive Ills Slide 37 Slide 38 What is different about the advanced learner? 1- Larger non-analytic reasoning data base 2- Already adopted a form of analytical model 3- Due to variability of experience and graduate medical education, variability of baseline knowledge and skills 1+2+3 = Adult Learner 1 1. Kolb, David (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice-Hall. Slide 39 What is different about the new Geriatric learner? Less likely to be exposed to geriatric clinical reasoning domains described at beginning of presentation Well trained in clinical guidelines not based on the elderly (worked hard and invested heavily in achieving recognition for it) Less likely to have experience in a nursing home or rehab setting Slide 40 Where to Begin? Clinical Reasoning studies Think out loud 2,3 Ability to communicate reasons 2 Kassirer, J.P., Wong, J.B, Kopelman R.I. (2009). Learning Clinical Reasoning. New York: Lippincott Williams & Wilkins 3 Alberdi E, Taylor P, Lee R. Elicitation and representation of expert knowledge for computer aided diagnosis in mammography. Methods Inf Med. 2004;43(3):239-46. Slide 41 Can You Teach Advanced Learners? Adult Learning Curricula 2 Experiential learning (why, how, what, if) 3 Case based learning Real life application (a.k.a. relevant) Learning Objectives Reflection 4 2 Armstrong, Liz and Kegan, Robert. Harvard Macy Institute Curriculum for Educators. 3 Armstrong E, Parsa-Parsi R. How can physicians' learning styles drive educational planning? Acad Med. 2005 Jul;80(7):680-4. 4 Stark P, Roberts C, Newble D, Bax N. Discovering professionalism through guided reflection. Med Teach. 2006 Feb;28(1):e25-31 Slide 42 What cognitive aspect makes it specifically geriatric? If you had to develop a Geriatric Clinical Reasoning Mini-Cog to screen for geriatric clinical executive function what would be the clock draw? UNCERTAINTY Slide 43 Clinical Reasoning Curriculum Task: A validated adult learning method that incorporates recognized clinical reasoning methods targeting geriatric reasoning by using uncertainty as a core theme. Slide 44 Clinical Reasoning Curriculum Design: A case based learning format Part of weekly didactics Introductory lecture describing basics of analytical and non-analytical clinical reasoning Reflective session half way through Provide copy of learning objectives with relevant list of geriatric knowledge and skills topics Provide template of Wong model presentation PowerPoint for case presentation Slide 45 Clinical Reasoning Curriculum Design: Designated fellow will present a real clinical case encountered during rotation or NH overnight call After presenting the case the presenting fellow will choose question from one of the Wong model domains The group will then divide into groups of 2 to 3 fellows and discuss the question for 5-10 minutes Slide 46 Clinical Reasoning Curriculum Design: A representative from each group will present the reasoning behind their clinical decision to the whole group The presenting fellow will summarize each groups key reasons to confirm they are understood correctly The presenting fellow will share the outcomes of the case if known The presenting fellow will present the results of a literature search if any relevant evidence exists Slide 47 Learning Objectives Slide 48 Template Hypothesis Cues What signs and symptoms are significant and why? Hypothesis Refinement What are your likely diagnoses and why? Testing Threshold What tests would you request and why? Treatment Threshold What treatment would you implement and why? Slide 49 Clinical Reasoning Curriculum How is this different from morning report?: 1- Case must not have a single correct answer (must include uncertainty) 2- The level of uncertainty should increase over the course of the year 3- The focus is on why a decision should be made not the list of options? Slide 50 Practice Case Slide 51 Mrs. M PC: Fatigue HPC: Mrs. M, an 80 year old woman presents with her daughter, Sarah, to outpatient clinic complaining of fatigue. She has been feeling more tired over the last 8 months but things have gotten to a point that Sarah is concerned. Mom is just not herself she says. Sarah says Mary is tired all the time. She would usually go out and walk around the block but now she only makes it to the driveway mailbox and back. She has had no weight loss, appetite is fair, no chest pain, no palpitations, no cough, no fever, no chills, no dysuria, no increased urinary frequency, no change in bowel habit. Slide 52 PMHx: Diabetes, CAD s/p MI 2001 stent to circumflex, Moderate mitral regurgitation, Hypertension, Osteoarthritis Social Hx Lives with her daughter and son in-law. Daughter is with her 24 hours a day. Functional history: Independent for most ADLs until 1 month ago, now needs help with dressing and showering. Needs help with instrumental activities of daily living for the past 3 years. Uses cane when walking out of the house. Slide 53 Medications: Lisinopril 10mg Metoprolol ER 75mg Glipizide 5mg BID Hydrochlorothiazide 12.5mg Aspirin 81mg, Tylenol prn Allergies: NKDA Slide 54 Physical Exam Gen: Pleasant elderly female sitting comfortably in the chair, looks quietly at the ground Vitals: P 60 regular, BP 130/70, T97.7, Sat 96% RA HEENT: no cervical lymphadenopathy, dry oral mucosa CVS: No JVP, HS: S1 + S2 + 2/6 pansystolic murmur at apex radiating to axilla Resp: Sparse inspiratory crackles at both bases Abdomen: Soft, non-tender, bowel sounds present, no hepatosplenomegaly Ext: 1+ edema, no cyanosis, no clubbing Neuro: CN intact, Power 4+/5 all four limbs, Reflexes difficult to elicit Cognitive: Montreal Cognitive Assessment 25/30- missed last trail, missed 2 serial sevens, 2 delayed recall missed but able to recall with categorical cue, missed date Get up and go: failed, unable to get out of chair Labs 1 month ago: WCC 11, Hct 32, MCV 85, Plt 250, Na 132, K 4.0, BUN 24, Cr 1.4 Slide 55 Hypothesis Cues What signs and symptoms are significant and why? Hypothesis Refinement What are your likely diagnoses and why? Testing Threshold What tests would you request and why? Treatment Threshold What treatment would you implement and why? Slide 56 Hypothesis Refinement: What are your likely diagnoses and why? Slide 57 Assessment No simple validated MCQ- but is this appropriate? How are we assessing Clinical Reasoning currently? Rotation evaluations bring in high variability of confounding variables if trying to hone in on clinical reasoning itself Similar to cognitive testing => we get an overall picture without stressing necessarily Slide 58 Assessment Reflection important and specifically placed at mid- way point to address concerns sooner than later Faculty observation and participation during session Guided observation based on learning objectives Slide 59 Faculty Observer Examples How well learner incorporates geriatric clinical reasoning domains described at beginning of presentation? (knowledge + skills) How large is a learners geriatric non-analytical data base and does it grow over time? (skills) Anxiety with regards to uncertainty (world of rule out MI) (attitudes) Slide 60 What CR adds to assessment Able to observe a trainees knowledge base, communication, and cognitive style (analytical vs non- analytical). The Good Student Be able to assess which geriatric domains are missing The Bad Student Be able to identify where the deficiency is in a more controlled environment Slide 61 References Elstein AS, Schwarz A. Clinical problem solving and diagnostic decision making: selective review of the cognitive literature. BMJ. 2002;324:729-732. Gladwell M. Blink: The Power of Thinking Without Thinking. New York, NY: Little, Brown and Company; 2005. Groopman, Jerome E. How Doctors Think. Houghton Mifflin, 2007 Graber ML, Franklin N, Gordon RR. Diagnostic error in internal medicine. Arch Intern Med. 2005;165:1493-1499. Croskerry P. The importance of cognitive errors in diagnosis and strategies to minimize them. Acad Med. 2003;78:775-780. Croskerry P. Cognitive forcing strategies in clinical decision making. Ann Emerg Med. 2003;41:110-120. Redelmeier DA. Improving patient care. The cognitive psychology of missed diagnoses. Ann Intern Med. 2005;142:115-120. Eva KW. What every teacher needs to know about clinical reasoning. Medical Education 2004; 39: 98106 Kassirer, J.P., Wong, J.B, Kopelman R.I. (2009). Learning Clinical Reasoning. New York: Lippincott Williams & Wilkins