45
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis 1 Chapter 2  Principles of Steady-State Converter Analysis 2.1. Introduction 2.2. Induct or volt-secon d balance, capaci tor c har ge balance, and the small ripple approximation 2.3. Boost converter exampl e 2.4. Cuk conver ter example 2.5. Estimating the ripple i n converters containi ng two- pole low-pass filters 2.6. Summary of key points

Duty Cycle Analysis

Embed Size (px)

Citation preview

Page 1: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 1/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis1

Chapter 2

  Principles of Steady-State Converter Analysis

2.1. Introduction

2.2. Inductor volt-second balance, capacitor chargebalance, and the small ripple approximation

2.3. Boost converter example

2.4. Cuk converter example

2.5. Estimating the ripple in converters containing two-pole low-pass filters

2.6. Summary of key points

Page 2: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 2/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis2

2.1 Introduction

Buck converter

SPDT switch changes dc component 

Switch output voltage 

waveform 

complement D ′  : 

D ′   = 1 - D 

Duty cycle D: 

0 ≤ D  ≤ 1

+ – 

  R

+

v(t )

1

2

+

vs(t )

V g

vs(t ) V g

 DT s   D'T s

0

t 0   DT s   T s

Switch position:   1 2 1

Page 3: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 3/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis3

Dc component of switch output voltage

vs   =  1T s

vs(t ) dt 0

T s

vs   =   1T s

( DT sV g) = DV g

Fourier analysis: Dc component = average value 

vs(t ) V g

0

t 0   DT s   T s

⟨vs⟩ = DV garea = DT sV g

Page 4: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 4/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis4

Insertion of low-pass filter to remove switching

harmonics and pass only dc component

v  ≈   vs

  = DV g

+ – 

 L

C R

+

v(t )

1

2

+

vs(t )

V g

V g

00  D

1

Page 5: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 5/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis5

Three basic dc-dc converters

Buck 

Boost 

Buck-boost 

    M             (

    D             )

 D

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

    M             (    D             )

 D

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

    M             (    D             )

 D

–5

–4

–3

–2

–1

0

0 0.2 0.4 0.6 0.8 1

(a)

(b)

(c)

+ – 

 L

C R

+

v

1

2

+ – 

 L

C R

+

v

1

2

+ –   L

C R

+

v

1 2

 M ( D) = D

 M ( D) =   11 – D

 M ( D) =   – D1 – D

i L (t )

V g

i L (t )

V g

i L (t )V g

Page 6: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 6/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis6

Objectives of this chapter

Develop techniques for easily determining outputvoltage of an arbitrary converter circuit

Derive the principles of inductor volt-second balance and capacitor charge (amp-second) balance 

Introduce the key small ripple approximation 

Develop simple methods for selecting filter element

values

Illustrate via examples

Page 7: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 7/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis7

2.2. Inductor volt-second balance, capacitor charge

 balance, and the small ripple approximation

Buck converter 

containing practical 

low-pass filter 

Actual output voltage 

waveform 

v(t ) = V  + vripple(t )

Actual output voltage waveform, buck converter

+ – 

 L

C R

+

v(t )

1

2

i L(t )

+ v L(t )  – iC (t )

V g

v(t )

t 0

 Actual waveformv(t ) = V  + vripple(t )

dc component V 

Page 8: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 8/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis8

The small ripple approximation

In a well-designed converter, the output voltage ripple is small. Hence,

the waveforms can be easily determined by ignoring the ripple:

v(t )  ≈ V 

v(t ) = V  + vripple(t )

v(t )

0

 Actual waveformv(t ) = V  + vripple(t )

dc component V 

vripple   < V 

Page 9: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 9/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis9

Buck converter analysis:

inductor current waveform

original 

converter 

switch in position 2 switch in position 1

+ – 

 L

C R

+

v(t )

1

2

i L(t )

+ v L

(t )  – iC (t )

V g

 L

C R

+

v(t )

i L(t )

+ v L(t ) –iC (t )

+ – V g

 L

C R

+

v(t )

i L(t )

+ v L(t ) –iC (t )

+ – V g

Page 10: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 10/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis10

Inductor voltage and current

Subinterval 1: switch in position 1

v L = V g – v(t )

Inductor voltage 

Small ripple approximation: 

v L  ≈ V g – V 

Knowing the inductor voltage, we can now find the inductor current via 

v L(t ) = L di L(t )

dt 

Solve for the slope: 

di L(t )

dt   =

 v L(t )

 L  ≈

  g –

 L⇒ The inductor current changes with an 

essentially constant slope 

 L

C R

+

v(t )

i L(t )

+ v L(t ) – iC (t )

+ – 

V g

Page 11: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 11/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis11

Inductor voltage and current

Subinterval 2: switch in position 2

Inductor voltage 

Small ripple approximation: 

Knowing the inductor voltage, we can again find the inductor current via 

v L(t ) = L di L(t )

dt 

Solve for the slope: 

⇒ The inductor current changes with an 

essentially constant slope 

v L(t ) = – v(t )

v L(t )  ≈ – V 

di L(t )

dt   ≈ – V 

 L

 L

C R

+

v(t )

i L(t )

+ v L(t ) – iC (t )

+ – 

V g

Page 12: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 12/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis12

Inductor voltage and current waveforms

v L(t ) = L di L(t )

dt 

v L(t )

V g – V 

t – V 

 D'T s DT s

Switch position: 1 2 1

– V  L

V g – V 

 L

i L(t )

t 0   DT s   T s

 I i L(0)

i L( DT s)∆i

 L

Page 13: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 13/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis13

Determination of inductor current ripple magnitude

(change in i L) = (slope)(length of subinterval)

2∆i L   =V g – V 

 L  DT s

∆i L =V g – V 

2 L  DT s  L =

V g – V 

2∆i L DT s⇒

 

– V  L

V g – V 

 L

i L(t )

t 0   DT s   T s

 I i L(0)

i L( DT s)

∆i L

Page 14: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 14/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis14

Inductor current waveform

during turn-on transient

When the converter operates in equilibrium:

i L((n + 1)T s) = i L(nT s)

i L(t )

t 0   DT s  T 

s

i L

(0) = 0

i L

(nT s)

i L

(T s)

2T s   nT 

s  (n + 1)T 

s

i L

((n + 1)T s)

V g – v(t )

 L

– v(t )

 L

Page 15: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 15/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis15

The principle of inductor volt-second balance:

Derivation

Inductor defining relation:

Integrate over one complete switching period:

In periodic steady state, the net change in inductor current is zero:

Hence, the total area (or volt-seconds) under the inductor voltage 

waveform is zero whenever the converter operates in steady state.An equivalent form:

The average inductor voltage is zero in steady state.

v L(t ) = L di L(t )dt 

i L(T s) – i L(0) = 1 L

  v L(t ) dt 0

T s

0 =   v L(t ) dt 0

T s

0 =  1T s

v L(t ) dt 0

T s

=   v L

Page 16: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 16/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis16

Inductor volt-second balance:

Buck converter example

Inductor voltage waveform,previously derived: 

Integral of voltage waveform is area of rectangles:

λ  =   v L(t ) dt 0

T s

= (V g – V )( DT s) + ( – V )( D'T s)

Average voltage is

v L   =T s

= D(V g – V ) + D'( – V )

Equate to zero and solve for V: 

0 = DV g – ( D + D')V  = DV g – V    ⇒  V  = DV g

v L(t )V g – V 

 – V 

 DT s

Total area λ

Page 17: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 17/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis17

The principle of capacitor charge balance:

Derivation

Capacitor defining relation:

Integrate over one complete switching period:

In periodic steady state, the net change in capacitor voltage is zero:

Hence, the total area (or charge) under the capacitor current 

waveform is zero whenever the converter operates in steady state.

The average capacitor current is then zero.

iC (t ) = C  dvC (t )dt 

vC (T s) – vC (0) = 1C 

  iC (t ) dt 0

T s

0 =  1T s

iC (t ) dt 0

T s

=   iC 

Page 18: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 18/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis18

2.3 Boost converter example

Boost converter 

with ideal switch 

Realization using 

power MOSFET 

and diode 

+ – 

 L

C R

+

v

1

2

i L(t )

V g

iC (t )+ v L(t ) –

+ – 

 L

C R

+

v

i L(t )

V g

iC (t )+ v L(t ) –

 D1

Q1

 DT s

  T s

+ – 

Page 19: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 19/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis19

Boost converter analysis

original 

converter 

switch in position 2 switch in position 1

+ – 

 L

C R

+

v

1

2

i L(t )

V g

iC (t )

+ v L(t ) –

C R

+

v

iC (t )

+ – 

 L

i L(t )

V g

+ v L(t ) –

C R

+

v

iC (t )

+ – 

 L

i L(t )

V g

+ v L(t ) – 

Page 20: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 20/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis20

Subinterval 1: switch in position 1

Inductor voltage and capacitor current 

Small ripple approximation: 

v L = V g

iC  = – v /  R

v L = V g

iC  = – V  /  R

C R

+

v

iC (t )

+

 – 

 L

i L(t )

V g

+ v L(t ) –

Page 21: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 21/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis21

Subinterval 2: switch in position 2

Inductor voltage and capacitor current 

Small ripple approximation: 

v L = V g – v

iC  = i L – v /  R

v L = V g – V 

iC  = I  – V  /  R

C R

+

v

iC (t )

+

 – 

 L

i L(t )

V g

+ v L(t ) – 

Page 22: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 22/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis22

Inductor voltage and capacitor current waveforms

v L(t )

V g – V 

 DT s

V g

 D'T s

iC (t )

 – V/R

 DT s

 I – V/R

 D'T s

Page 23: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 23/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis23

Inductor volt-second balance

Net volt-seconds applied to inductor

over one switching period:

v L(t ) dt 0

T s

= (V g) DT s + (V g – V ) D'T s

Equate to zero and collect terms:

V g ( D + D') – V D' = 0

Solve for V:

V   = V g D'

The voltage conversion ratio is therefore

 M ( D) =  V V g

=   1 D'

=   11 – D

v L(t )

V g – V 

 DT s

V g

 D'T s

Page 24: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 24/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis24

Conversion ratio M(D) of the boost converter

    M             (    D             )

 D

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

 M ( D) =  D' = 1 – D

Page 25: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 25/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis25

Determination of inductor current dc component

Capacitor charge balance:

iC (t ) dt 0

T s

= ( – V  R

) DT s + ( I  – V  R

) D'T s

Collect terms and equate to zero:–

 R ( D + D') + I D' = 0

Solve for  I : 

 I  =  D' R

 I  =  g

 D'2 R

Eliminate V  to express in terms of V g: 

iC (t )

 – V/R

 DT s

 I – V/R

 D'T s

 D

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

 I V g /  R

Page 26: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 26/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis26

Determination of  

inductor current ripple

Inductor current slope during

subinterval 1:

di L(t )

dt   =

 v L(t )

 L  =

  g –

 L

Inductor current slope during

subinterval 2:

2∆i L =  g

 L   DT s

di L(t )

dt   =

 v L(t )

 L  =

  g

 L

Change in inductor current during subinterval 1 is (slope) (length of subinterval): 

Solve for peak ripple:

∆i L =V g2 L

 DT s• Choose L such that desired ripple magnitude

is obtained

V g – V 

 L

V g L

i L(t )

t 0   DT s

  T s

 I    ∆i L

Page 27: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 27/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis27

Determination of  

capacitor voltage ripple

Capacitor voltage slope during

subinterval 1:

Capacitor voltage slope during

subinterval 2:

Change in capacitor voltage during subinterval 1 is (slope) (length of subinterval): 

Solve for peak ripple: • Choose C  such that desired voltage ripple

magnitude is obtained• In practice, capacitor equivalent series 

resistance (esr) leads to increased voltage ripple

dvC (t )

dt   =

 iC (t )

C   = – V 

 RC 

dvC (t )

dt   =

 iC (t )

C   =   I 

C  –   V 

 RC 

– 2∆v = – V  RC  DT s

∆v =   V 2 RC 

 DT s

v(t )

t 0   DT 

s  T 

s

V    ∆v

C  –

 RC – RC 

Page 28: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 28/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis28

2.4 Cuk converter example

+ – 

 L1

C 2   R

+

v2

C 1   L2

1   2

+ v1  –i1

  i2

V g

+ – 

 L1

C 2   R

+

v2

C 1   L2

+ v1  –i1

  i2

 D1Q1V g

Cuk converter,with ideal switch 

Cuk converter: practical realization 

using MOSFET and diode 

Page 29: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 29/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis29

Cuk converter circuitwith switch in positions 1 and 2

+ – 

 L1

C 2   R

+

v2

C 1

 L2

i1

i2

 –

 v1

+

iC 1   iC 2

+ v L2  –+ v L1  –

V g

+ – 

 L1

C 2   R

+

v2

C 1

 L2i

1  i

2

 +

 v1

iC 1

iC 2

+ v L2  –+ v L1  –

V g

Switch in position 1:MOSFET conducts

Capacitor C 1 releases

energy to output

Switch in position 2:diode conducts

Capacitor C 1 is

charged from input

Page 30: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 30/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis30

Waveforms during subinterval 1MOSFET conduction interval

+ – 

 L1

C 2   R

+

v2

C 1

 L2

i1

i2

 –

 v1

+

iC 1   iC 2

+v L2 

–+v L1 

V g

v L1 = V g

v L2 = – v1 – v2

iC 1 = i2

iC 2=

 i2–

 v2

 R

Inductor voltages and

capacitor currents:

Small ripple approximation for subinterval 1:

v L1 = V g

v L

2 = – V 1 – V 2

iC 1 = I 2

iC 2 = I 2 – V 2 R

Page 31: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 31/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis31

Waveforms during subinterval 2Diode conduction interval

Inductor voltages and

capacitor currents:

Small ripple approximation for subinterval 2:

+ – 

 L1

C 2   R

+

v2

C 1

 L2i

1  i

2

 +

 v1

iC 1

iC 2

+ v L2 

–+ v L1 

V g

v L1 = V g – v1

v L2 = – v2

iC 1 = i1

iC 2 = i2 – v2

 R

v L1 = V g – V 1

v L2 = – V 2

iC 1 = I 1

iC 2 = I 2 – V 2 R

Page 32: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 32/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis32

Equate average values to zero

The principles of inductor volt-second and capacitor charge balance

state that the average values of the periodic inductor voltage and

capacitor current waveforms are zero, when the converter operates in

steady state. Hence, to determine the steady-state conditions in the

converter, let us sketch the inductor voltage and capacitor current

waveforms, and equate their average values to zero.

Waveforms: 

v L1(t)

V g – V 1

 DT s

V g

 D'T s

Inductor voltage v L1(t )

v L1   = DV g + D'(V g – V 1) = 0

Volt-second balance on  L1:

Page 33: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 33/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis33

Equate average values to zero

v L

2(t)

 – V 1 – V 2t 

 DT s

 – V 2

 D'T s

iC 1(t)

 I 2t 

 DT s

 I 1

 D'T s

Inductor  L2 voltage 

Capacitor C 1 current  v L2   = D( – V 1 – V 2) + D'( – V 2) = 0

iC 1   = DI 2 + D' I 1 = 0

Average the waveforms:

Page 34: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 34/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis34

Equate average values to zero

iC 2(t)

 I 2 – V 2 / R (= 0)

t  DT s   D'T s

Capacitor current iC 2(t ) waveform

Note: during both subintervals, thecapacitor current i

C 2 is equal to the

difference between the inductor currenti2 and the load current V 2/ R.

 

Whenripple is neglected, i

C 2 is constant and

equal to zero.

iC 2   = I 2 – V 2 R

 = 0

Page 35: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 35/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis35

Cuk converter conversion ratio M

 =V 

/V  g

    M             (    D             )

 D

-5

-4

-3

-2

-1

00 0.2 0.4 0.6 0.8 1

 M ( D) = V 2V g

= –   D1 – D

Page 36: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 36/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis36

Inductor current waveforms

di1(t )

dt   =

 v L1(t )

 L1

=V g

 L1

di2(t )

dt   =

 v L2(t )

 L2

= – V 1 – V 2

 L2

Interval 1 slopes, using small

ripple approximation:

Interval 2 slopes:

di1(t )

dt   =

 v L1(t )

 L1

=V g – V 1

 L1

di2(t )dt 

  = v L2(t ) L2

= – V 2 L2

i1(t )

t  DT s   T s

 I 1 ∆i1

V g – V 1 L 1

V g L1

– V 2 L 2

– V 1 – V 2 L2

i2(t )

t  DT s   T s

 I 2 ∆i2

Page 37: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 37/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis37

Capacitor C1 waveform

dv1(t )dt 

  = iC 1(t )C 1

=   I 2C 1

Subinterval 1:

Subinterval 2:

dv1(t )

dt   =

 iC 1(t )

C 1=

  I 1C 1

 I 1C 1

 I 2C 1

v1(t )

t  DT s   T s

V 1

∆v1

Page 38: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 38/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis38

Ripple magnitudes

∆i1 =V g DT s2 L1

∆i2 = V 1 + V 2

2 L2

 DT s

∆v1 = – I 2 DT s

2C 1

Use dc converter solution to simplify:

∆i1 =V g DT s2 L1

∆i2 =V g DT s

2 L2

∆v1 =V g D

2T s2 D' RC 1

Analysis results

Q: How large is the output voltage ripple?

Page 39: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 39/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis39

2.5 Estimating ripple in converters

containing two-pole low-pass filters

Buck converter example: Determine output voltage ripple 

Inductor current 

waveform.What is the 

capacitor current? 

+ – 

 L

C R

+

vC (t )

1

2

iC (t )   i R(t )i L(t )

V g

– V  L

V g – V 

 L

i L(t )

t 0   DT s   T s

 I 

i L(0)

i L( DT s)∆i L

Page 40: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 40/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis40

Capacitor current and voltage, buck example

Must not neglect 

inductor 

current ripple! 

If the capacitor 

voltage ripple is 

small, then 

essentially all of 

the ac component of inductor current 

flows through the 

capacitor.

iC (t )

vC (t )

Total charge

q

 DT s   D'T s

T s  /2

∆i L

∆v

∆v

Page 41: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 41/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis41

Estimating capacitor voltage ripple ∆v

q = C  (2∆v)

Current iC (t) is positive for half

of the switching period. This

positive current causes thecapacitor voltage vC (t) to

increase between its minimumand maximum extrema.

During this time, the totalcharge q is deposited on the

capacitor plates, where

(change in charge) =

C  (change in voltage)

iC (t )

vC (t )

Total charge

q

 DT s   D'T s

T s  /2

∆i L

∆v

∆v

Page 42: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 42/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis42

Estimating capacitor voltage ripple ∆v

The total charge q is the area

of the triangle, as shown:

q =  12 ∆i L

T s2

Eliminate q and solve for  ∆v:

∆v =∆i L T s8 C 

Note: in practice, capacitor

equivalent series resistance(esr) further increases  ∆v.

iC (t )

vC (t )

Total charge

q

 DT s   D'T s

T s  /2

∆i L

∆v

∆v

Page 43: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 43/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis43

Inductor current ripple in two-pole filters

Example:

problem 2.9

can use similar arguments, withλ =  L (2 ∆i)

λ = inductor flux linkages

  = inductor volt-seconds

 R

+

v

+ – 

  C 2

 L2 L1

C 1

+

vC 1

i1

iT 

i2

 D1

Q1

V g

v L(t )

i L(t )

Total flux linkage

λ

 DT s   D'T s

T s  /2

 I 

∆v

∆i

∆i

Page 44: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 44/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis44

2.6 Summary of Key Points

1. The dc component of a converter waveform is given by its average

value, or the integral over one switching period, divided by theswitching period. Solution of a dc-dc converter to find its dc, or steady-

state, voltages and currents therefore involves averaging the

waveforms.

2. The linear ripple approximation greatly simplifies the analysis. In a well-

designed converter, the switching ripples in the inductor currents andcapacitor voltages are small compared to the respective dc

components, and can be neglected.

3. The principle of inductor volt-second balance allows determination of the

dc voltage components in any switching converter. In steady-state, the

average voltage applied to an inductor must be zero.

Page 45: Duty Cycle Analysis

8/20/2019 Duty Cycle Analysis

http://slidepdf.com/reader/full/duty-cycle-analysis 45/45

Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis45

Summary of Chapter 2

4. The principle of capacitor charge balance allows determination of the dc

components of the inductor currents in a switching converter. In steady-state, the average current applied to a capacitor must be zero.

5. By knowledge of the slopes of the inductor current and capacitor voltage

waveforms, the ac switching ripple magnitudes may be computed.Inductance and capacitance values can then be chosen to obtain

desired ripple magnitudes.

6. In converters containing multiple-pole filters, continuous (nonpulsating)voltages and currents are applied to one or more of the inductors orcapacitors. Computation of the ac switching ripple in these elementscan be done using capacitor charge and/or inductor flux-linkage

arguments, without use of the small-ripple approximation.

7. Converters capable of increasing (boost), decreasing (buck), and

inverting the voltage polarity (buck-boost and Cuk) have beendescribed. Converter circuits are explored more fully in a later chapter.