168

Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

Durham E-Theses

Field dependent tensors in solid state physics

Pourghazi, Azam

How to cite:

Pourghazi, Azam (1977) Field dependent tensors in solid state physics, Durham theses, Durham University.Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8306/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission orcharge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HPe-mail: [email protected] Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

Page 2: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

FIELD DEPENDENT TENSORS IN

SOLID STATE PHYSICS

by

AZAM POURGHAZI, H.Sc. Graduate Society

A thesis submitted to the University of Durham

i n candidature for the degree of

Doctor of Philosophy

August 1977

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Page 3: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

To my parents

Page 4: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

ABSTRACT

The concept of field-dependent tensors (tensors the components

of which depend on the direction of an applied f i e l d ) i s generalized to

define quantities which have dif f e r e n t t e n s o r i a l character i n di f f e r e n t

subspaces ( f i e l d subspace and geometrical or physical subspace) of the

whole space. The transformation laws for these field-dependent tensors

are worked out and the weighted and r e l a t i v e f i e l d dependent tensors

are defined.

The calculus of f i e l d dependent tensors i s established through

which the operations of addition, subtraction, inner and outer m u l t i p l i ­

cation, contraction and d i f f e r e n t i a t i o n of f i e l d dependent tensors are

defined and the conditions under which each operation can be performed

are discussed, and the quotient law for f i e l d dependent tensors i s also

worked out.

The e f f e c t of magnetic c r y s t a l symmetry on the forms of f i e l d -

dependent tensors i s considered and a generalized Neumann's pr i n c i p l e

i s defined. Furthermore, i t i s proved that i n working out the magnetic

point group of symmetry operations, i d e n t i f i c a t i o n of the magnetic moment

inversion operator with the time-inversion operator i s not correct.

The e f f e c t of the symmetry operations of the magnetic point

groups on the f i e l d dependent tensors representing the transport proper­

t i e s of a magnetic c r y s t a l i s considered. Different prescriptions

(A, B and C) given by different workers for finding the magnetic symmetry -»•

r e s t r i c t e d forms of the magnetoconductivity tensor 0 ^ j ( 3 ) are discussed,

the objections to each prescription are pointed out and then a new pre­

s c r i p t i o n (D) i s given. Following prescription D, the r e s t r i c t i o n on

Page 5: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

the forms of the magnetoconductlvity tensor ( 8 ) , the magnetoresis--»• •> t i v i t y tensor ( 8 ), the oagnetothermoelectric power ( 8 ), the

•+ magnetothermal conductivity (B) and the magneto-Peltier e f f e c t

* i j ^ ' iMPOBe^i b v t n e symmetry of c r y s t a l s belonging to each magnetic

point group are found.

F i n a l l y the way i n which the permittivity of a c r y s t a l belonging

to a magnetic point group can be represented by a f i e l d dependent

tensor i s discussed.

Page 6: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

ACKNOWLEDGEMENTS

I n the p r e p a r a t i o n o f t h i s t h e s i s under the su p e r v i s i o n

of Professor G.A. Saunders, I have b e n e f i t t e d g r e a t l y from h i s

encouragement, guidance and advice, during a l l phases o f the work,

f o r which I am s i n c e r e l y g r a t e f u l .

My thanks also go t o Dr. J.S. Thorp f o r h i s help and

encouragement.

I would l i k e t o thank Professors >D.A. Wright and

G.G. Roberts, s e q u e n t i a l heads o f the department, f o r making

a v a i l a b l e the f a c i l i t i e s i n the Department o f Applied Physics

and E l e c t r o n i c s during my work.

I am g r a t e f u l t o Isfahan U n i v e r s i t y (Isfahan, I r a n ) f o r

t h e i r f i n a n c i a l support and encouragement, i n p a r t i c u l a r

Dr. G. Motamedi ex-chancellor of Isfahan U n i v e r s i t y (now M i n i s t e r

of Science and Higher Education) f o r h i s sustained enthusiasm and

help.

I would also l i k e t o thank the s t a f f o f Durham U n i v e r s i t y

Science L i b r a r y f o r the help and assistance i n using the f a c i l i t i e s

i n p a r t i c u l a r Mrs. CTean M. Chishclin ( i n t e r - l i b r a r y l o a n s ) .

L a s t l y , b ut by no means l e a s t , I would l i k e t o express my

deep and sincere g r a t i t u d e t o my husband, Tdghi, f o r h i s constant

encouragement and i n t e r e s t i n the work.

Page 7: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

CONTENTS

Page No.

A b s t r a c t Acknowledgements

No.

A b s t r a c t Acknowledgements

CHAPTER 1 GENERAL INTRODUCTION 1.1 Tensors 1 1.2 Generalized symmetry and f i e l d 2

dependent tensors 1.3 Some remarks on the nomenclature 4

CHAPTER 2 FIELD INDEPENDENT TENSORS 5 2.1 Tensors 5 2.2 Linear orthogonal t r a n s f o r m a t i o n

o f coordinate axes and the summation convention 6

2.3 Linear t r a n s f o r m a t i o n o f axes 9 2.4 General t r a n s f o r m a t i o n of

coordinate axes 10 2.5 Transformation by invariance 11 2.6 Transformation by contravariance

and covariance 12 2.7 D e f i n i t i o n o f tensors by t h e i r

t r a n s f o r m a t i o n laws 14 2.8 Symmetrical and antisymmetrical

tensors 16 2.9 Constant tensors and tensor f i e l d 17 2.10 R e l a t i v e or weighted tensors (polar

and a x i a l tensors) 18 2.11 Algebra of tensors 19 2.12 Quotient Law 22 2.13 D i f f e r e n t i a t i o n o f tensors 24

Page 8: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

CHAPTER 3 FIELD DEPENDENT TENSORS ( I ) : DEFINITION AND TRANSFORMATION LAWS 3.1 I n t r o d u c t i o n 27 3.2 Expansion o f the f i e l d dependent

tensor components i n terms of f i e l d components 27

3.3 Grabner and Swanson t r a n s f o r m a t i o n law f o r f i e l d dependent tensors 29

3.4 Inadequacy o f Grabner and Swanson tr a n s f o r m a t i o n law 31

3.5 N-dimensional space 32 3.6 Subspace 34 3.7 Formal D e f i n i t i o n o f a f i e l d

dependent tensor 35 3.8 The nature o f coordinates i n the

f i e l d subspace 41

CHAPTER 4 FIELD DEPENDENT TENSORS ( I I ) : CALCULUS 4.1 I n t r o d u c t i o n 46 4.2 A d d i t i o n and s u b t r a c t i o n 46 4.3 Outer m u l t i p l i c a t i o n o f two f i e l d 49

dependent tensors 4.4 Contr a c t i o n of f i e l d dependent 51

tensors 4.5 Inner m u l t i p l i c a t i o n o f f i e l d 53

dependent tensors 4.6 The q u o t i e n t law o f f i e l d dependent

tensors 54 4.7 D i f f e r e n t i a t i o n o f f i e l d dependent

tensors 57

CHAPTER 5 NEUMANN'S PRINCIPLE .'EFFECT OB" SYMMETRY ON TENSOR COMPONENTS 5.1 I n t r o d u c t i o n 60 5.2 Macroscopic symmetry operations 61

and p o i n t groups 5.3 The symmetry o f c r y s t a l l i n e l a t t i c e 62

and c r y s t a l classes 5.4 Neumann's p r i n c i p l e and the e f f e c t 62

of symmetry on p h y s i c a l p r o p e r t i e s

Page 9: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

5.5 The symmetry o f magnetic c r y s t a l s ( I ) 76 5.6 The symmetry o f magnetic c r y s t a l s ( I I ) 7g 5.7 Time i n v e r s i o n o p e r a t i o n and magnetic 77

groups 5.8 Generalized Neumann's p r i n c i p l e ^ 5.9 Neumann's p r i n c i p l e f o r symmetry 82

operations which act on the coordinates of both subspaces 5.9.1 Example 82 5.9.2 The general case 85

CHAPTER 6 FIELD DEPENDENT TENSOR PROPERTIES OF CRYSTALS 6.1 I n t r o d u c t i o n 87 6.2 The c o n d u c t i v i t y o f a c r y s t a l 87 6.3 The magnetoconductivity p r o p e r t y o f 89

a c r y s t a l 6.4 Magnetic symmetry r e s t r i c t i o n s on the 90

forms of the m a g n e t o r e s i s t i v i t y and the magnetoconductivity tensors 6.4.1 P r e s c r i p t i o n A - by B i r s s 91 6.4.2 P r e s c r i p t i o n B - by K l e i n e r 94 6.4.3 P r e s c r i p t i o n C - by Cracknell 97 6.4.4 P r e s c r i p t i o n D - present work 101

6.5 Symmetry r e s t r i c t i o n s on the forms o f 104 other t r a n s p o r t p r o p e r t i e s

6.6 The p e r m i t t i v i t y o f a c r y s t a l 105

APPENDIX I SPATIAL SYMMETRY RESTRICTED FORMS OF FIELD 107 DEPENDENT TENSORS OF RANK ZERO IN THE FIELD SUBSPACE, WHERE FIELD COMPONENTS ARE THEMSELVES TENSORS IN GEOMETRICAL SUBSPACE A.l I n t r o d u c t i o n 107 A.2 A p p l i c a t i o n o f Neumann's P r i n c i p l e 108 A.3 Tabulation of the forms of the f i e l d

dependent tensors 111 A.4 Use of the t a b u l a t i o n t o f i n d T

2 ^ F i ^ f o r

the p o i n t group 3m l i 3 A.5 Conclusion 114

REFERENCES 156

Page 10: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 1 -

CHAPTER 1

GENERAL INTRODUCTION

1.1 Tensors

Most physical properties of c r y s t a l s , which are defined by relations

between two or more measurable quantities associated with the c r y s t a l s ,

can be represented by mathematical e n t i t i e s c a l l e d tensors. Tensors are

defined by t h e i r transformation laws from one set of coordinate axis to

another, and are c l a s s i f i e d by t h e i r rank. Scalars and vectors are tensors

of zero and f i r s t rank respectively. A physical property which i n t e r ­

r e l a t e s two vectors i s a second rank tensor. As an example of t h i s , the

conductivity, °f a c r y s t a l may be considered where

J l = °11 E1 + °12 E2 + °13 E3

J 2 = a 2 1 E 2 + °22 E2 + a 2 3 E 3

J = a E + a E + a E 3 31 1 32 2 33 3

There are tensors of higher rank also. A tensor of rank h has ( n ) h

components i n an n dimensional space. C r y s t a l symmetry dictates some

rela t i o n s between the components of a tensor representing a property of

the c r y s t a l and therefore reduces the number of i t s independent components.

The detailed s i m p l i f i c a t i o n which can be made i n the forms of tensor proper­

t i e s are considered, for example, i n trie book by Nye (1972) , for tensors

of various ranks and for a l l the 32 crystallographic point groups.

There are a number of physical properties of c r y s t a l s which are

best described by tensors, the components of which are themselves functions

of an applied f i e l d . The magnetoconductivity tensor o _. (H) , the magneto--»-

thermoelectric power (H) and the magnetothermal conductivity (H)

2N0Vf977 I l l t t *

Page 11: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 2 -

of a magnetic c r y s t a l are examples of t h i s kind of tensor. The components

of a l l these tensors depend on the magnetic f i e l d . Grabner and Swanson

(1962) have ca l l e d these tensors "field-dependent tensors" and have worked

out t h e i r transformation law under a s p a t i a l transformation operation.

They have stated that a symmetry operation acts on both the ( f i e l d -

dependent) tensor and i t s arguments. Fai l u r e to recognise t h i s has led

some e a r l i e r workers (Birss 1963, 1966 and Cracknell 1973) to incorrect

s i m p l i f i c a t i o n of certain tensors. Akgoz and Saunders (1975 a,b) have

shown how to use the transformation law of f i e l d dependent tensors i n con­

junction with Onsager's relations ( i n t r i n s i c symmetry) to es t a b l i s h the

form of the magnetoconductivity tensor c .(H) and the magnetothermoelectric

power a^_. (H) for each of the 32 c l a s s i c a l point groups G. Although AkgSz

and Saunders have recognised the need to use the transformation law of

f i e l d dependent tensors, a detailed mathematical substructure to t h e i r

work has up u n t i l now been missing. One major objective of t h i s thesis

has been to develop the mathematics of f i e l d dependent tensors on a formal

basis. Thus i n part the work i s devoted to giving a general d e f i n i t i o n

of f i e l d dependent tensors and to establish t h e i r transformation laws

under any. transformation operation either in the geometrical subspace or

i n the f i e l d subspace (Chapter 3). Furthermore, the calculus of f i e l d

dependent tensors i s worked out (Chapter 4). This investigation has put

the studies of Akgoz and Saunders on a firmer foundation.

1.2 Generalized symmetry and f i e l d dependent tensors

By introducing the concept of antisymmetry, Shubnikov (see for

example Shubnikov and Belov 1964) added a new dimension to the study of

symmetry of the geometrical objects. He employed an antisymmetry operation

i n addition to the s p a t i a l symmetry operations to develop what are now

Page 12: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 3 -

known as the type I , I I and I I I Heesch-Shubnikov groups. By i d e n t i f i c a ­

t i o n o f the magnetic moment i n v e r s i o n o p e r a t i o n w i t h t h i s antisymmetry

o p e r a t i o n i t has proved p o s s i b l e t o put the s t r u c t u r e and p r o p e r t i e s o f

magnetic m a t e r i a l s on a group t h e o r e t i c a l basis (see Mackay 1957,

Donnay e t a l 1958 and Cracknell 1969). Furthermore, since the opera t i o n

of time i n v e r s i o n has the e f f e c t of re v e r s i n g the d i r e c t i o n o f the magnetic

moment, i t has become a common p r a c t i c e t o i d e n t i f y the time i n v e r s i o n

operator w i t h the magnetic moment i n v e r s i o n operator (see, f o r example,

Opechowski and Guccione 1965, Tavger and Z a i t s e v 1956, Bi r s s 1966, K l e i n e r

1966, 1967 and 1969, and Cracknell 1973). I n t h i s t h e s i s i t i s shown t h a t

t h i s i d e n t i f i c a t i o n i s net always c o r r e c t . Furthermore there are a number

of magnetic s t r u c t u r e s t h a t cannot adequately be described by using the

magnetic moment i n v e r s i o n operation (or time i n v e r s i o n o p e r a t i o n ) . To

describe these s t r u c t u r e s i t i s necessary t o adopt other operations

( r o t a t i o n s ) on the magnetic moment (or spin) o f the atoms as w e l l (see

Brinkman and E l l i o t t 1966 a,b and L i t v i n 1973). This leads t o what i s

c a l l e d the generalized symmetry (see Cr a c k n e l l 1975).

Some workers (Birss 1966, K l e i n e r 1966, 1967, 1969 and Cra c k n e l l

1973) have t r i e d t o f i n d the r e s t r i c t i o n s imposed on the form o f magnetic

field-dependent t r a n s p o r t tensors by the simple magnetic symmetry where

only the opera t i o n o f i n v e r s i o n on the magnetic moment i s i n v o l v e d . But

due t o lack of a tra n s f o r m a t i o n law f o r field-dependent tensors under the

transformation operations o f the f i e l d subspacs and also because c f the

i n c o r r e c t i d e n t i f i c a t i o n of the magnetic moment i n v e r s i o n o p e r a t i o n w i t h

time i n v e r s i o n o p e r a t i o n , the r e s u l t s are n e i t h e r c o r r e c t nor c o n s i s t e n t

w i t h each other. Akgoz and Saunders (1975 a,b) have found the r e s t r i c ­

t i o n s on the forms o f magnetoconductivity and other t r a n s p o r t p r o p e r t i e s

imposed by s p a t i a l symmetry operations. Now t h i s has been extended here

Page 13: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 4 -

t o f i n d the r e s t r i c t i o n s imposed by the magnetic symmetry operations

(without i d e n t i f y i n g the magnetic moment i n v e r s i o n operator w i t h the time-

i n v e r s i o n operator) using the tr a n s f o r m a t i o n law f o r field-dependent tensors

(see Section 6.3.4).

1.3 Some remarks on the nomenclature

The terms field-dpendent tensor, field-independent tensor, constant

tensor and tensor f i e l d are used f r e q u e n t l y i n the t e x t . Thus a thorough

d e f i n i t i o n o f them may be found u s e f u l . A constant tensor i s a tensor,

the components of which have the same value a t every p o i n t i n the space.

That i s the components o f a constant tensor, measured a t a p o i n t i n the

space, do not depend on the coordinates o f the p o i n t . While a tensor f i e l d

i s a tensor the components o f which have values which vary from one p o i n t

i n space t o another. A field-dependent tensor i s a tensor the components

o f which not only may depend on the coordinates of a p o i n t , b ut also on

the d i r e c t i o n o f an ap p l i e d f i e l d . This d e f i n i t i o n i s generalized i n

Chapter 3 t o describe a field-dependent tensor as a tensor the components

of which have one type of t e n s o r i a l dependence on the coordinates i n the

geometrical subspace and another type o f t e n s o r i a l dependence on the

coordinates i n the f i e l d subspace. A field-independent tensor i s a tensor

the components o f which do not depend on the coordinates i n the f i e l d

subspace. A f u r t h e r extension o f the nomenclature would correspond t o

a pro p e r t y which i s a f i e l d dependent tensor which has values which can

vary from one p o i n t i n space t o another - such a system would comprise a

f i e l d dependent tensor f i e l d .

Page 14: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 5 -

CHAPTER 2

FIELD INDEPENDENT TENSORS

This chapter c o n s t i t u t e s the necessary background f o r the study o f

f i e l d dependent tensors and t h e i r a n a l y s i s , and i t i s not intended t o cover

the whole sub j e c t o f f i e l d independent tensors (tensors which have com­

ponents independent o f any f i e l d ) and t h e i r a p p l i c a t i o n s . For the sake

o f b r e v i t y , throughout t h i s chapter the word tensor has been used t o

denote f i e l d independent tensors.

2.1 Tensors

Tensors are a b s t r a c t o b j e c t s (such as p h y s i c a l q u a n t i t i e s ) whose

p r o p e r t i e s are independent o f the reference frame used t o describe them.

As an example the p o s i t i o n of a p o i n t i n geometrical space can be con­

sidered. A p o i n t i n t h i s three dimensional space can be denoted by an

ordered set o f three numbers i n a s p e c i a l c a r t e s i a n coordinate system.

I n another c a r t e s i a n coordinate system the same p o i n t w i l l be represented

by a d i f f e r e n t s e t o f numbers. The p o s i t i o n v e c t o r of the p o i n t i s a

tensor, which i s independent o f the choice o f the reference frame, and

each set of three numbers forms i t s components w i t h respect t o t h e cor­

responding coordinate system.

Scalars are a s p e c i a l k i n d o f tensor (tensors o f rank zero) . I n o

an n dimensional space a scal a r has one component m = 1 ) which i s the

same i n a l l the d i f f e r e n t coordinate systems. Vectors are another k i n d

o f tensor (being tensors o f the f i r s t rank) which i n an n dimensional

space have n components ( n 1 = n) w i t h respect t o each coordinate system

(three i n a three dimensional space). These n components transform i n t o

a new se t o f n components i n a new coordinate system. Then there are

Page 15: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 6 -

tensors of higher rank (h) which have n components w i t h respect t o each

coordinate system (n i s the dimension o f the space and h i s the rank o f

the t e n s o r ) . Tensors can be more p r e c i s e l y defined by the tra n s f o r m a t i o n

laws o f t h e i r components from one reference frame t o another.

2.2 Linear orthogonal t r a n s f o r m a t i o n o f coordinate axes and the

summation convention

F i r s t we consider the simple case of t r a n s f o r m a t i o n o f one rec­

t a n g u l a r c a r t e s i a n system o f coordinates x(X^ , , X j ] i n t o another

rectangular c a r t e s i a n system of coordinates X' (Xj , X^ , X^) which describe

the three dimensional geometrical space. I n a d d i t i o n we assume t h a t

t h e re i s no t r a n s l a t i o n of axes, t h a t i s , the o r i g i n 0 remains the same

a f t e r the t r a n s f o r m a t i o n . The r e l a t i o n between the axes i n the o l d

system X and the new system X1 may be s p e c i f i e d by the f o l l o w i n g t a b l e :

new

X i X 2

X1

11

*21

l31

o l d

X,

12

*22

'32

X.

13

'23

'33

(2.1)

where a.. i s the d i r e c t i o n cosine o f X' w i t h respect t o x. and i s a ID i 3 constant f o r a given c a r t e s i a n coordinate t r a n s f o r m a t i o n . A p o i n t B

1 2 3 i n the space can be described e i t h e r by i t s coordinates (x , x , x )

1 2 3

w i t h respect t o the X-system-or eq u a l l y w e l l by (x* , x' , x' ) w i t h

respect t o the X' - system. The f o l l o w i n g r e l a t i o n s hold between these

two sets o f coordinates:

Page 16: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 7 -

,1 1 2 ^ 3 x' = an x + a!2 x a i 3 x

.2 1 ^ 2 ^ 3 X = a21 X + a22 X + a23 X

. 3 1 2 3 X = a31 X + a32 X + a33 X

Equations (2.2) may also be w r i t t e n i n m a t r i x n o t a t i o n s ,

(2.2)

_ x .1

..2

L v , 3 j

a l l a i 2 d13

a21 a22 a23

331 a32 a33

(2.3)

where the array a ^ i s c a l l e d the tr a n s f o r m a t i o n m a t r i x and i s the

operator which transforms one set o f axes X i n t o another set X 1. The

equations (2.2) may also be concisely w r i t t e n as

x ' 1 - a i j x j ( i ' 3 = 1 ' 2 ' 3=1

3) (2.4)

We w i l l now introduce the E i n s t e i n summation convention; namely, i f a

s u f f i x i s repeated i n a term, then i t i s understood t h a t a summation

w i t h respect t o t h a t s u f f i x over the range 1,2 , N i s i m p l i e d .

An unrepeated s u f f i x i s c a l l e d a f r e e s u f f i x , w h i l e , the repeated one

i s c a l l e d a dummy or umbral s u f f i x , as i t can be replaced by any other

symbol except the ones already used t o express f r e e s u f f i x e s . The sum­

mation convention w i l l be employed throughout the r e s t o f t h i s t h e s i s .

Therefore equation (2.4) may be w r i t t e n as

i i 3 X = a i j X ( i , j = 1 , 2 , 3 ) (2.5)

Page 17: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 8 -

I n t h i s chapter the range of values o f a l l s u f f i x e s i s 1 , 2 , 3 unless

otherwise s t a t e d .

I n the s p e c i a l case of rectangular c a r t e s i a n coordinates the 9- similar

reverse t r a n s f o r m a t i o n w i l l have \too& aaae t r a n s f o r m a t i o n operator,

t h a t i s

x 1 = ^ j j . * ' 3 ( 2 , 6 )

The nine a ^ are not independent of one another, and i n f a c t (Nye 1972)

a., a . = 6. (2.7) i k pk i p

where 6. i s the Kronecker d e l t a , IP

= 1 when i = p (2.8)

= 0 when i p.

The r e l a t i o n s (2.7) are c a l l e d the o r t h o g o n a l i t y r e l a t i o n s . Transfor­

mations i n which the c o e f f i c i e n t s s a t i s f y the o r t h o g o n a l i t y r e l a t i o n s

are c a l l e d l i n e a r orthogonal t r a n s f o r m a t i o n s . The t r a n s f o r m a t i o n m a t r i x

f o r such a t r a n s f o r m a t i o n has an inverse equal t o i t s transpose and i s

c a l l e d an orthogonal m a t r i x .

When two l i n e a r orthogonal transformations of coordinate axes are

ap p l i e d successively, the r e s u l t i n g t r a n s f o r m a t i o n from the i n i t i a l

coordinate system t o the f i n a l one, which i s c a l l e d the product t r a n s ­

f o r m a t i o n , i s also l i n e a r orthogonal. To show t h i s , l e t the t r a n s ­

formations be

and

x ' k = a k x j (2.9)

x " 1 = b i k x , k. (2.10)

Page 18: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 9 -

And l e t the product transformation be

it i = C x i j (2.11)

Substituting for x | J from (2.9) into (2.10), we get

i i i = b i k *3- (2.12) x

Comparing (2.12) and (2.11), we obtain

i j = b ik \ i . (2.13)

Equation (2.13) shows that i s an orthogonal matrix, as the product

of two orthogonal matrices i s orthogonal. Therefore the product trans­

formation i s also a l i n e a r orthogonal transformation. This r e s u l t may

be extended to the product of any number of transformations.

Another c h a r a c t e r i s t i c property of l i n e a r orthogonal transforma­

tions i s that the determinant of the transformation matrix ( a . . ) ,

which we write as | [ , i s equal to - 1 or + 1 according to whether the

hand of the axes i s changed or unchanged by the transformation

(Jeffreys 1931).

2.3 Linear transformation of axes

The l i n e a r orthogonal transformation of coordinate axes i s a

spec i a l case of l i n e a r transformation of axes. When a l i n e a r transfor­

mation of axes i s applied i n an n dimensional space, there e x i s t s a

set of n l i n e a r r e l a t i o n s between the new coordinates and the old ones,

that i s

x'^ = a ^ x^ , ( a ^ i s constant i , j = 1, ....n). (2.14)

We s h a l l suppose that the transformation i s non-singular, \ a^\ ^ 0 /

so that the s e t of n l i n e a r equations (2.14) can be solved for the x 1

Page 19: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 1 0 -

i n terms of x'*. The solution of equations (2.14) for the x's y i e l d s

x = - J i x , : ] (2.15) a

where A. . i s the co-factor of the element a. . i n l a . .1 = a. (A..,/;,)

forms the transformation matrix for the reverse transformation.

I f we have two successive l i n e a r transformations

x , D - a ^ x 3 (2.16)

and

x" k = b ^ x' 1, ( i , j , k = l n) (2.17)

then the d i r e c t transformation from x 1 coordinate system to x" 1

coordinate i s

x" k = b k i a x j , ( i , j ,k m l,...n), (2.18)

t h i s i s c a l l e d the product transformation. Writing t h i s transformation

i n matrix notation y i e l d s

X" = B A X (2.19)

Since the product BA , i n general, i s not equal to AB , we see that

the order i n which the transformations are performed i s not immaterial.

2.4 General transformation of coordinate axes

Let us consider the coordinate system x 1 ( i = 1, ...n) i n an

n-dimensional space. A general transformation of coordinates to a new

reference frame can be defined by n independent equations

x' 1 - / (x 1 , x 2 , , x n ) , ( i = 1, n) (2.20)

where the ^ are single-valued continuous d i f f e r e n t i a t e functions of

Page 20: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- l i ­

the coordinates. A necessary and s u f f i c i e n t condition for n equations

(2.20) to be independent i s that the Jacobian determinant formed from

the p a r t i a l derivatives 3x , i/3x :' does not vanish (Sokolnikoff 1956).

Under t h i s condition we can solve equations (2.20) for the x 1 as

functions of the x' 1 and obtain

x 1 - I / I 1 (x' 1 , x' 2 , , x , n ) ( i = 1 , 2 , n). (2.21)

Now d i f f e r e n t i a t i o n of (2.20) y i e l d s

t J u l 1 _

dx' = 52£-_ d x r . (2.22) 3x r

i r Here matrix formed from the p a r t i a l derivatives 3x' /3x = a. i s the i r transformation matrix. Generally, the elements of t h i s matrix are not

constant with respect to the corresponding coordinate axes. But i n the i r 2

case of l i n e a r transformation the = 3x' /3x are a set of n con­stants and the transformation, as i t has been shown before (2.14), can be rewritten as

• * i i Bx' 1 r _ x' = a x or x 1 x . (2.23) 3x r

And, i n the case of orthogonal l i n e a r transformation we have the

condition ,

2 2 i l i = 2 « L . (2.24) r I 3 x r 3x«

2.5 Transformation by invariance

Let f(P) = f ( x * , ...fxn) be a function of the n components x* of

the point P with respect to X - coordinate system i n an n-dimensional

space. This function i s c a l l e d an "invariant" or a " s c a l a r function"

or, simply, a " s c a l a r " with respect to a transformation of coordinates

Page 21: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 12 -

from X-system. into X'-system , i f f(P) = f ' ( P ) , where f(P) and f 1 ( P ) are

the values of t h i s function i n X and X'-coordinate systems. The func­

t i o n a l form of f(P) i n the X"-coordinate system w i l l be f ( x ' 1 , , x ' n ) .

Therefore

fp ( x ' 1 , , x , n ) , . x ^x' 1, ,x,n)J = f' ( x ' 1 , , x , n ) , (2.25)

since the value of f ( x 1 , . . . . ,x n) at PCx 1,...^") i s the same (invariant)

as that of f ' ( x 1 1 , , x , n ) at P l x ' 1 , , x , n ) . We can regard equation

(2.25) as being the d e f i n i t i o n of a scalar function; that i s , the

functions having the transformation laws t y p i f i e d by formulates,, 25) are

scalar functions. A transformation of the kind (2.25) i s c a l l e d x

"transformation by invariance".

2.6 Transformation by contravariance and covariance

A set of n functions A^(x) of the n coordinates x* are said to be

the components of a contravariant vector, associated with the X-coordinate

system, i f they transform according to the equation

A' (x 1) = ^ — AU (x) (2.26)

on the change of the coordinates x 1 to x' 1. Equations (2.26) define the

n components of the vector i n the new coordinate system X 1. When we

examine equation (2.22)

dx' 1 = $*L- dx r (2.22) 3x r

we see that the d i f f e r e n t i a l s , dx1, which determine the displacement I n 1 1 vector from a point P^(x ,.... ,x ) to another point P 2 (x + dx , ....,

x n + dx 1 1), form the components of a contravariant vector, whose com­

ponents i n any other system of coordinates are the set of d i f f e r e n t i a l s ,

Page 22: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 13 -

dx' 1 , i n that system. The coordinates x w i l l only behave l i k e the

components of a contravariant vector with respect to l i n e a r transfor­

mations. A transformation of the kind (2.26) i s c a l l e d a "transformation

by contravariance".

There e x i s t s another law of transformation of vectors, which i s

quite d i f f e r e n t from the law t y p i f i e d by formula (2.26), and i s c a l l e d

the "transformation by covariance". I t can be defined i n the following

way:

A set of n functions A^(x) of the n coordinates x 1, associated with

the X-coordinate system, are the n components of a covariant vector i n

an n-dimensional space, i f they transform according to the equation

ax° A! (x 1) - H—r A (x) (2.27)

i a x ' 1 a

on the change of the coordinates x 1 to x' 1. Equations (2.27) define

the n components of the vector i n the new coordinate system X 1. As an

example of a covariant vector consider the set of n p a r t i a l derivatives

of a scal a r function f. Since af/ax' 1 = (af/3x a) O x ^ a x ' i ) , i t

follows immediately from (2.27) that the quantities df/dx 1 are the com­

ponents of a covariant vector, whose components are the corresponding

p a r t i a l derivatives df/dx' 1. Such a covariant vector i s c a l l e d "the

gradient of f".

A covariant vector w i l l always be denoted by a single subscript,

while a single superscript w i l l denote a contravariant vector, unless

otherwise stated. The coordinates x* are an exception to t h i s , since

with respect to general transformations of coordinates, the x 1 do not

form the components of a contravariant vector.

There i s no d i s t i n c t i o n between contravariant and covariant vectors

when we r e s t r i c t ourselves to l i n e a r orthogonal transformations, since

Page 23: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 14 -

according to (2.24)

3x a/3x' i = 3x , Jy3x a .

2.7 Definition of tensors by t h e i r transformation laws

We can define a tensor as "a system of numbers or functions

(components of the tensor) representing a quantity i n an n-dimensional

space, which obeys a cer t a i n law of transformation when the coordinates

undergo a transformation." We have already defined the transformation

law for s c a l a r s or tensors of rank zero (equation (2.25)), and also the

two different transformation laws for contravariant and covariant vectors

or tensors of rank one (equations (2.26) and (2.27)).

The next requirement i s to state the transformation law for tensors

of ranks higher than one. To do t h i s , we s t a r t with second rank tensors. 2 i l

Consider the s e t of h functions A (x) whose transformation law i s

A' i 3(x') = A** ( X ) , ( 2 . 2 8 )

3x* ax*

then we c a l l A ^ ( x ) the components of a contravariant tensor of second 2

rank. S i m i l a r l y , i f we have a s e t of n functions whose transformation law i s

k I A' Ax') = -22—- A * (x) , (2.29)

1 3 3x' 3x , : i

we c a l l A^j(x) the components of a covariant tensor of second rank. 2 i

Further, i f we have a set of n functions A^(x) whose transforma­

tion law i s

A'^x') = ^ ?JL. A* ( X ) F (2.30) 3 3x* 3x' 3

Page 24: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 15 -

we c a l l A*(x) the components of a mixed tensor of second rank. Super­

s c r i p t s and subscripts always correspond to respectively contravariance

and covariance properties.

From what has been said above, we can generalize the de f i n i t i o n

of a tensor i n the following way: s+ t l t 2 " " t s i A set of n * functions A (x) of the n coordinate system x ,

q i V " p

associated with X-coordinate system are said to be the components of a

mixed tensor of rank (s+p), contravariant of the s-th rank and covariant

of the p-th rank, i f they transform according to the equation

V 2 . . . u s ,^1 ^ vy-s

(2.31)

on the change of coordinates x^ to x'1". Equations (2.31) define the

n S + ^ components i n the new coordinate system X 1.

Now we e s t a b l i s h a useful property of the law of the transformation

of tensors. I f we are given the components P? (x) of a contravariant

vector i n X-coordinate system, by using the transformation law of. a

contravariant vector, (equation (2.26)), A | i ( x ' ) = Sx'V^x"' 2? ( x ) , the

components of the same vector i n X'-system, A , x ( x ' ) can be found. On k i

multiplying equation (2.26) by 3x /3x* and summing over the index

i from 1 to n, we obtain

3x . , i , 3x 3x' j 3x » j , » j.k _ j , . _k, j- A* (x 1) = t — j — A J (x) = — T * AJ (x) =6. A J (x) = A (x). 3x' 3x' 3x 3 Sx 3 3

That i s (2.32)

A*(x) «= 22—r A' (x«). (2.33) 3 x , a

Page 25: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 16 -

Generalising, we can state that:

"Let the components of a mixed tensor in the X-coordinate system

s 1 . . . s s

be denoted by (x) and i t s components i n the X"-coordinate °r--°r

system by A' (x')« Then, from the law of transformation of mixed l j . . . l r

tensors we can write

» , 31 3 s , ,> 3* 1 3x r 9x' 1 3x' 5 _ s , , A . (X 1) = • J ' • *• • T~" ' R " ' " E A (x) • V ' ^ r 3X' 1! 3 x ^ a 7 * a r - - a r (2.34)

3 i * " 3 s On the other hand, i f we are given the components A'. ( x 1 ) , the 1 l " " 1 r

components A. (x) of the same tensor i n the X-coordinate system a,.. .a 1 r

are determined by

A (x) » — - — ••• — " — • r - ••• 3 — A" ( x 1 ) . " 2.35) V " ° r a l a r j l 3 s i i 1 r 3x 1 3x r 3x' 1 3x' S X r " i r

From the two equations (2.34) and (2.35) we can deduce an important

theorem, namely

" I f . a l l components of a tensor vanish i n a p a r t i c u l a r coordinate

system, then they necessarily vanish i n every other coordinate system."

The significance of t h i s theorem i n finding the n u l l properties of

c r y s t a l s has been discussed by B i r s s (1966, p.71).

2.8 Symmetrical and antisymmetrical tensors

When two covariant (or contravariant) indices i n the components i . . . . i X g

A. (x) of a tensor can be interchanged without a l t e r i n g the value 3 r , , 3 r

of those components, the tensor i s said to be symmetric with respect to

Page 26: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 17 -

those indices. I t can be shown that the symmetry of the components of

a symmetric tensor i s preserved under the coordinate transformations

(Sokolnikoff, 1956).

A tensor i s said to be antisymmetric with respect to two c e r t a i n

indices (both covariant or both contravariant), i f an interchange of those

two indices i n the components changes the sign and not the magnitude of

the components. The antisymmetry i s also an invariant property

(Sokolnikoff, 1956). A second order symmetric tensor has got ^ n (n + 1)

d i f f e r e n t non-zero components.

2.9 Constant tensors and tensor f i e l d

The words "constant tensor" and "tensor f i e l d " w i l l be used

frequently throughout t h i s t h e s i s , therefore i t i s b e n e f i c i a l to give

a short d e f i n i t i o n of them here.

(a) Constant tensors

Constant tensors are those tensors whose components have the same

value at every point i n the space (or the subspace) over which they have

been defined. These are the type of tensors which are usually encountered

i n s o l i d state physics and have been described i n d e t a i l i n standard

texts such as that by Nye (1972). The transformation law for these

tensors i s

s . / - - 3 s . 3 x j _ *jLL • <!*L1 A " > - ' 8 B i l x. i is. a 'a a

1 r ax- 1 ax« r ax 1 ax 6 1

(b) Tensor-field

A tensor f i e l d i s a tensor which has d i f f e r e n t values for i t s

components at different points in the space over which the tensor has

been defined, i n other words the components of a t e n s o r - f i e l d depend on

the position of the point, at which the tensor has been defined, i n the

Page 27: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 18 -

space. Equation (2.34) i s the transformation law for these tensors.

Constant tensors are a sp e c i a l kind of tensor f i e l d . In t h i s t h e s i s ,

the word tensor has been used to mean tensor-field unless otherwise

stated.

2.10 Relative or weighted tensors (polar and a x i a l tensors)

We s h a l l now extend the d e f i n i t i o n of a tensor to include r e l a t i v e

or weighted tensors. By a r e l a t i v e t e n s o r - f i e l d of weight u> ( or,is a

constant), we s h a l l mean an object with components whose transformation X

law d i f f e r s from the transformation law of a tensor-field by the appear-fch

ance of the determinant of the transformation matrix to the u power

i n the transformation law. That i s , 31"' *^s A. , s (x 1) = V r

3x 6

3 x , j 3 x«i 3 x « s a x . i i 7 x ^ W

(2.37)

where 3x , J

denotes the Jacobian of the transformation; i n other

words, the determinant of the transformation matrix.

In the s p e c i a l case of l i n e a r orthogonal transformation,

|3x p/dx' | = ± 1 (+ sign for transformation which keep the hands of

axes unchanged and - sign for those which change the hands of axes).

Therefore, considering the fa c t that for l i n e a r orthogonal transforma­

tion of coordinate axes, there i s no difference between the covariance

and contravariance properties (see Section 2.6), the transformation law

of tensors, for such transformation of axes, w i l l be

B{ , (x') » (±l) u a ...a B (x) (2.38) V - ' S V l V a V ' ° s

where a. . constants are the elements of the corresponding transformation mm

Page 28: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 19 -

matrix. Therefore, we w i l l have two kinds of tensors:

(i) tensors which transform according to the following law

B! , (x 1) = a. V " s

B. (x) (2.39) *1^1 x s 3 s • ' l " * " ^ s

these are tensors of even weight and are referred to as "polar tensors"•

( i i ) tensors which transform according to

B' (x') = ±a ...a B (x) V " s ^ l 3 ! V s V " 3 s

or.

(2.40)

B' . (x') V ' s

a. . a-3 1-1 s Js J l J s (2.41)

these are tensors of odd weight and are referred to as " a x i a l tensors"

2.11 Algebra of tensors

(i) Addition and subtraction

Consider two unweighted tensors A(x) and B(x) of the same type

and rank defined a t the same point P, and the corresponding laws of

transformation

^ l * * * ^ s 3x 1

B1 . s (x') = • 2 X - — L1'"L* 8K' 1

3x

3x'

3x' 3 l

B_ (x) (2.42) 3x

B s V " - a r

a ? r , , j s . 3x A (X 1) =» —

i r . . i r

3x Ll l r 3x* 1 3x' r

3x , 31

3x

ax' 3 s i - " e s

3x s 1 r

Now we prove that the sum of (or the difference between) these two

Page 29: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 20 -

tensors i s again a tensor of the sampe type and rank as the two tensors.

Performing the summation we get,

B' . (x'> ± A' (x') = i r * - i

r i r ' * i r

/ a x " 1 **x \ /a X' j l 3x' j s >\ [ j V ^ s , * r " 6 s , / I — H '[— 3 7 j * V ' « r V " ° r ( X )

> 3x' 1 3x' V \3x 1 3x s / L 1 1 1 r

(2.44)

and i t immediately follows that A(x) + B(x) i s a tensor which has the

same number of covariant and the same number of contravariant indices as

the o r i g i n a l tensors, and each of i t s components i s the sum of the

corresponding components of the summand tensors. The summation operation

can be extended to three or more tensors. I t can also be e a s i l y shown

that, i f each component of a tensor i s multiplied by a constant, the

resu l t i n g set of functions i s a tensor of the same type and rank. There­

fore, any lin e a r combination of tensors of the same rank and the same

type i s a tensor of the same type and the same rank.

We can generalize the addition of tensors to include r e l a t i v e

tensors as well. I t can be e a s i l y shown that r e l a t i v e tensors of the

same weight and rank and the same type (having equal number of covariance

and equal number of contravariance indices) can be added together, and

the sum w i l l be a r e l a t i v e tensor of the same weight, rank and type.

For the case of a l i n e a r orthogonal transformation, the addition of a

polar and an a x i a l tensor i s not defined. That i s , i f two tensors are

to be added together, they should be of the same rank and the same

pol a r i t y .

Page 30: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 21 -

( i i ) Multiplication; Outer product

Consider two tensors (not necessarily of the same rank or type

•••x or weight) A q (x) of weight u^, and B s (x) of weight u^-

" • l p 1 r The set of quantities consisting of the product of each component of

• • d.. • • • J. the tensor B. s (x) by each component of the tensor A. , q ( x )

V r 3r"° P

forms a tensor C ( x ) , c a l l e d the "outer product" of tensors B(x) and

A(x). By using the transformation law for r e l a t i v e tensors A(x) and

B(x) (equation(2.37) i t can be e a s i l y shown that t h i s tensor, C ( x ) ,

i s contravariant of rank q + s and covariant of rank p + r , and i t s

weight i s + u^. I n X-coordinate system the components of tensor

C(x) are given by the following formula:

• • i ^ • • * i q £^ • • *£g i • • • C (x) = B (x) A (2.45)

( i i i ) . Tensor contraction i 1 . . . i s

Consider a mixed tensor, A. . (x), and equate a covariant J l r

and a contravariant index and sum with respect to that index. The r+s~2

resulting s e t of n sums i s a mixed tensor, covariant of rank r-1 and contravariant of rank s-1. To show t h i s , consider a mixed tensor

i j k

l i k e Ag^ ( x ) , from the transformation law of tensors (equation(2.31))

we have A ' " t ( x ' ) - SL- 2L- -22S- i 2 _ A. (x) (2.46)

M 3X 1 3x 3 3x k 3x' P 3x' q

Now i f we equate t and q we w i l l get

Page 31: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 22 -

. . r a t , 1 N 3x' r 3x' s 3x , t : dxl 3x m

Kl j k , . A' (x 1) = r T r- - A„ (x)

p t Sx 1 3x 3 3x k 3x'^ ^

3x' r 3x' s 3 X* » i j x Sx 1 3x j 3x'P 3

. r s t . 3 x , r 3 x , s 3 X^ i 3 k

A'" (x.1) = - ^ - - r -S-^r - ~ A., (x) . (2.47)

P t Sx 1 3x j 3x'P

i j k

Therefore A ^ i s a mixed tensor, contravariant of the second rank and

covariant of the f i r s t rank. This process of reducing the rank of a

tensor i n contravariant and covariant indices i s c a l l e d the operation

of contraction and i t can be applied to a l l the indices of a tensor,

one a f t e r another, as far as there are indices of both types present.

The operation of contraction on a r e l a t i v e tensor y i e l d s a r e l a t i v e

tensor of the same weight as the o r i g i n a l tensor. (iv) Inner product

Inner multiplication i s performed by combining the two opera­

tions of outer multiplication and contraction, and the r e s u l t i n g tensor

i s c a l l e d the inner product of the o r i g i n a l tensors upon which the

operations are applied. To find the inner product of two tensors,

f i r s t we find the outer product of them, and then we apply the

operation of contraction ( i f i t i s p o s s i b l e ) .

2.12 Quotient law

The d i r e c t method of establishing the tensor character of sets

of functions i s to find out how they transform from one coordinate

system to another. The quotient law provides a means of doing t h i s

Page 32: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 23 -

without having to study transformation properties i n d e t a i l , which i n k i

practice i s troublesome. I t states that n functions of x coordinates

form the components of a tensor of rank h, (with c e r t a i n contravariant

and qovariant character), provided that an inner product of these

functions with an arbitrary tensor i s i t s e l f a tensor, (the term"inner

product"has been used here for sums of the form A(a, i _ , i . ) A , l h a

a or A(a, i _ , i . ) A , whether the set of functions A ( i , , i . i . ) i n l 2 n

represents a tensor or not). I t w i l l s u f f i c e to est a b l i s h the proof

for the p a r t i c u l a r case of the set of n^ functions A ( i , j , k ) , which has

a l l features of the more involved cases. Now l e t us suppose that the iP ip inner product A ( i , j , k ) B^ (x) for an arbitrary tensor B. (x) y i e l d s

pk a tensor of the type C (x):

«(i.j.k) B^ P (x) C p k (x) (2.48)

The transformed quantities, referred to a new system of coordinates

x' 1, s a t i s f y the equations

A«(i,j,k) B j i p ( x ' ) = C , p l c (x') (2.49)

Substituting for B^ i p(x') and C , p k ( x ' ) from t h e i r transformation laws

(equation(2.31)), we have

»• <i.i,w &4 *4 K £ w - ^ c q r <*> <2-5°> 3x* 3x" 3x'3 n Sx"1 3x r

qr

Substituting for C (x) from equation (2.48) into equation (2.50) and

changing the dummy indices, we get (x) = 0 (2.51) dx

Page 33: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 24 -

S P On inner multiplication by 3x /3x we obtain

A ' ( i , j , k ) — 7 r - A(£,u,r) B [ 3x* 3x' j 3x rJ u

£s (x) - 0. (2.52)

Is

Since B^ (x) i s an arbitrary tensor, the expression i n brafcgets i s

i d e n t i c a l l y zero, that i s

A'(i»jfW • S 2 L T - a s r - M£,u,r) ^ L - . ( 2 . 5 3 ) 3x Sx' 3 3x r

3x 3x . Inner multiplication of t h i s equation by — — — yi e l d s 3x' 3x

A'(s,t,k) = - — ^ - T T ^ - r A(m,u,r) , (2.54) 3 x , s 3x U 3x r

which shows that A(m,u,r) i s a tensor of t h i r d rank and contravariant i n mu

m and n, and covariant i n r , A f .

2.13 D i f f e r e n t i a t i o n of tensors

We have seen i n Section(2.6)that the set of p a r t i a l derivatives

(gradient) of a sc a l a r function, f ( x ) , forms a covariant tensor of rank

one. I f we form the set of p a r t i a l derivatives of t h i s covariant vector 3f

— j - we get 3x X

3 2 f » / 3f 3 x a \ _ 3 2 f 3x 3 3x a + 3f 3 2 x a i _ /_3f_ _3x^\

1 1 \ 3 x a ax'V " a x ^ S x * 3 X 1 \ 3 xa a x ' 1 / 3 x a a x 6 S x ' 1 dx' 1 3x° a x ' ^ x ' 1

(2.55)

Therefore for general transformation of coordinate axes, where

3 x /(3x' 3x' ) £ o, t h i s s e t of p a r t i a l d erivatives of the covariant 3f

tensor — — does not represent a tensor. This can be generalized to any 3x

kind of vector, to show that the set of p a r t i a l derivatives of a

Page 34: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 25 -

contravariant or a covariant vector do not form a tensor for general

transformation of coordinates.

Consider a covariant vector A (x), then ot

A!(x'> = - ~ T A« M (2.56)

Differentiating t h i s with respect to coordinates x' 1, we get

3 A ' i ( x , ) 3x° 3x* 3V X> + 32x* A „ + ; r A ~ <x> (2.57) 3X' 1 dx' 1 3 x , j 3x S S x ' ^ x ' 3 a

which i s not the transformation rule for a tensor, that is , 3Aa (x)

i s not a tensor. ax* S i m i l a r l y , for a contravariant vector A°(x), we get

H i f L = _*4 i d + i . w i k L . J * ! ( 2. 5 8 )

3x B 3x' 3 Sx" 3 x 0 3 x B ax' 3

3A (x) which shows that 1

a — i s not a tensor. 3x B

This can be extended to mixed tensors of any rank to show that

the s e t of p a r t i a l derivatives of a tensor does not form a tensor. But ci d.

for l i n e a r transformation where 3x /3'x i s a constant the p a r t i a l

derivative operator acts l i k e a covariant vector, and adds one covariant

index to the indices of the o r i g i n a l tensor. That i s , the tensor formed i < . • • j-g

by the set of p a r t i a l derivatives of the tensor A. . (x) w i l l have s contravariant and r + 1 covariant indices. The transformation law for such a tensor w i l l be ,

i . . . . i a.••«o 3A' . s(X') o i . i 0. 0„ A * _ (x) *1 - " 3 g 3x* 3x' 1 3xj_2 3x1. 3 x r B r " B r

3 x , k 3 x , l c 3 x a l 3x s 3x , : ) l 3x' r 3x

(2.59)

Page 35: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 26 -

In the preparation of t h i s chapter, text books by the

following authors have been consulted: Sokolnikoff (1956),

Brand (1948), Spain (1956) , B r i l l o u i n (1964),

McConnell (1957), Nye (1972) and B i r s s (1966).

Page 36: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 27 -

CHAPTER 3

FIELD DEPENDENT TENSORS ( I ) ;

DEFINITION AND TRANSFORMATION LAWS

3.1 Introduction

In the study of tensor properties of materials i n the presence of

an external f i e l d , such as a magnetic f i e l d or s t r a i n , one encounters

properties, for instance the conductivity, with components which depend

on the applied f i e l d . These tensors have been named " f i e l d dependent"

tensors (Grabner and Swanson 1962).

In Sections 3.2, 3.3 and 3.4, the way f i e l d dependent tensor pro­

p e r t i e s have been dealt with i n the past has been discussed and the need

for a more general approach has been recognized. The r e s t of t h i s chapter

i s devoted to giving a general de f i n i t i o n of f i e l d dependent tensors and

to finding t h e i r transformation laws from one system of coordinates to

another.

3.2 Expansion of the f i e l d dependent tensor components i n terms of

f i e l d components

In dealing with f i e l d dependent tensor properties, previous practice

has been to expand the tensor components as a power se r i e s i n the applied

f i e l d and to r e s t r i c t the calculations and measurements to the low f i e l d

c o e f f i c i e n t s (which are constant with respect to the f i e l d components).

The formulation of t h i s procedure for some sp e c i a l properties, i n orthog­

onal coordinate system, can be found i n many a r t i c l e s (for example see

Akgoz and Saunders 1974, B i r s s 1966, Juretschke 1955, Mason et a l 1953).

We generalize t h i s to state that:

Page 37: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 28 -

In a general coordinate system a f i e l d dependent tensor,

i . . . . i 1 s

A. . (F) can be expanded according to the following formulas: ¥ , , ] r

(a) i n the presence of a f i e l d F, which behaves l i k e a covariant vector,

i , . . . i ^ i . - . . i (0) i . . . . i k . ( l ) i . . . . i k.k.(2) A / / ( | ) = A . 1 . S a / , S 1 F„ + A.1 . S 1 2 F F +

J l J r J l J r J l J r 1 J l J r 1 2

(3.1)

(b) i n the presence of a f i e l d F, which behaves l i k e a contravariant vector,

i . . . i g + i 1 . . . i g ( 0 ) i . . . i (1) k t i 1 . . . i g ( 2 ) k k 2

(3.2)

i r . . i s (N) The c o e f f i c i e n t s A or A

1" r 1"' il l " " " ^ r

i , . . . i k,...k M(N) 1 S l N are now f i e l d

independent tensors and are given by

i , . . . i , 1 s

(N) N i . . . . i 3 A,1 . S (F)

•'r k

3 F N F = 0 (3.3)

and

i . . . . i k....k (N) , 1 s 1 N

rN i

3, •••3 J l J r (3.4)

The new set of components of each of the c o e f f i c i e n t tensors, i n a new

reference frame, can be found by employing the transformation law for

Page 38: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 29 -

f i e l d independent tensors (equation 2.31). By substituting these trans­

formed c o e f f i c i e n t s into equation (3.1) and (3.2), the transformed s e t i l * • m i- B +

of components of the tensor A (F) i s then obtained. Experimental

measurements and theoretical interpretation of the low f i e l d ( f i e l d

independent) c o e f f i c i e n t s for some f i e l d dependent properties have been

done i n the past. As an example the magnetoconductivity can be considered:

For the magnetoconductivity tensor (B) ( i n an orthogonal

reference frame) t h i s procedure gives (see Drabble et a l 1956, Akgoz and

Saunders 1974):

V* • °il ( 0 ) + • i j k " \ + tfljk1i|) \ • ... (3.5) 2

where ' N

(N) , 4 . / 9o..(B) i j k 1 k 2 . . . k N

VN! ' V 3 B k ... 3B. V B - 0 (3.6)

Experimental measurements of these low f i e l d c o e f f i c i e n t s have then

usually been interpreted i n terms of c a r r i e r densities and m o b i l i t i e s ,

and Fermi surface parameters. (For more d e t a i l see Z i t t e r 1962, OktU and

Saunders 1967, Jeavons and Saunders 1969, Michenatfd and I s s i 1972, AkgBz

and Saunders 1974, Turetken e t a l 1974).

3.3 Grabner and Swanson transformation law for f i e l d dependent tensors

A transformation law for a f i e l d dependent tensor d . ( F ) , 1jK np«••

with respect to a l i n e a r orthogonal transformation of coordinates was

f i r s t suggested by Grabner and Swanson (1962) which can be written as

d' . (F* ) - a 4 a L t . . . d (F ) , (3.7) i j k . . . np... i r j s k t r s t . . . mo...

Page 39: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 30 -

where i s t h e transformation m a t r i x . That i s , the transformation law

f o r a f i e l d dependent tensor r e q u i r e s t h a t both the matter components and

t h e i r arguments be transformed. Using t r a n s f o r m a t i o n law (3.7) enables

one t o work .with f i e l d dependent tensor components r a t h e r than the low

f i e l d c o e f f i c i e n t s , and important p r a c t i c a l advamtages accrue from t h i s .

( i ) they are easier t o measure because the applied f i e l d can take any

value - there i s no longer any necessity t o ensure t h a t the low f i e l d

l i m i t i s achieved - and so i t can be assured t h a t the induced e f f e c t s are

largerA,

( i i ) since the measurements can be made over a wide range o f f i e l d ,

much more comprehensive data can be obtained,

( i i i ) i n many cases the number of samples needed t o o b t a i n the r e q u i r e d

i n f o r m a t i o n i s l e s s than t h a t demanded by the low f i e l d method,

( i v ) d i r e c t s tudies o f non-linear e f f e c t s i n the p h y s i c a l p r o p e r t i e s

of s o l i d s - an area of much i n t e r e s t a t present - can be made.

S o l u t i o n of the Boltzmann t r a n s p o r t equation has enabled expression of

f i e l d dependent t r a n s p o r t tensors i n terms o f band model parameters f o r

m a t e r i a l s w i t h simple many-valleyed Fermi surfaces. (For more d e t a i l see

Fuchser e t a l 1970, Aubrey 1971, and Sumengen e t a l 1972). As a r e s u l t

the microscopic f o r m u l a t i o n i s no longer r e s t r i c t e d t o the low f i e l d

c o n d i t i o n ( UB << 1) but now includes the intermediate f i e l d r e g i o n f o r

which galvanomagnetic data could not p r e v i o u s l y be i n t e r p r e t e d q u a n t i t a ­

t i v e l y . Analysis o f experimental data of the f i e l d and o r i e n t a t i o n

dependence o f p ^ j ( B ) (the m a g n e t o r e s i s t i v i t y tensor) arid ^ (E) (the

magnetothermoelectric power tensor) f o r bismuth (see Sumengen e t a l 1972,

Page 40: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 31 -

Saunders et a l 1972, and Tiiretken et a l 1974) and arsenic-antimony alloy

(see Akgoz et a l 1974) has established that the band model parameters

found by the f i e l d dependent tensor components are the same within experi­

mental error as those obtained from the low f i e l d c o e f f i c i e n t s . Thus

using the transformation law (3.7) has great advantages.

3.4 Inadequacy of Grabner and Swanson transformation law

As long as the s p a t i a l transformation operators are being con­

sidered, there i s no d i f f i c u l t y i n obtaining the transformed tensor com­

ponents of a f i e l d dependent tensor. But there are cases where more

complicated transformation operators are considered, that i s transformation

operators composed of s p a t i a l transformation operators and operators which

operate only on the f i e l d components. As an example of t h i s kind of trans­

formation, a transformation operator in "spin space" (see L i t v i n 1973,

Brinkman et a l 1966 a,b, and Cracknell 1975) can be considered. This

operator can be denoted by { (R^j R | v^p^' where ( } i s a t r a n s l a t i o n ,

{ R^} a rotation or rotation-inversion operator acting on the s p a t i a l

coordinates of the spin arrangement, and { R^} a rotation or rotation-

inversion operator acting on the spin directions of that spin arrangement

(through the r e s t of t h i s t h e s i s operators have been no t i f i e d with barred

l e t t e r s l i k e A or R to avoid confusion). Now f o r a tensor defined in the

geometrical space with components depending on the spin directions, the

e f f e c t of the { R, i v, } part of the transformation ooere.tor can be J L 1 lp

obtained using the transformation law (3.7), but the { R } part needs J?

further consideration. Before t h i s can be done i t i s necessary to

define the space of the physical problem under consideration.

Page 41: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 32 -

3.5 N-dimensional space

An N-dimensional space, denoted by V N, can be defined as any

set of objects that can be placed i n a one-to-one correspondence with the

t o t a l i t y of ordered sets of N numbers x, , x„, , x . These numbers 1 2 N

are c a l l e d coordinates of the objects (points) (see Sokolnikoff 1956,

page 9) . As an example consider physical space - a three dimensional

space with the objects being the geometrical points and with the coordinates

of a point being x^, x^, x 3 with respect to three coordinate axes. In

general by "objects" a broader meaning than j u s t geometrical points i s

understood: i n different cases "objects" may imply di f f e r e n t sets of

physical properties such as e l e c t r i c f i e l d , magnetic f i e l d , spin of a

p a r t i c l e , position vector, temperature gradient, pressure, time, etc.

These physical properties can be the coordinate axes of a space. I t must

be remembered that i n a de f i n i t i o n of an N-dimensional space, there i s no

suggestion of the concept of distance between p a i r s of points (objects).

I f a rule for the measurement of the distance i n a space i s defined, that

space i s c a l l e d a "metric space."

In addition to the points i n an N-dimensional space, we need a

second kind of mathematical entity, that i s the vector, which i s related

to the points through the following postulates:

( i ) every pair of points i n the N-dimensional space determines an

entit y which i s called a vector,

( i i ) any two vectors A and B have a sum A + B which obeys the

following laws: - > - - » • - > - - >

(a) commutative law A + B = B + A , - > - * • - * • • * • -> ->

(b) associative law (A + B)+ C = A + (B + C) ,

Page 42: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 33 -

(c) i f A and B are v e c t o r s , there e x i s t s a unique vector X such - » -->->

t h a t A - B + X, thus i t f o l l o w s t h a t the operation o f s u b t r a c t i o n of -> -+-»•->•

vectors i s unique and there e x i s t s a vector 0 (zero) such t h a t A + 0 = A ,

( i i i ) f o r every r e a l number a and a vect o r A there e x i s t s a vector ->• -> ah - Aoc such t h a t

( a i + a 2 ) A = ct^A + c^A ,

and

and

-+ -y -y

a (A + B) = aA + aB ,

a i ( a 2 A ) = ( a1

a 2 ) A

The t o t a l i t y of vectors defined i n t h i s way i n the N-dimensional space

c o n s t i t u t e s a l i n e a r vector space o f K dimensions- A l i n e a r vector space ->- ->

i s c a l l e d a me t r i c vector space when t o every p a i r of vectors A and B of -> ->-

the space a number A.Bis assigned, c a l l e d the "inner" or " s c a l a r " product

o f these v e c t o r s , such t h a t

A . A > 0 , unless

-+ -> -y -y A « B = B » A |

-> -y -> -> -v A . ( B + C ) = A . B + A . C ,

-> -* -y ->

a (A . B) = aA . B .

I n an N-dimensional space there e x i s t N independent v e c t o r s ,

c a l l e d basis v e c t o r s , and every set o f N + 1 vectors i s l i n e a r l y depen­

dent. When a basis X^, k = 1, ... , N, i s defined i n an N-dimensional ~r

vector space, then each vector A of the space i s uniquely determined by

Page 43: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 34 -

a set o f N numbers a , k = 1, ... , N, such t h a t

A = \ 3

k

k The numbers a are c a l l e d the components o f the v e c t o r A w i t h respect t o

the given basis. These basis vectors form the coordinate axes and the

t r a n s f o r m a t i o n m a t r i x introduced i n equation (2.22) represents a change

of basis v e c t o r s.

A subspace can be defined as any subset o f a vector space which

s a t i s f i e s the f o l l o w i n g c o n d i t i o n (see Gerretsen 1962) :

I f A and B are vectors belonging t o the subset, then a l l the ->• -*•

vectors aA + £B , where a and 3 are a r b i t r a r y r e a l numbers, also belong

t o the subset.

The whole space i s a subspace of i t s e l f , c a l l e d the "improper

subspace". A "proper subspace" i s a subspace which does not c o n t a i n a l l

the elements o f the whole space. The set of basis vectors o f a proper

subspace i s a subset o f the set of basis vectors o f the whole space, and

t h e r e f o r e the dimension o f the subspace, t h a t i s the number of vectors

i n i t s b a s i s , i s l e s s than the dimension o f the whole space.

A t r a n s f o r m a t i o n operator corresponding t o a change o f basis

vectors i n an N-dimensional space can then be decomposed i n t o an operator

a c t i n g on the basis vectors o f a subspace and an operator which acts on

the other basis vectors of the whole space.

This approach w i l l be r e l e v a n t when we consider l a t e r (Section

3.7), magnetic m a t e r i a l s (which can have complicated magnetic o r d e r i n g ) ,

i n which case we w i l l be d e a l i n g w i t h a six-dimensional space, V (si x

3.6 Subspace

Page 44: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 35 -

degrees of freedom) composed o f the three-dimensional geometrical sub-

space V, and the three-dimensional magnetic subspace M. I n t h i s s i x -

dimensional space the tr a n s f o r m a t i o n operator corresponding t o a change

of basic vectors can be w r i t t e n as { R IR.IV. } (see Section 3.4), p i ' xp

(Brinkman e t a l 1966 a,b and L i t v i n 1973) where {R.} acts on the co-x

o r d i n a t e s i n the geometrical subspace and { ffO acts on the coordinates

i n the magnetic subspace, and } i s a t r a n s l a t i o n operator.

3.7 Formal D e f i n i t i o n o f a f i e l d dependent tensor

I n a v a r i e t y o f circumstances one encounters s i t u a t i o n s where a

p h y s i c a l p r o p e r t y , which can be i d e n t i f i e d as a tensor i n one subspace of

the whole space, has components depending on the v a r i a b l e s defined i n the

oth e r subspaces. We generalize the idea one step f u r t h e r t o say t h a t the

dependence of the tenser components defined i n one subspace, on the basis

vectors of another subspace might be more complicated than being j u s t a

s c a l a r f u n c t i o n .

For example i n the six-dimensional space of the l a s t s e c t i o n , a

p h y s i c a l property can be considered which i n the absence of magnetic f i e l d

behaves l i k e a tensor of rank n, t h a t i s , i t i s a tensor o f rank n i n the

geometrical subspace V. A f t e r i n t r o d u c i n g the magnetic f i e l d the t r a n s ­

formation operator w i l l become more complicated and w i l l i n v o l v e {IR^} •

Therefore the t r a n s f o r m a t i o n law f o r t h i s p h y s i c a l p r o p e r t y (tensor o f rank

n i n V) has t o be generalised t o take operations i J i n t o account. To

do t h i s we have t o seek the t r a n s f o r m a t i o n law c f the p r o p e r t y corresponding

t o a change of basis vectors i n magnetic subspace M, and f i n d out what s o r t

o f t e n s o r i a l dependence t h i s p r o p e r t y has on the magnetic subspace co­

o r d i n a t e s . That i s , what i s i t s rank, £,in t h i s space; t h i s rank L does

not have t o be the same as n, the rank of the p r o p e r t y i n V. Z depends

Page 45: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 36 -

e n t i r e l y on each s p e c i a l p r o p e r t y and the p h y s i c a l laws concerning t h a t

p r o p e r t y . The process of f i n d i n g t i s s i m i l a r t o the o r d i n a r y case of

f i e l d independent tensors (namely q u o t i e n t law, see Section 4.6).

The transformation law f o r a tensor property A w i t h rank n i n V

and rank L i n M, which t o maintain the g e n e r a l i t y i s considered t o be a

tensor f i e l d i n both subspaces can be w r i t t e n

{ R J R . } A ,± i , (B, r ) =

m in r r

I n

= A' a a U*J m / ( R . } r ) , (3.8) m m r .... r

i j A £ a l a £ where m , , m , m , , m in d i c e s r e f e r t o the coordinate axes

31 j n Bl &n i n M subspace and r r , r r i n d i c e s r e f e r t o the co­o r d i n a t e axes i n V subspace, and they a l l range from one t o three (number o f coordinate axes i n a three-dimensional space). The t r a n s f o r m a t i o n

operator {R } has the ma t r i x r e p r e s e n t a t i o n w i t h components (R ) , , and P . P i e a m m

the components o f the r e p r e s e n t a t i o n m a t r i x f o r operation { R } are

(R.) . Therefore the operator { R jR.} on the l e f t hand side of 1 i ft p 1

3 e 3 f r r equation (3.8) can be represented by

{ R IR. } = (R ) . (R ) (R ) P i P • P • P ^

m m m m m m

(R.) . (R.) (R.) (3.9 ^ 1 S l 1 h *2 1 j n \

X X X X X X

Page 46: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 37 -

The combined operation { R^| lO acts i n the following way. f i r s t operation

transforms the 3 components of the tensor A, i n the subspace V,

into t h e i r new values i n the new reference frame i n V, then each of these

components which has 3 components i n M i s operated upon by { R } and i s I P

transformed into a s e t of 3 new values i n the new set of m (which for

instance could be magnetic coordinates). The number 3 i s the dimension

of the subspace i n each case. Therefore our tensor property has indeed n i £+n

(3) x (3) = 3 components. In general, i n a space composed of two subspaces V(h^ - dimensional) and M(h^ - dimensional), a tensor of rank n

n &

in V and rank Z i n M w i l l have (h^) + (h^) components. Supposing that

t h i s tensor has t contravariant and s covariant indices i n V (T + s = n)

and v contravariant and u covariant indices i n M (V + u = 4.), the trans­

formation law for i t s components w i l l be

v t g l g v j l * t m ....m r . . . . r

A' (ra\r') = 3m i , i k, k - ° 1 u 1 s am m ....m r . . . . r

s j 6 6

3r'' 1 1 3r 3r s

g l 3m' 9 v 8 0 1 am 3m 3 u

5i 3r' 1

1 a « v dm

3m' 1 1 3m- l u

a l m .

a V .. • m Y l . r ...

Y t • r A (m,r) (3.10)

m . 3 u

.. .m

6 1 r ...

6 s

• r 3r z 3 1 3r' s

For a r e l a t i v e , f i e l d dependent tensor, B, of weight i n V, and of

weight i> 2 i n M, and of the same rank and covariance and contravariance

property as the tensor A i n equations (3.10), the transformation law

w i l l be

Page 47: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 38 -

g i g v j l j t m ... .m r .... r On' ,r')

i . i k. k 1 u 1 s m ,...m r . . . . r

3n> 3m' 1

3 m .g 3m1

Sm"1 3m a v

3m 3m

3m1

3r

3m« X u

3r'

3r' :

a

fir' 1 3r' 3r

s m B

.12

3r

'1 ' t r .... r

3r u 3r'

(m,r) ,

3r k

i s m

u 1 s .m r — . r

(3.11)

where 3m 3m ,g

and 3r' 3r i 3

are the determinants of the transformation

matrices i n M and \? subspace. Equation (3.11) i s the general transforma­

tion law for f i e l d dependent tensors. For a transformation operator,

which i s composed of orthogonal transformation of coordinate axes i n a l l

the subspaces of the whole space, there i s no difference between covariant

and contravariant indices and the transformation law (3.11) can be written

as

A' m. •m. i , r . ,r. (m',r') -3m

3m o

3m' . 3 3r' "

3 % , 3m~'~

3m O-i

3m'

3r„

3r'

3r„ n

3r' 'n

on .m. r g r g (m,r> , (3.12)

where 0 for even (polar i n M) ,

and 1 for odd UJ^ a x i a l i n M) ,

'0 for even (polar i n V) ,

1 for odd to ( a x i a l i n v ) .

Page 48: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 39 -

As an example the c o n d u c t i v i t y tensor? i n the space composed of the

three-dimensional geometrical subspace and the three-dimensional momentum

subspace, can be considered. I n t h i s space a tr a n s f o r m a t i o n o f coordinates

may be represented by the operator { E IsR.lv. } w i t h iR a r o t a t i o n p i ' i p p

operation i n the momentum subspace, a r o t a t i o n o p e r a t i o n i n the geomet­

r i c a l subspace, and a t r a n s l a t i o n o p e r a t i o n . The form o f the Ohm's

law i n the three-dimensional geometrical subspace i s

J i * °ij E j ' ( 3 - 1 3 )

w i t h J and E a c t i n g as v e c t o r s , or f i r s t rank tensors and a as a second

rank tensor. Therefore the e f f e c t o f IR. on a, . can be e a s i l y found. But 1 ID

f o r R^, the behaviour of J, E and o i n the momentum subspace has t o be

found f i r s t . Since e l e c t r i c f i e l d E a t a p o i n t depends only on the distance

between the p o i n t and the charged body, which i s c r e a t i n g the f i e l d , every

r o t a t i o n o f coordinate axes i n the momentum subspace leaves E unchanged.

Therefore e l e c t r i c f i e l d E behaves l i k e a scal a r i n the momentum subspace.

The c u r r e n t d e n s i t y J can be w r i t t e n as the product of e l e c t r i c charge

d e n s i t y times e l e c t r i c charge v e l o c i t y ; J = P.v. E l e c t r i c charge de n s i t y

P i s a scalar i n momentum subspace and v the charge v e l o c i t y i s a ve c t o r .

Therefore using the q u o t i e n t law (see Section 4.6), J, the c u r r e n t d e n s i t y ,

i s a tensor o f f i r s t rank, or a vector, i n the momentum subspace, and can be w r i t t e n as (J.) , w i t h nine components (m- r e f e r s t o coordinate axes i n

m k

the momentum subspace). Now by using the q u o t i e n t law i t can be shown

t h a t c o n d u c t i v i t y i s a l s o a vector i n the momentum subspace, and can be

w r i t t e n as (a. ) w i t h twenty seven components. Thus we can conclude

the generalized Ohm's law i n the space composed of the geometrical sub-

space and the momentum subspace : (J.) (o..) E. (3.14) ^ k 1 3 -k 3

Page 49: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 40 -

Spin-tensor q u a n t i t i e s can be considered as another example o f

q u a n t i t i e s w i t h such m u l t i - t e n s o r i a l character. Spinors have been defined

i n the f o l l o w i n g way ^Corson 1953):

Spinors are geometrical objects which are defined over a two

dimensional space (the spin-space) and obey the f o l l o w i n g t r a n s f o r m a t i o n

law ,

*A " SA (A, B = 1, 2) (3.15)

w i t h S the t r a n s f o r m a t i o n m a t r i x i n s-space (the spin-space).

defined i n t h i s way i s a c o v a r i a n t spinor of f i r s t rank i n the spin-space.

I n our terminology t h i s w i l l be a c o v a r i a n t tensor o f f i r s t rank i n the

s p i n subspace. There are also higher rank spinors and weighted spinors.

I n a d d i t i o n spin-tensors are defined as those q u a n t i t i e s which have both

tensor and spinor i n d i c e s and obey the t r a n s f o r m a t i o n laws

<b' = & V 9 {3.16) vpAB (J. VAB

v under coordinate t r a n s f o r m a t i o n a i n the geometrical subspace (a i n

u |J.V n o t a t i o n s used i n t h i s t h e s i s ) , and

= S? S° * „„ , (3.17) VUAB A B UCD

under s p i n t r a n s f o r m a t i o n i n the spin-subspace. A l l these q u a n t i t i e s

might be defined i n terms of f i e l d dependent tensor terminology. I t i s

apparent t h a t there w i l l be many other q u a n t i t i e s which a r i s e i n d i f f e r e n t

f i e l d o f physics t h a t can be brought under a b l a n k e t d e f i n i t i o n o f f i e l d

dependent tensors.

Page 50: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 41 -

3.8 The n a t u r e o f c o o r d i n a t e s i n t h e f i e l d subspace

So f a r i n t h e d e f i n i t i o n o f f i e l d dependent t e n s o r s and t h e i r

t r a n s f o r m a t i o n laws we have j u s t c o n s i d e r e d t h e dependence o f t h e f i e l d

dependent t e n s o r components on e x t r a c o o r d i n a t e s ( c o o r d i n a t e s i n t h e

f i e l d s u b s p a c e ) , w i t h o u t any s p e c i a l r e f e r e n c e t o t h e n a t u r e o f t h e f i e l d .

By t h e n a t u r e o f f i e l d components, we mean t h e r e l a t i o n between t h e co­

o r d i n a t e s i n t h e f i e l d subspace and t h e g e o m e t r i c a l subspace. T h i s r e l a t i o n

w i l l be i n v e s t i g a t e d i n t h i s s e c t i o n .

F i r s t we c o n s i d e r t h e s i m p l e case where t h e f i e l d c o o r d i n a t e s a r e

s c a l a r q u a n t i t i e s i n t h e g e o m e t r i c a l subspace ( q u a n t i t i e s w h i c h a r e i n ­

dependent o f t h e c h o i c e o f c o o r d i n a t e s i n t h e g e o m e t r i c a l s u b s p a c e ) , such

as t e m p e r a t u r e , c o l o u r o r shape o f t h e i n d i v i d u a l o b j e c t ( d i f f e r e n t c o l o u r s

o r d i f f e r e n t shapes can be c h a r a c t e r i z e d by d i f f e r e n t numbers). I n t h i s

case t r a n s f o r m a t i o n o p e r a t o r s o f t h e g e o m e t r i c a l subspace do n o t have any

e f f e c t on t h e c q o r d i n a t e s i n t h e f i e l d subspace, and e q u a t i o n s ( 3 . 3 ) ,

( 3 . 9 ) , ( 3 . 1 0 ) , (3.11) and (3.12) can be used t o f i n d t h e t r a n s f o r m e d s e t

o f f i e l d dependent t e n s o r components.

There a r e o t h e r cases where t h e c o o r d i n a t e s i n t h e f i e l d subspace

depend on t h e d i r e c t i o n o f c o o r d i n a t e axes i n t h e g e o m e t r i c a l subspace.

Examples o f t h i s a r e t h e space composed o f momentum and g e o m e t r i c a l sub-

spaces, d e s c r i b e d i n t h e l a s t s e c t i o n , where momentum i s i t s e l f a v e c t o r

i n t h e g e o m e t r i c a l subspace, o r t h e space o f a m a g n e t i c c r y s t a l where t h e

m a g n e t i c moments ( c o o r d i n a t e s o f t h e f i e l d subspacs) are v e c t o r s i n t h e

g e o m e t r i c a l subspace. I n c o n s t r u c t i n g t h e s e t o f symmetry o p e r a t i o n s o f

such spaces t h e e f f e c t o f each symmetry o p e r a t i o n on e v e r y c o o r d i n a t e

a x i s s h o u l d be s p e c i f i e d . I n t h i s sense t h e r e a r e d i f f e r e n t p o s s i b i l i t i e s

f o r symmetry o p e r a t i o n s ;

Page 51: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 42 -

( i ) t h e symmetry o p e r a t i o n s o f t h e g e o m e t r i c a l subspace a r e s u f f i c ­

i e n t t o s a t i s f y t h e symmetry r e q u i r e m e n t s o f t h e f i e l d subspace,

( i i ) e x t r a o p e r a t i o n s i n t h e f i e l d subspace must be added t o each

t r a n s f o r m a t i o n o p e r a t i o n o f t h e g e o m e t r i c a l subspace t o s a t i s f y t h e

symmetry r e q u i r e m e n t s o f t h e f i e l d subspace,

( i i i ) t h e o p e r a t i o n s w h i c h s a t i s f y t h e symmetry r e q u i r e m e n t s o f t h e

f i e l d subspace a r e q u i t e d i f f e r e n t , f r o m t h o s e i n t h e g e o m e t r i c a l sub-

space, w h i c h a r e supposed t o l e a v e t h e c o o r d i n a t e s i n t h e f i e l d subspace

unchanged. Here, t o f i n d t h e s e t o f t r a n s f o r m e d components o f a f i e l d

dependent t e n s o r , t h e t r a n s f o r m a t i o n law (one o f t h e e q u a t i o n s ( 3 . 8 ) ,

( 3 . 9 ) , ( 3 . 1 0 ) , (3.11) o r (3.12) a c c o r d i n g t o t h e k i n d o f t e n s o r under

c o n s i d e r a t i o n ) o f t h e l a s t s e c t i o n can be employed.

For spaces o f t h e k i n d ( i ) and ( i i ) where one t r a n s f o r m a t i o n

o p e r a t o r may a c t on b o t h o f t h e subspaces t h e s i t u a t i o n i s s l i g h t l y

d i f f e r e n t . To e x p l a i n t h i s l e t us c o n s i d e r t e n s o r p r o p e r t i e s w h i c h

a c t l i k e s c a l a r f u n c t i o n s i n t h e f i e l d subspace. Under a t r a n s f o r m a t i o n

o f c o o r d i n a t e s i n t h e g e o m e t r i c a l subspace, denoted by o p e r a t o r \fR },

t h e t r a n s f o r m a t i o n law f o r such a t e n s o r p r o p e r t y w i l l have one o f t h e

f o l l o w i n g f o r m s :

(a) when t h e c o o r d i n a t e s i n t h e f i e l d subspace a r e v e c t o r s i n t h e

g e o m e t r i c a l subspace;

Page 52: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 43 -

8r r r , 6 k B * * On , r ) , (3.18)

a r . s «i 6 s a

3 r r ... . r

where i s t h e |R! . . element o f t h e t r a n s f o r m a t i o n m a t r i x . (R) , 3 r ' 3 ^

(b) when t h e c o o r d i n a t e s i n t h e f i e l d subspace a r e second ran k t e n s o r s

i n t h e g e o m e t r i c a l subspace-.

a7 n \ 3. J f ar 3 r ' 9 8 8 r ! 1 3r' fc

: m , -x— r' / = .... 3r' 2 1 2 d r ^ 3r * 3r u

6 6 Y t

3r 1 3 r r •••• r & —k7 — ~ B « 6 (Vc* < r >' ( 3' 1 9 )

3r« 1 3r> 3 r ^ . . . r S 1 2

where m. . a r e t h e components o f t h e f i e l d t e n s o r a l o n g t h e c o o r d i n a t e 1 1 1 2

axes i n t h e g e o m e t r i c a l subspace, ( t h e f i e l d t e n s o r c o u l d have c o n t r a -

v a r i a n t i n d i c e s as w e l l ) f

(c) when t h e c o o r d i n a t e s i n t h e f i e l d subspace a r e vor.sors o f r a n k s

h i g h e r t h a n two:

Page 53: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 44 -

B 1' 1 s r . r

3r or m_

3r • 1 3r' a. .. .a 1 a

3 r ' g 3 TT" r ' 3r /

3r'

3r

3r ,3 t

3r

3r

3r'

3 r

3 r '

. r

. r

(3.20)

t h e f i e l d t e n s o r c o u l d a l s o have c o n t r a v a r i a n t i n d i c e s .

We may e x t e n d what has been s a i d a l s o t o t h e case o f f i e l d depen­

d e n t t e n s o r p r o p e r t i e s w h i c h have r a n k s h i g h e r t h a n z e r o i n t h e f i e l d sub-

space/ where t h e f i e l d components a r e t h e m s e l v e s t e n s o r s i n t h e g e o m e t r i c a l

subspace. Then f o r spaces o f k i n d ( i ) and ( i i ) , a t r a n s f o r m a t i o n o p e r a t o r

{ IR} i n t h e g e o m e t r i c a l subspace w h i c h can s a t i s f y a p a r t o f o r a l l t h e

symmetry r e q u i r e m e n t s o f t h e f i e l d subspace w i l l t r a n s f o r m t h e components

o f t h e f i e l d t e n s o r i n t h e g e o m e t r i c a l subspace i n t h e f o l l o w i n g way:

i l 1

m , _ 3r 3r U

m - — j r — m. „,, 1 d 1 . . u i u <jr' d r 1

where m' a r e t h e f i e l d components a l o n g t h e c o o r d i n a t e axes i n t h e 1 u

g e o m e t r i c a l subspace. Now we can c o n s t r u c t t h e t r a n s f o r m a t i o n o p e r a t o r

{ Rp } i n t h e f i e l d subspace, c o r r e s p o n d i n g t o t h e - c r a n j i f o m i u t i o n o p e r a t o r

{ R } i n t h e g e o m e t r i c a l subspace= We can w r i t e

= { R p } mfc (3.22) ab

where m' = m' „ , and m. = m. , and 3 ^ _ - ** O T _ - _ _ 1 a a,...- a b i . . . . . i

1 u 1 u

Page 54: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 45 -

~ 1 - u

< KP> - ^ V ( 3- 2 3 1

ar 3r

Then e q u a t i o n (3.8) can be used as t h e t r a n s f o r m a t i o n law f o r f i e l d

dependent t e n s o r s w i t h o p e r a t i o n i R } as d e f i n e d i n e q u a t i o n ( 3 . 2 3 ) .

Page 55: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 46 -

CHAPTER 4

FIELD DEPENDENT TENSORS ( I I ) ;

CALCULUS

4.1 Introduction

The basic concepts and theorems of the algebra of f i e l d independent

tensors (Sections 2.11, 2.12 and 2.13) such as addition and subtraction

operations can be generalized to establish the algebra o f f i e l d dependent

tensors. This i s done here for the f i r s t time. In th i s chapter t h e way

the operations of addition, subtraction, inner and outer multiplication,

contraction and dif f e r e n t i a t i o n o f ' f i e l d dependent tensors act are worked

out, and the conditions under which these operations can be performed are

discussed. Furthermore, the quotient law i s generalized t o include f i e l d

dependent tensors.

4.2 Addition and subtraction

Theorem 1:

In the space composed of two subspaces R and M, i t w i l l be shown

that the sum (or difference) of two f i e l d dependent tensors A(r,m) and

B(r,m) (r and m refer to the coordinate axes i n R and M subspaces) which

have the same rank h (with the same number of covariant f .aiid the same

number of contravariant e indices (f + e = h)j in R and t h e same rank n

(with the same number of covariant p and t h e same number o f cd.travariant

q indices (p + q = n)j i n M, defined a t t h e same point i s again a f i e l d

dependent tensor C(r,m) of the same rank and type i n R and t h e sama rank

and type i n M.

Proof: The corresponding transformation iaws (equation 3.10) for A(r,m)

and B(r,m) are

Page 56: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 47 -

(r\m') = 9 i

3m' *

dip

m

,3m' H

a 3m <J

a .m

.m

3m

cm

dm

3m'lp

(r,m) ,

(4.1)

q e q p

p 3 m 3m 3 m m m om (r' ,m') B 1 3 in 1 1 dm c>in om m m

1 1 1 m m (r,m) B

1 3 3 m

(4.2)

Then adding each component of A' from equation (4.1) cc the corresponding

component of B* from equation (4.2), we arr i v e at a set with the same

number of components which obeys the following transformation lav;

Page 57: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 48 -

91 g q in . . . . m j l r ... .

je ....m q j l j e r . ... r

A' (r 1,m') B" 1 P ni ... .m

k l r ... K

. r s m

i m P r .... r

3m'91 3m'9q

6. 3m • 3 m ^ 3r' 3 r ! e 3 r

a i 3m

a 3m q 3m' 1 3m' l p

Y, 3 r 1

Y 3r 8 3f'

a, a Y, Y a, a y , Y v 1 q 1 e 1 q ' 1 e \ m ....m r . . . . r m ....m r . . . . r ' A (r,m) + B (r,rc) j

" 6 , 8 fi. 6^ / *1 ep 61 6 f " 61 6p 61 " f / m ....m r r m . ...m r , . . . r

Therefore the set of components ,

q fll Q q Y l Y e m ....m r . . . . r

C (r,n) = S l &

P 61 5 f m ....m r . . . . r

P

a. a y , y a. a y, y 1 q 1 e i q 11 e m .... m r .... r m ... . m r . .. . r A (r,m) ± B ir.m) ,

B. B 6. 6. 0. 6 6, 6., l p l r l p i j . m ....m r . . . . r m ....m r . . . . r

forms a f i e l d dependent tensor of the same rank and type ES the two

or i g i n a l tensors A and B, in each subspace-

Page 58: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 49 -

G e n e r a l e x t e n s i o n o f t h e theorem: t h e o p e r a t i o n o f a d d i t i o n can

be i m m e d i a t e l y e x t e n d e d t o f i n d t h e ( a l g e b r a i c ) sum o f any number o f

f i e l d dependent t e n s o r s , p r o v i d e d t h e y a l l have t h e same r a n k and a r e

a l l o f t h e same t y p e ( e q u a l number o f c o v a r i a n t i n d i c e s and e q u a l number

o f c o n t r a v a r i a n t i n d i c e s ) i n every subspace o f t h e whole space. But t h e

o p e r a t i o n o f a d d i t i o n does n o t a p p l y t o f i e l d dependent t e n s o r s w h i c h have

d i f f e r e n t r a n k s o r a r e o f d i f f e r e n t t y p e s i n a subspace.

Theorem I I :

The s e t o f f u n c t i o n s formed by m u l t i p l y i n g each component o f a

f i e l d dependent t e n s o r by a c o n s t a n t ^ i s i t s e l f a f i e l d dependent t e n s o r

w i t h t h e same t e n s o r i a l c h a r a c t e r ( t h e same r a n k and t y p e i n e v e r y sub-

space) . T h i s i s r e a d i l y p r o v e d by m u l t i p l y i n g b o t h s i d e s o f e q u a t i o n

(4.1) by a c o n s t a n t . From t h i s f a c t t o g e t h e r w i t h t h e d e f i n i t i o n o f

t h e a d d i t i o n o p e r a t i o n , i t can be s t a t e d t h a t :

Any l i n e a r c o m b i n a t i o n o f f i e l d dependent t e n s o r s o f t h e same t e n s o r i a l

c h a r a c t e r i s a f i e l d dependent t e n s o r o f t h e same c h a r a c t e r .

4.3 O u t e r m u l t i p l i c a t i o n o f two f i e l d dependent t e n s o r s

D e f i n i t i o n :

I n a space composed o f two subspaces M ( w i t h m^ as c o o r d i n a t e axes)

and R ( w i t h r ^ as c o o r d i n a t e a x e s ) , c o n s i d e r two f i e l d dependent t e n s o r s :

A ( r , i u ) o f r a n k k ( w i t h s c o n t r a v a r i a n t and p c o v a r i a n t i n d i c u o a + p = k)

i n M subspace and o f r a n k Z ( w i t h t c o n t r a v a r i a n t and q c o v a r i a r . t i n d i c e s

t + q = Z) i n R subspace, and B ( r , n ) o f r a n k n ( w i t h i c o n t r a v a r i a n t find

u c o v a r i a n t i n d i c e s i + u = n) i n M subspace and o f o rank ( w i d i j con­

t r a v a r i a n t and v c o v a r i a n t j + v = a ) i n R subspace. The o u t e r p r o d u c t

o f t h e s e two f i e l d dependent t e n s o r s can be d e f i n e d as t h e s e t o f

Page 59: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

50 -

elements C(r,m) formed by multiplying each component of A(r,m) by each

component of the tensor B(r,m). That i s

t i j

a a b b e e f f 1 s " l t e l i x i E j m ....m r .... r m ..••m r .... r A c, c d d ( r ' m ) ' B g g h h ( r ' m ) S

1 p 1 q y l 9 u 1 v m ....in r ..«.r m ....m r , . . . r

p q u

s + i t + j a a e e b b f " l s 1 i 1 t 1 3 m ... .m ID ... .m r . . . . r r ..«.r

S C (r,m) . (4.5) c, e g , g d, d h, h

m...««m m ... .m x «... r r .....r

p + u q + v

After the transformation of coordinate axes (r,m) into new axes (r',m')

the outer product can be written as

V a s E i e i B i K V " j m ....m m ....m r . . . . r r . . . . r

M 'p 1 u 1 q *1 *v m ... .m m ....m r . . . • r r . . . . r

a l a s *1 * t e l £ i n l n j m ....m r • • • • r m .... m r .... r A' (r' ,m'') - B ! ( r ! ,ms) .

Y l Y p 6j « Xj X u P l y v

m • • • • I D r •. • • r m .. • .m r . . • • r

(4.6)

Changing the dummy suffix e s i n equations (4.1) and (4.2), and substituting

for A 1(r,m) and B'(r,m) from these equations into equation (4.6) shows that

the s e t of elements of the outer product C(r,m) forms a f i e l d dependent

Page 60: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 51 -

tensor of rank k + n (with s + i contravariant and p + u covariant indices

s + i + p + u = k + n ) i n H and of rank t + 0 (with t + j contravariant

and q + v covariant indices t + j + q + v = £ + 0 ) i n R subspace.

4.4 Contraction of f i e l d dependent tensors

In a space composed of two subspaces R (n-dimensional) and M (£-

dimensional) consider a f i e l d dependent tensor

a, a b. b 1 s i t m ....m r . . . . r A _ - (r,m) of rank s + p i n M and rank t + q i n R (s c 4 c a. a m 1 m P r 1 r q

m ....m i •... r

and t contravariant, p and q covariant). Equating a covariant index m

and a contravariant index m i n the same subspace M and summing with

respect to this.index w i l l r e s u l t i n a s e t of (£) S +^~ 2(m) t + (* functions. This

i s the operation of contraction. I t w i l l be shown that t h i s s e t of

functions forms a f i e l d dependent tensor of rank s + p - 2 i n M subspace

and t + q i n R subspace. I n order to avoid writing out long formulae with

many covariant and contravariant indices i n each subspace we i l l u s t r a t e

the proof by considering a f i e l d dependent tensor

a, a„ b. b_ m 1 2 1 2 A (r,m). The transformation law for t h i s tensor i s (see

c c c d 1 2 3 " l m m m r

equation 4.1)

a. a„ b. b A ,

m 1 m 2 r 1 r 2 , , 1 % ( 3 m ' 3 m ' * 2 3m Y 2 3 j ^ _ \ ' (r' ,m') =1 — - — • — - — « — • — • — ) c, c„ c„ d, \ « 1 . 2 , , 1 * , 2 *,2' 1 2 3 1 3m 3m 3m' 3m' 3m' m m m

0 3 a 1 m m (r.m) (4.7) 6 6 3

3r m m m

Page 61: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 52 -

a c 2 3 Now i f we equate m and m i n equation (4.7) we obtain

b b a« a». 1 2 a. a_ Y. Y„ Y m 1 m 2 r r a . 1 , , 2 . T l a_ T 2 Y 3 i „ „ A I . I . I I . *5»! M* 3m 3m 3m A- c c d (r\m') . c. 2 3 l a. a

3r' 1 3r' 2 3r 1 " m r r

*d~ Y * Y Y Y 6 ( r ' m )

a ,1 T 3 Y l Y 2 Y 3 °1 or' m m m m r

That i s :

m l m m r . 1 . 2 «. . 1 . , 2 « , 2 3m 3m 3m' 3m* 3m'

b. b„ 6. Q l °2 B l B2

ft A * A~ A v v v A ( r ' m )

9 B i a

P2 . , d l Y l Y 2 Y 3 61 3r 3r 3r' m m m r

Therefore ,

m 1 m 2 r 1 r 2 a i Y l Y 2 b l b2

°1 C2 C 3 d l " l C l C2 B l B2 m m m J r 3m 3m' 3m' 3r 3r

6, °2 *1 °2 B l B2 a r 1 m m m r r

a. a„ b. b„ . 1 2 1 2 a Y. Y, b, b. " 1 * . ___ . __L . isJ_ . «£!_ . l£li

m m m r 3m 3m" 3m' 3r 3r

3r " l °2 B l B2 m m r r

d~ A Y Y a 6 (r'm) ' a , 1 T l T2 a2 °1 or" m m m r

(4.8)

Page 62: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 53 -

a a b b 1 2 1 2 m m r r Equation (4.8) shows that A a d ( r» m) i s a f i e l d dependent

1 2 2 1 m m m r

a l a2 b l b 2 m m r r tensor of the same rank as A (r,m) i n R subspace but of

C l C2 C3 d l m m m r

a a b b 1 2 1 2 m m r r rank l e s s than A (r,m) by two (one contravariant, one

C l C2 C 3 d l m m m r

covariant), i n N subspace. I t should be borne i n mind that the operation

of contraction (lowering the number of covariant and contravariant indices

by one) can only be applied to two indices which are of d i f f e r e n t types

and refer to the axes defined i n one subspace. Moreover the operation of

contraction can be c a r r i e d out for a l l the indices of a f i e l d dependent

tensor one a f t e r another, as far as there are indices of both types present

i n the same subspace.

4.5 Inner multiplication of f i e l d dependent tensors

The operation of inner multiplication of two f i e l d dependent

tensors i s a combination of the operations of outer multiplication and

tensor contraction. That i s , to find the inner product of two f i e l d

dependent tensors, f i r s t we find t h e i r outer product and then we apply

the operation of contraction. As an example, consider two f i e l d depen­

dent tensors

1 1 e. e„ m r m 1 2 A , (r,m) and B . (r,m); then forming t h e i r outer product,

1 2 1 g l 1 m m r m m

we obtain

Page 63: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 54 -

a e e b a b e e 1 1 2 1 1 1 1 2 m m m r m r m m c«, «, «, a, h, (r'") " A =2 -t

(r"' B«, », (r"" • m m m r r m m r m m

a l 6 1 6 2 b l m m m r The f i e l d dependent tensor C , . (r,m) can be contracted

C l C 2 g l d l h l m m m r r

three times i n M subspace and once i n R subspace (these contractions can

be performed i n several ways: two dif f e r e n t ways i n R and s i x d i f f e r e n t

ways i n M).

4.6 The quotient law of f i e l d dependent tensors

The quotient law, defined i n Section 2.12 for f i e l d independent

tensors, can be generalized to include f i e l d dependent tensors i n the

following way. That i s , i t can be stated that i n the space composed of h k

two subspaces R (n-dimensional) and M (^-dimensional), the set of (n ) { t )

functions of coordinates r and m forms a f i e l d dependent tensor of rank

h i n R subspace and of rank k in M subspace (with a certain number of

contravariant and covariant i n d i c e s ) , provided that an inner product of

t h i s s et of functions with an arb i t r a r y f i e l d dependent tensor i s i t s e l f

a f i e l d dependent tensor, (the inner product of a tensor and a set of

functions means the sum of the form > f ° ± 2 ± k j l \ , 1 ( a H K j l v y , A(m ,m ...,m ,r , . . . , r )A , or A(m ,m ,...,m ,r , . . . , r )A ) .

m

Writing out the general proof for t h i s statement involves long formulae

with many contravariant and covariant indices. To avoit t h i s the proof

i s given here for the following s p e c i a l case which has a l l the features 3 2

of the general case. Consider the set of (m ) x (t ) functions . a b c d e

A(m ,m ,m ,r ,r ) . Now l e t us suppose that the inner product ,

Page 64: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 55 -

a f , , m r a b c d e A(m ,m ,m ,r ,r ) B (r,m). c m

a f ra ,r for an arbitrary f i e l d dependent tensor B (r,m) y i e l d s a f i e l d b f mc

m r dependent tensor C d (r,m) of f i r s t rank (contravariant) i n M and of

r r t h i r d rank (two covariant and one contravariant) i n R. That i s

v a f b f . . a b c d e . „ m r , . „m r . A(m fm ,m ,r ,r ) B (r,m) = C (r,m) (4.9) c e a m r r

The transformed quantities, referred to a new system of coordinates

(r',m')» s a t i s f y the following equation

a f b f h d m r m r A'(ma,m ,mC,r , r e ) B' (r',m') = C . (r^m') (4.10) c e a m r r

a f b f m r m r Substituting for B' (r',m') and C . (r^m 1) from t h e i r trans-c e a m r r

formation laws (equation 4.1) into equation (4.10), we obtain

a b c d e. 3m'a 3mY 3 r , £ Dm a r M . . A' (m ,m ,m ,r f r ) — — • — — B (r,m)

3m 3m' 3r mY

- B u . ,b . e . ,f . 6 m r C . (r,m) (4.11)

3m 0 3 r ' e 3 r P 3 r ' d r £ r*

B u m r Substituting for C £ g(r,m) from equation (4.9) into equation (4.11)

r r and changing the dummy indices, we get

Page 65: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 56 -

3 r , £ l ~ ,, a b c d e, 3m" A* (m ,m ,m ,r ,r ) — -3 r " L 3m

3m1

3m «# a B Y 6 e. - A(m , m ,m ,r ,r ) .

, • . a n 3m' 3 '—g 3m 3m

e . o - i m r R — "Z-T B (r fm) = 0 (4.12) m , e 3r« J raY

a ra r Equation (4.12) should hold for every B (r,m), the arbitrary tensor.

m

Therefore the expression i n the bracket i s i d e n t i c a l l y zero, that i s

... a b c d e, 3ma 3m , b 3m , C 3 r E 3 r 6

A' (m ,m ,m ,r ,r ) = • > — — • 3m'3 3mB 3mY 3 r , e 3 r , d

A(m ,m ,m ,r ,r ) , (4.13)

which shows that A(ma,m^,mY, r ^ , r E ) i s a f i e l d dependent tensor of B Y

rank three i n H subspace (contravariant i n m and m , and covariant i n

ma ) and of rank two i n R subspace (covariant i n both r^ and r e ) , that i s

B Y a t mm

A(ma,m ,mY,r , r E ) >= A (r,m) - (4.14) Ot 0 £ m r r

The ten s o r i a l character of a set of functions can also be investigated

i n each subspace separately by means of the quotient law. The quotient

law can then be stated in the following way:

A set of functions forms a f i e l d dependent tensor of certain rank(with

certain covariant and contravariant indices) i n a subspace i f an inner

product of t h i s s e t of functions with an orbitrary f i e l d dependent tensor

i n that subspace i s again a f i e l d dependent tensor i n the same subspace.

Page 66: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 57 -

4.7 Differentiation of f i e l d dependent tensors

The way i n which the d i f f e r e n t i a t i o n operator has been dealt

with for f i e l d independent tensors i n Section 2.13 can be followed for

the components of a f i e l d dependent tensor i n one subspace. That i s ,

i t can be stated that, i n a space composed of two subspaces R(n-n 3

dimensional) and M (^-dimensional), the set of p a r t i a l derivatives 3ma

(with respect to the coordinates i n M) of a f i e l d dependent tensor which

behaves l i k e a s c a l a r function i n M, forms a f i e l d dependent tensor

which acts l i k e a covariant tensor of rank one i n M. The ten s o r i a l

character of t h i s f i e l d dependent tensor i n the subspace R does not change

a f t e r d i f f e r e n t i a t i o n . This f i e l d dependent tensor (scalar i n the sub-

space M) can be denoted as A ^ ( r f m ) , where the s u f f i x (r) shows that the tensor A (r,m) has an undefined character i n the subspace R. The set of

r 3A (r,m) p a r t i a l derivatives can then be denoted as — — . Now i f we form

3m the set of p a r t i a l derivatives with respect to the coordinates i n the

3A (r,m) subspace M of the f i e l d dependent covariant vector (to avoid

3m

complication we drop the s u f f i x (r) bearing i n mind that A(r,m) i s not a

sc a l a r function i n R) we get

2 3 A(r.m) 3m,a3m'a 3m

3 / 3A(r,m) 3m° \ 3m-a \ 3ma 3m'a /

2 R « _ , . 2 a 3"A(rym) 3m 3m' 3A(rfm) 3 m 3m°3mB 3m'a 3m'a 3m° 3m , a3ra , a

(4.15)

Therefore for a general transformation of coordinate axes i n the sub-

space M, where 3 2m a/(3m , a3m , a) ^ 0, th i s s e t of p a r t i a l derivatives of

the covariant tensor i n the subspace M does not represent a tensor. This

can be generalized to any kind of f i e l d dependent tensor to show that the

Page 67: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 58 -

p a r t i a l derivatives of a f i e l d dependent tensor, with respect to the

coordinate axes i n one subspace, where a general transformation of co­

ordinate axes i n that subspace i s considered, does not form the com­

ponents of a tensor i n that subspace. But for a l i n e a r transformation

of coordinate axes i n the subspace under consideration, where dm°/dm'a

i s a constant the p a r t i a l derivative operator i n every subspace acts l i k e

a covariant vector i n that subspace and adds one covariant index to the

indices of. the o r i g i n a l f i e l d dependent tensor i n that subspace. That i s ,

the f i e l d dependent tensor formed by the set of p a r t i a l derivatives,

with respect to coordinate axes i n the subspace M, of the f i e l d dependent a, a b. b. 1 g 1 h m •..•m r . . . . r

tensor A (r,m) with g contravariant and p covariant c. c d. d 1 p i q m . •. .m r . . . . r

indices in M, and h contravariant and q covariant indices i n R, w i l l

have g contravariant and p + 1 covariant indices in M and h contravariant

and q covariant indices i n R. The transformation law for such a f i e l d

dependent tensor w i l l be

a. a b, b. 1 g 1 h y, y . m m * r r e ' 1 . p o . . . . 9m 3m ... 3m A* , (r ' ,m') = *>' „ 1 „ p , 1 ,, q 3m' . , 1 - p m ....m r r . . . . r 9m 3m *

p + 1.

a a b b 5. 6 3m' 1 3m" 9 3r' 1 3r' h 3r 3r q

a, a 0. 0. d, d dm 1 3m 9 3r 1 3r h 3r' 1 3r« q

9 h

a l <*g 0i B h JJ m ....m r . . . . r • — - j - A (r,m)» (4.16) * * i Y 61 6 q

m ,...m r .... r

Page 68: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 59 -

In the sane way p a r t i a l d i f f e r e n t i a t i o n i n the subspace R w i l l also

add one covariant index to the indices of a f i e l d dependent tensor in

that subspace, only where a li n e a r transformation of coordinate axes

i n that subspace i s concerned.

Page 69: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 60 -

CHAPTER 5

NEUMANN'S PRINCIPLE

EFFECT OF SYMMETRY ON TENSOR COMPONENTS

5.1 Introduction

The symmetry properties of the space, upon which a tensor i s de­

fined can r e s t r i c t the form of that tensor i n that space. These r e s t r i c ­

tions are dictated by a pr i n c i p l e due to Neumann (see, for example, Nye

1957, p.20, or B i r s s , 1966, p.44). Through Neumann's p r i n c i p l e every

symmetry operation of the space under consideration defines r e l a t i o n s

between the components of the tensor defined on that space, and therefore

reduces the number of i t s independent components.

Some authors have cast doubt on the v a l i d i t y of Neumann's p r i n c i p l e

when applied to some special kind of tensor (viz transport property

tensors) defined over some spec i a l spaces (space composed of magnetic and

geometric subspace, or i n other words,space of a magnetic c r y s t a l ) . The

aim of t h i s chapter i s to ret a i n the v a l i d i t y of Neumann's p r i n c i p l e and

to show that the origin of the p a r t i c u l a r doubts expressed by these workers

i s u n j u s t i f i e d and stems from use of symmetry operations, which are not

exhibited by the space under consideration ( i . e . the space of magnetic

c r y s t a l s ) . To f a c i l i t a t e the argument a short review of the nature of

symmetry operations and the symmetry groups of ordinary c r y s t a l s (ordinary

geometrical space, where each point i s i d e n t i f i e d only by i t s position

vector) i s given f i r s t and Neumann's pr i n c i p l e i s defined. Then the gen­

e r a l i z e d symmetry, that i s the symmetry of the space composed of coloured

objects or the space composed of magnetic objects i s discussed. Moreover

i t i s shown that the i d e n t i f i c a t i o n of time inversion operator with the

magnetic moment (or spin) inversion operator leads to incorrect r e s u l t s

(the reason for doubt about the v a l i d i t y of Neumann's p r i n c i p l e by

previous workers).

Page 70: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 61 -

5.2 Macroscopic symmetry operations and point groups

Symmetry operations are the displacements of an i n f i n i t e r i g i d body

which leave the body i n a position undistinguishable from i t s o r i g i n a l

one. These operations can involve pure translation, pure rotation, pure

r e f l e c t i o n (or inversion), and, i n general, combination of rotation,

inversion and translation. A symmetry operation can be shown by } >

where v denotes a translation and denote rotation or rotation-inversion

operations. Moreover the symmetry operations of a r i g i d body can be

i d e n t i f i e d with the transformation of coordinate axes (section 2.4) and

represented by transformation matrices.

The complete set of symmetry operations which restore a r i g i d body

to i t s e l f forms a group and i s referred to as a space group. That i s :

( i ) the product of every two elements A and B of the set i s i t s e l f

a member of the s e t ,

( i i ) combination (called multiplication) of the elements of the set i s

associative, that i s , for any three elements A, B and C

( A B) C = A( B C) ,

( i i i ) one of the elements of the set i s the identity operator IE, the

symmetry operator which leaves the r i g i d body unmoved and for every

element A of the set /ft E = E A = A,

(iv) for every element A of the set there ex i s t s an element B i n the

se t such that A 8 = B A = IE, the element B i s c a l l e d the

inverse of A and i s denoted by B = A

In dealing with macroscopic properties, however, we are concerned

with the point group, which i s a s p e c i a l sub-group of the space group,

i n which the t r a n s l a t i o n a l part of symmetry operations are completely

suppressed and only rotation and rotation-inversion symmetry operations

are considered.

Page 71: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 62 -

For i d e n t i f i c a t i o n of the group of symmetry elements of a r i g i d body

only a few of the symmetry elements are necessary. These are ca l l e d the

generating elements of the group and the whole set of elements i n the group

can be generated by forming different combinations of these generating

elements.

5.3 The symmetry of c r y s t a l l i n e l a t t i c e and c r y s t a l classes

The symmetry of a c r y s t a l l i n e l a t t i c e i s described by considering

i t to be a three-dimensional array formed by repetition of physical objects,

atoms or molecules or e l e c t r i c charges and current distributions. The

c r y s t a l structure i s then defined by spe c i f i c a t i o n of the pattern of

repetition plus a complete description of the contents of the repetition

unit (the unit c e l l ) . The existence of the s p a t i a l l a t t i c e (the three-

dimensional array) r e s t r i c t s the number of possible rotation axes to f i v e :

one-, two-, three-, four- and s i x - f o l d axes of rotations. The space group

of symmetry operations of an extended c r y s t a l l i n e l a t t i c e i s then described

i n terms of these rotation and inversion operations, together with the

f i n i t e displacements of the l a t t i c e p a r a l l e l to p a r t i c u l a r directions.

There are 230 di f f e r e n t space groups. Suppressing the tr a n s l a t i o n a l com­

ponents of the symmetry operations of the space group r e s u l t s i n 32 possible

point groups for a c r y s t a l l i n e l a t t i c e . Detailed information about these

point groups may be found i n many books (see for example volume 1 of the

'"international tables for X-ray crystallography", Henry and Lonsdale 1965).

5.4 Neumann's p r i n c i p l e and the e f f e c t of symmetry on physical

properties

Neumann's pr i n c i p l e states that (see for example, Nye, 1957, p. 20

or B i r s s , 1966, p.44, or Bhagavantam, 1966, p.72) "the symmetry operations

of any physical property of a c r y s t a l must include the symmetry operations

Page 72: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 63 -

of the point group of the c r y s t a l " . In other words when by symmetry

considerations two different directions i n a c r y s t a l are exactly the

same, any physical property must have the same c h a r a c t e r i s t i c s along

these two directions. A physical property can have symmetry operations

which do not e x i s t i n the point group of the c r y s t a l . These symmetry

operations are ca l l e d the i n t r i n s i c symmetry of a property. Many workers

have studied the influence of macroscopic s p a t i a l symmetry on the tensor

properties of c r y s t a l s (see, for example, Voigt 1928, Love 1927, Wooster

1938, Mason 1947, Fumi 1952 a,b, F i e s c h i 1957, Nye 1972, B i r s s 1962,

1963, 1966).

The way a symmetry operation manifests i t s e l f i n a physical tensor

property can be shown i n the following way: any symmetry operation, A,

can be represented by a transformation of coordinate axes (with trans­

formation matrix ( a ^ ) ) , which dictates the following relations between

the components B. (x) of a tensor i n the old and new coordinate X - • • • • X 1 s

system (equations 2.39 and 2.41).

B i 1 . . . . i ( x k ) = V j . - ' - i j v . . . j ( a k * V { S- l )

1 S 1 1 S S l s

for a polar tensor, and

K * = U J 4 | a, 4 a , B. . . . /no* i r . . . i s k i j l i 1 j 1 i g j s D 1 - . . O g ( a k £ x £ ) (5.2)

for an a x i a l tensor. Then through Neumann's p r i n c i p l e ,

B v . . i ( xk> • Bv . . i ( V - ( 5 - 3 )

I s I s

Substituting for B' (x') from equations(5.1) and (5.2). for polar X . • • • X JC 1 s

and a x i a l tensors, into equation (5.3) we get i r . . i g ~k i j j j i s D s 3 l . . . . j B I

for a polar tensor and

Page 73: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 64 -

B i . . . i (V = ' a i j l a i , V a i j B

3 l . . . j ( a k * x * } ( 5 ' 5 )

1 s 1 1 s s J l s

for an a x i a l tensor. Equations (5.4) or (5.5) are the a n a l y t i c a l form

of Neumann's p r i n c i p l e , and define relations between the components of

a polar or an a x i a l tensor and thus reduce the number of independent com­

ponents. The form of the Neumann's pri n c i p l e for a general (mixed and J . - . . J

weighted) f i e l d independent tensor B -'(x. ) can be e a s i l y deduced X - » • • 1 ic 1 s as

1 1 1 115

B ( X ) = V' r 3x • 3

3x

• j l ' j s h B r a a / * \ 9x 3x 3x 1 3x „V s | 3 x * I .... . .... B I TT X J

ox 3x 3x 3x 1 r \ '

(5.6)

and for a constant tensor (tensor with constant components with respect

to the coordinate axes) i n a cartesian frame of coordinates Neumann's

pri n c i p l e can be written as

B i . . . . i = a i , j / - - a i j B j , . . . j ( 5 ' 7 )

1 s 1J1 s J s J l J s

for a polar tensor and

B J 3 = la. . I a, . ...a. . B. (5.8) i r . . i s iD l l D l V s D l..O s

for an a x i a l tensor. To find the form of a physical tensor property

for a c r y s t a l belonging to a special c r y s t a l system, the symmetry opera­

tions i n the corresponding point group w i l l be inserted one afte r another

into the appropriate equation for Neumann's p r i n c i p l e and a l l the re­

s t r i c t i o n s found i n t h i s way are put together. To secure the maximum

si m p l i f i c a t i o n i n the form of a tensor, i t i s not always necessary to

employ a l l the symmetry operators of a point group. The set of generating

elements of the corresponding point group s u f f i c e s to serve t h i s purpose

(see, for example, B i r s s , 1966, p.48). Different sets of generating

Page 74: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 65 -

elements might be chosen for one c r y s t a l c l a s s . The following assemblage

of generating elements used by B i r s s ( B i r s s , 1966, p.48) has been employed

in t h i s t h e s i s :

(0) -[,] 1

0

0

0

1

0

0

0

1

(1) -J] -

-1

0

0

0

-1

0

0

0

-1

(2) • eg -

0

< 4 ) - r s i -y

(6)

(8)

-1

0

0

0

0

- ft] -0

1

0

1

0

-1

0

-1

0

0

-1

0

0

1 J

-1/2 /3/2 0

0

0

-1

(3) • M -

(5)

(7)

(9)

-rg-

- l

o

o

I

0

0

0

0

0

-1

0

0 1

0

1

0

0

0

1

0

-1

0

1

Choosing t h i s assemblage has the advantage that the number of generating

matrices i n any c r y s t a l point group i s small and the re l a t i o n s between

tensor components (obtained from one of the equations (5.4), (5.5),

Page 75: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 66 -

(5.7) or (5.8) are simple. Sets of generating matrices (chosen from

t h i s assemblage) for the 32 c r y s t a l c l a s s are l i s t e d i n Table 1.

Using equations (5.7) and (5.8), the forms of constant tensor

up to rank four i n every c r y s t a l c l a s s have been worked out and t h e i r

non-zero components have been l i s t e d by B i r s s ( B i r s s , 1966, tables 4a,

4b, 4c, 4d, 4e and 4 f ) .

However, these tables cannot be used to investigate the r e s t r i c ­

tions on tensor f i e l d and f i e l d dependent tensors such as transport pro­

pe r t i e s of sol i d s i n the presence of an external f i e l d , and tensors i n

c r y s t a l s with more complicated symmetry operations, such as magnetic

moment inversion operation. The reason for th i s i s that, to find the

r e s t r i c t i o n s on the form of tensor f i e l d s , equations (5.4) and (5.5)

should be employed instead of equations (5.7) and (5.8). That i s the

symmetry operation acts on the argument of the tensor components as we l l

as on tensor components themselves. The non-zero components of such

tensors have been worked out i n Appendix I and l i s t e d i n Tables A.3-A. 14 i n

that appendix. As for f i e l d dependent tensors and tensors i n the so-

ca l l e d generalized symmetric spaces, the a n a l y t i c a l form of Neumann's

pr i n c i p l e w i l l be derived i n the subsequent sections of t h i s chapter

and t h e i r form w i l l be given i n the Tables A.1-A.14.

5.5 The symmetry of magnetic c r y s t a l s ( I ) :

Heesch-Shubnikov groups

In describing the s p a t i a l symmetry of a c r y s t a l the c r y s t a l l i n e

matter i s conveniently regarded as a composition of si m i l a r groups of

atoms or molecules located on de f i n i t e points, without any reference

to the movements of atoms around thei r equilibrium position or th e i r

magnetic moment direction or the spin direction of the electrons.

Page 76: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 67 -

TABLE 1

! Symbol of symmetry c l a s s Number Generating matrices

System International of symmetry Generating matrices

Abbreviated F u l l Schbnflies Shubniko\ operations

T r i c l i n i c 1 1 C l 1 1 (0) o

1 -1 c l ( s 2 ) 2 2 o ( 1 )

Monoclinic 2 2 C 2 2 2 o ( 3 )

m m m 2 o ( 5 )

2/m 2 m C2h 2:m 4 a ( 1 ) . o ( 3 )

Orthorhombic 222 222 D 2(V) 2:2 4 (2) (3) a , a

mm2 mm2 C 2 v 2.m 4 (3) (4) a , 0

mmm 222 mmm D 2 h ( V m. 2:m 8 (1) (2) (3) a , a # a

Tetragonal 4 4 C4 4 4 (7) a

4 4 S4 4 4 a ( 8 )

4/m 4 m C4h 4:m 8 a ( 1 ) , a ( 7 >

422 422 D4 4:2 8 (2) (7) a ,o

4mm 4mm C4v 4.m 8 „ ( 4 ) « ( 7 ) o i a

42m 42m 4.m 8 a ,o

4/nunni 422 mnwn °4h m.4:m 16 (1) (2) (7) o ,a ,a

Table 1 continued overleaf

Page 77: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 68 -

TABLE 1 (Continued)

System Symbol of symmetry c l a s s Number

of symmetry operation

Generating matrices System International

Number of symmetry operation

Generating matrices

Abbreviated F u l l Schbnflies Shubniko\

Number of symmetry operation

Trigonal 3 3 C 3 3 3 a < 6 )

3 3 C 3 i ( S 6 ) 6 6 a ( 1 > , a ( 6 )

32 32 D 3 3:2 6 a< 2>,o ( 6 )

3m 3m C3v 3.m 6 o ( 4 ) , a ( 6 )

3m 32-m °3d 6.m 12 o ( 1 )( o ( 2 ' ( a ( 6 )

Hexagonal 6 6 C 6 6 6 r,<3> „<6> 0 , 0

6 6 C3h 3:m 6 a , a

6/m 6 m C6h 6:m 12 (1) (3) (6) a , a ,o

622 622 °6 6:2 12 (2) (3) (6) o , a , a

6mm 6mm C6v 6.m 12 (3) (4) (6) o , a ,o

6m2 6m2 °3h m. 3 :m 12 o ( 2 \ o ( 5 ) , o ( 6 )

6/nnnin 6 2 2 m m m D6h m. 6:m 24 a ( D a ( 2 ) a(3) J6

Cubic 23 23 T 3/2 12 a ,o

m3 2-3 m M 24 „(1) „(3) (9)

432 432 0 3/4 24 a , a

43m 43m T d 3/4 24 a ,a

m3m 4-3 2 m m °h 6/4 48 „(D J7) (9)

0 , 0 , 0

Page 78: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 69 -

Such a description i s s t a t i s t i c a l . Therefore i n dealing with proper­

t i e s , such as transport properties of c r y s t a l s , which depend on the

dynamical c h a r a c t e r i s t i c s of c r y s t a l s , t h i s aspect of c r y s t a l symmetry

( s p a t i a l symmetry) f a i l s to give correct predictions of the symmetry

r e s t r i c t i o n s on these properties. In determination of the appropriate

symmetry operations for these cases, the symmetry of the individual

properties of groups of atoms (unit c e l l s ) as well as s p a t i a l symmetry

must be taken into account. To do t h i s new coordinate axesr-representing

the appropriate c h a r a c t e r i s t i c s of the unit c e l l , such as the direction

of i t s movements or the direction of i t s magnetic moment etc.r-may be

introduced then the symmetry operators corresponding to the transforma­

tion of these coordinate axes can be combined together with the s p a t i a l

transformation operators to give the appropriate symmetry operators.

This has been done by Shubnikov i n 1951 (see Shubnikov and Belov, 1964)

for a simple case where one extra coordinate with two possible values

has been introduced (atoms can be considered as black or white objects

with the new coordinate being t h e i r colour, or i n the case of simple

magnetic structures, the new coordinate can be the direction of the mag­

net i c moment of the atoms - p a r a l l e l or a n t i p a r a l l e l to a given a x i s ) .

Then he defined the operation of antisymmetry as the operation which

changes the value of t h i s coordinate (black to white and white to black,

for example). This concept of antisymmetry had been f i r s t introduced

by Heesch (1929 a,b, 1930 a-b) but i t was ignored because i t did not

have any immediate significance i n physics at that time. The existence

of black and white atoms (or atoms with two different directions of

magnetic moment) w i l l destroy the s p a t i a l symmetry of the c r y s t a l ,

unless they are distributed i n a regular fashion;- i n that case, part

of c l a s s i c a l symmetry (symmetry of c r y s t a l with s i m i l a r atoms) w i l l

survive. That i s , introducing the antisymmetry operation w i l l r e s u l t

Page 79: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 70 -

in new sets of possible point groups and space groups, which are ca l l e d

Heesch-Shubnikov groups. There are three types of Heesch-Shubnikov

point groups, G*, which are usually described as follows:

Type I the c l a s s i c a l point groups (there are 32 of t h i s type),

Type I I : the grey point groups (there are 32 of t h i s type),

Type I I I : the black and white point groups which are also c a l l e d the

magnetic point groups (there are 58 of t h i s type),

the t o t a l number of these Heesch-Shubnikov point groups i s therefore 122.

Type I point groups describe the symmetry of c r y s t a l s composed

of similar groups of atoms ( a l l black or a l l white, or a l l with the mag­

netic moments i n one d i r e c t i o n ) , and they do not contain the operation of

antisymmetry, A, that i s they are the c l a s s i c a l or ordinary point groups,

G, i . e . G* = G.

Type I I point groups, describe the symmetry of c r y s t a l s with atoms

of both kinds (black and white or with magnetic moments p a r a l l e l and a n t i -

p a r a l l e l to a given direction) present at each s i t e simultaneously, so that

any operation of a c l a s s i c a l point group, G, leaves the fourth coordinate

(the colour or the direction of the magnetic moment) unchanged, and the

operation of antisymmetry, A, times any operation of G changes two d i f ­

ferent values of the fourth coordinate into each other, thereby leaving

i t unchanged. Thus G' «= G + A G . That i s , a grey point group contains

twice the number of symmetry elements as the number of symmetry elements

i n the correspond point group, with the antisymmetry operation, A, as an

element on i t s own.

In the type I I I Heesch-shubnikov, the antisymmetry operation, A,

appears only i n combination, A (R, with the elements, R, of the cor­

responding c l a s s i c a l point group, G, i . e . G' = H + A(G-H), where H i s a

halving subgroup of the c l a s s i c a l point group G.

Page 80: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 71 -

The generating elements of the type I Heesch-Shubnikov point

groups are exactly those given in Table 1. For the type I I Heesch-

Shubnikov point groups, the antisymmetry operation, A, must be added

to the generating elements of the corresponding c l a s s i c a l point group

to form the s e t of t h e i r generating elements.

The i d e n t i f i c a t i o n of the elements i n each of the 58 type I I I

Heesch-Shubnikov point groups has been done by Tavger and Zaitsev (see

Tavger and Zaitsev, 1956) and by other workers and the generating elements

for these point groups are given in Table 2 (see B i r s s , 1966). Here the

underlining of a symmetry operator indicates multiplication by the a n t i ­

symmetry operator, /A, i . e . 6^ = A 6^

Heesch-Shubnikov (or coloured) space groups can be defined i n

the following way:

Type I the c l a s s i c a l space groups (there are 230).

Type I I the grey space groups (there are 230).

These two kinds of space groups can be formed by combining the

corresponding point group together with the t r a n s l a t i o n a l sub-group.

Type I I I black and white space groups, which are derived from

the c l a s s i c a l space groups (there are 674).

Type IV Heesch-Shubnikov space group, G', which i s another

black and white space group and i s based on a black and white Bravais

l a t t i c e and consists of a l l the operations of a c l a s s i c a l space group,

G, together with an equal number of operations that involve the a n t i ­

symmetry operation, A, i . e . G* = G + A | IE | t^JG (there are 517 of

these kind of space groups). The black and white Bravais l a t t i c e s were

derived by Belov et a l (1955), and the black and white space groups were

f i r s t derived by Zamorzaev i n 1953 (see Belov et a l . , 1957; Shubnikov

and Belov, 1964; Opechowski and Guccione, 1965; Bradley and Cracknell,1972).

Page 81: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 72 -

TABLE 2

System

• • • 1 Symbol of Symmetry c l a s s and magnetic

Symbol of c l a s s i c a l

i Generating matrices of

group G' System point group G' sub-grou 9 H Generating Additional International Shubnikoy International

i Shubnikov matrices of

sub-group H generating

matrix

r r i c l i n i c I \ 1 1 a ( 0 ) <L(1)

Monoclinic 2 2 1 1 a ( 0 ) 1 ( 3 )

m m 1 1 a ( 0 ) 1 ( 5 )

2/m 2_:m T 2 o ( 1 ) £ ( 3 )

2/m 2:m 2 2 a ( 3 ) o ( U

2/m 2 m m m a ( 5 ) 2.(1)

Orthorhombic 222 2:2 2 2 a ( 3 ) o ( 2 )

mm 2 2i.m 2 2 a ( 3 ) o ( 4 )

2mm 2.m m m a ( 5 ) £ ( 4 >

.mmm m. 2 :m 2/m 2:m o ( 1 ) , o ( 3 ) 1 ( 2 )

mmm m. 2:m 222 2:2 (2) (3) a , a

mmm m. 2 :m mm 2 2.m a ( 3 ) , o ( 4 ) 2.(1)

Tetragonal A 4 2 2 a ( 3 ) 1 ( 7 )

4 4 2 2 a ( 3 ) S L ( 8 >

4/m 4:m 2/m 2:m a ( 1 ) , o ( 3 )

4/m 4:m 4 4 a ( 7 ) £ ( 1 )

4/m 4:m 4 4 a ( 8 ) 2.(1>

422 4:2 222 2:2 (2) (3) jo , a i

/Table 2 continuec overleaf

Page 82: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 73 -

Table 2 (Continued)

System Symbol of Symmetry c l a s s and magnetic

Symbol of c l a s s i c a l

Generating group

matrices of G' System point group G' sub-grou P H Generating Additional

International Shubniko\ International Shubniko\ matrices of sub-group H

generating matrix

Tetragonal 422 4:2 4 4 (7) 0 £ ( 2 )

4mm 4.m mm2 2.m (3) (4) a r a (7) g.

4mm 4.m 4 4 (7) a

(4) g_

42m 4_.m 222 2:2 (2) (3) a , a (8)

4m2_ 4.m mm2 2.m (3) (4) a r o (8)

42m 4.m 4 4 (8) a

(2) a_

4/mmra m. 4 :m mmm m. 2:m (1) (2) (3) a > a a (7) a.

4/mmm m.4:m 4/m 4:m (1) (7) o f a (2) a.

4/mmm m. 4 :m 422 4:2 (2) (7) a » a (1) a.

4/mmm m.4:m 4mm 4.m (4) (7) 0 / 0

(1) SL

4/mmm m.4:m 42m 4.m (2) (8) a * a (1) _o

Trigonal 3_ § 3 3 (6) a

(1) a;

32 3:2 3 3 (6) a

(2) a;

3m 3.m 3 3 (6) a

(4)

3m 6.m 3 6 o » a (2) a.

3m 32 3:2 (2) (6) 0 / 0

(1) i l

3m 6.m 3m 3.m (4) (6) a # o (1) a.

/Table 2 continued overleaf

Page 83: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 74 -Table 2 (Continued)

Symbol of Symmetry cl a s s and magnetic

Symbol of c l a s s i c a l

Generating matrices of group G*

System point group G' sub-group H Generating j 1 additional International Shubnikob International Shubnikov matrices of g sub-group H

enerating matrix

Hexagonal 6 6 3 3 (6) 0 £ ( 3 )

6 3 :m 3 3 (6) a

(5)

6/m 6 :m 3 6 ! 1 1

o , 0 (3)

6/m 6:m 6 6 (3) (6) 0 , 0

(1) _a

6/m 6 :m 6 3 :m (5) (6) o i a (1)

a.

6 2 2 6:2 32 3:2 (2) (6) o f a (3)

a.

622 6:2 6 6 (3) (6) O f 0

(2) a.

6mm 6.m 3m 3.m (4) (6) a i a

(3)

6mm 6.m 6 6 (3) (6) a t a (4)

SL

62m m. 3:m 32 3:2 (2) (6) a , a (5) o;

6m2 m. 3:m 3m 3.m (4) (6) a , a £ ( 5 >

6m2 m. 3 :m 6 3 :m o ( 5 ) , o ( 6 )

6/mmm m.6:m 3m 6.m o ( i ) , J 2 y 6 ) £ l 2 >

6/mmm m. 6 :m 6/m 6 :m (1) (3) (6) a , a p (2)

6/mmm m.6:m 622 6:2 (2) (3) (6) a ,o f o (1) 0

6/mmm m. 6 :m 6mm 6.m (3) (4) (6) a , a ,a o ( 1 )

6/mmm m.6:m 6m 2 m. 3 :m (2) (5) (6) o / a ,o «i) £

Cubic m3 6/2 23 3/2 (3) (9) a , o (1) 0,

432 3/4 23 3/2 (3) (9) o , a (7) £

43m 3/4 23 3/2 (3) (9) a , a (8) £

m3m 6/4 m3 6/2 (1) (3) (9 a , a ,a (7) £

m3m 6/4 432 3/4 (7) (9) 0 f 0

(1) 0.

m3m 6/4 432 3/4 (0) (9) a ,o (1) £

}

Page 84: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 75 -

The symmetry of most of the magnetic materials (diamagnetic, para­

magnetic, ferromagnetic, ferrimagnetic) can be described by the three

types of Heesch-Shubnikov point groups, when the antisymmetry operator

i s i d e n t i f i e d with the magnetic moment (or spin) inversion operator (see,

for example, Mackay, 1957). In that case a grey point group w i l l contain

the operation of magnetic moment inversion, A, on i t s own; therefore

i f a spontaneous magnetic moment were to develop at any point within the

c r y s t a l , described by that point group, the presence of /A would require

that an equal magnetic moment should appear at the same point in the

opposite direction. Therefore the symmetry of c r y s t a l s with magnetic

ordering cannot be described by a grey point group, but the symmetry of

diamagnetic materials (in which the atoms or ions which constitute the

c r y s t a l have zero magnetic moments) and paramagnetic materials i n the

absence of an external magnetic f i e l d (where the orientations of the mag­

netic moments of atoms or ions are random and the c r y s t a l can be con-*

sidered as being invariant under the operation /A) can be described by

grey groups.

The symmetry of ferromagnetic c r y s t a l s (which consist of atoms or

ions with magnetic moments aligned along certain directions i n the

absence of an external magnetic f i e l d ) and ferrimagnetic c r y s t a l s (with

some of the magnetic moments p a r a l l e l to a p a r t i c u l a r direction and the

r e s t a n t i - p a r a l l e l to that direction in the absence of an external mag­

net i c f i e l d ) and some of the antiferromagnetic materials which possess

a spontaneous net magnetic moment can be described by type I and type I I

Heesch-Shubnikov point group, where the magnetic moment inversion as a

symmetry element on i t s own i s absent. Application of these groups to

magnetic structure determinations has been done by several groups of

workers i n t h i s f i e l d (see, for example, Donnay et a l , 1958 and

l e Corre, 1958).

Page 85: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 76 -

5.6 The symmetry of magnetic c r y s t a l s ( I I ) ;

Generalized symmetry

The symmetry of a large number of magnetically ordered materials

can be described by using the Heesch-Shubnikov groups. However, there

are some other magnetic materials whose symmetry cannot adequately be

described by these groups. Examples of these are materials with h e l i c a l

or conical antiferromagnetic structures. The ordering of magnetic moments

i n these structures i s such that there are more than two possible direc­

tions of magnetic moment present i n the c r y s t a l . Therefore further

generalization of c l a s s i c a l point groups i s necessary. One possible

generalization i s to consider the polychromatic point groups and space

groups. But th i s cannot be used as a general approach, since the poly­

chromatic groups can only describe the symmetry of magnetic materials where o o

the angle between two successive spins i s a discrete value (120 , 90 or

60°) which i s not always the case (see, for example, Cracknell 1975).

More comprehensive generalization can be achieved by using the spin

groups developed by L i t v i n (1973). The idea of spin groups i s closely

related to the generalized magnetic groups defined by Naish (1963) and

Kitz (1965), and i s c a l l e d 'spin space' groups by Brinknlan and E l l i o t

(1966). A symmetry operation i n the generalized magnetic group, as i t i s

c a l l e d i n t h i s t h e s i s , (or spin group) can be denoted by { R |

where the rotation on the far l e f t side i n the bracket, IR , acts only i n P

spin space, that i s , on the components of the spins, and the rotation, R., and translation, \v. , act only i n the geometrical space on the co-i ip ordinates of the atoms. I n spec i a l cases i t i s possible to have some

symmetry operations that involve one rotational operation IR^ for both

the physical space coordinates and the spin space coordinates. Such a

symmetry operation can be denoted by { R.| R | v }. Further s p e c i f i c a t i o n

Page 86: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 77 -

of the generalized magnetic groups can be found i n a r t i c l e s by

Opechnowski (1971) and Opechowski and Dreyfus (1971).

5.7 Time inversion operation and magnetic groups

I t has been shown (Section 5.5) that by i d e n t i f i c a t i o n of the mag­

netic moment inversion operator with the antisymmetry operator i n Heesch-

Shubnikov groups the structure of most magnetic materials can be put on

a group th e o r e t i c a l basis. However, since the operation of time inversion,

according to standard assumptions of the electromagnetic theory, has the

eff e c t of reversing the direction of magnetic moment (or s p i n ) , i t has

become a common practice to identify the time inversion operator, 9 ,

with the magnetic moment inversion operator (see, for example, Opechowski

and Guccione 1965, Tavger and Zaitsev 1956, B i r s s 1966, Zocher and Torok

1953, Dimmock 1963 a,b, Dimmock and Wheeler 1962 a,b, and Dimmock and

Wheeler 1964). In t h i s section i t w i l l be pointed out that t h i s i d e n t i f i ­

cation i s not always correct and sometimes leads to incorrect r e s u l t s .

Time inversion operation has actually the ef f e c t of reversing the

direction (or changing the sign) of every dynamic property which depends

on time to an odd degree, i . e . time-antisymmetric properties including

magnetic moment. Thus i n adopting t h i s operation as a symmetry operation

of a magnetic c r y s t a l s p e c i a l care must be taken to make sure that there

i s no other time-antisymmetric property present i n the c r y s t a l . I n other

words when a time-antisymmetric property, such as one of the transport

properties ( l i k e current density), of a c r y s t a l i s under consideration

adopting time inversion operator imposes some r e s t r i c t i o n on the form

of property which i n actual f a c t should not be there. The way i n which

i d e n t i f i c a t i o n of the magnetic moment inversion operator with time

inversion operator leads to incorrect r e s u l t s i n the study of current

Page 87: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 78 -

density i n a magnetic c r y s t a l i s disccussed i n Section 6.3.1.

The problems that a r i s e as a r e s u l t of i d e n t i f i c a t i o n of the

magnetic moment inversion operator with the time inversion operator have

been noticed by several workers: B i r s s (1966) suggests that the problem

may a r i s e because Neumann's pr i n c i p l e does not hold for transport proper­

t i e s under the symmetry operations i n space-time. This cannot be true

because Neumann's pri n c i p l e i s axiomatic i n i t s nature. Pantula and

Sudarshan (1970 a,b) have reached the conclusion that i n the non-

equilibrium steady state the c r y s t a l does not possess time-inversion sym­

metry. But then to remove the problem caused by time inversion they have

only used the sub-group of time invariant operations of the appropriate

group (Bhagacantam and Pantula 1967).

In addition to leading to wrong r e s u l t s , i n some cases, the time

inversion operator, 0, proves to be inadequate to be i d e n t i f i e d with mag­

netic moment inversion operator i n the sense that 6 can only provide two

senses, while many magnetic c r y s t a l s with complex magnetic ordering have

more than two possible directions of magnetic moment (Section 5.6, thus

more complex rotation-inversion operations on the spin (or magnetic moment)

rather than j u s t an inversion are needed to s a t i s f y symmetry requirements

(see, for example, Cracknell 1975, L i t v i n 1973 and Brinkman and E l l i o t

1966 a,b). In works on the symmetry of these magnetic materials some

authors have considered time-inversion operator i n combination with a

f u l l rotation group (including an inversion operation) on the spin arrange­

ment (see, for example, L i t v i n 1973). Thus when using the generalized

magnetic groups (or spin groups) worked out in t h e i r a r t i c l e s , i t must

be made quite c l e a r that there i s no time-antisymmetry property other

than magnetic moment present i n the calculations.

Page 88: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 79 -

The symmetry and antisymmetry r e s t r i c t i o n s on the form of the

transport tensors for materials with simple magnetic ordering have

recently been established (Pourghazi, Saunders and Akgoz 1976) using the

transformation law for f i e l d dependent tensors (equation 3.10). For

reasons mentioned above, the use of the time inversion operator 6 , i n

that work has been avoided and the magnetic moment inversion operator

has been employed.

5.8 Generalized Neumann's pr i n c i p l e

The e f f e c t of symmetry operations, corresponding to the transforma­

tion i n physical space, on tensor properties of materials has been formu­

lated through Neumann's p r i n c i p l e (see Section 5.4). Equations (5.7)

and (5.8) have been used by several authors to determine the symmetry

r e s t r i c t i o n s on the form of f i e l d independent tensor properties of

materials (see, for example, B i r s s 1966, Nye 1972, Bhagavantam 1966, and

Wooster 1973). However in dealing with f i e l d dependent tensor properties

of materials, when a symmetry operation corresponding to the transforma­

tion of f i e l d components i s under consideration, there i s some ambiguity

i n the v a l i d i t y and form of the Neumann's pr i n c i p l e (see B i r s s 1966).

We believe that t h i s d i f f i c u l t y i s due to the incorrect i d e n t i f i c a t i o n

of the magnetic moment inversion operator with the time inversion operator,

(see Section 5.7). Furthermore, since the transformation laws (3.10 and

3.11) should be used i n constructing the a n a l y t i c a l form of Neumann's

pr i n c i p l e for f i e l d dependent tensors, rather than the transformation

laws (2.39), (2.41), Neumann's principle w i l l have a s l i g h t l y d i f f e r e n t

a n a l y t i c a l form for f i e l d dependent tensors. The transformation law for

a f i e l d dependent tensor with t contravariant and s covariant indices

(t + s = n) and of weight to i n subspace v (the physical space, for

Page 89: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 80 -

example) and v contravariant and u covariant Indices (v + u = Z) and of

weight in subspace M (the magnetic subspace or spin space for example)

(see Section 3.7) can be written as (equation 3.11): v t

B g i g v j l - t m ....m r • • • • r

i i k. k 1 u 1 s m ....m r . . . . r

(m'a , r - b ) =

u

g dm

U l j 3r

3m'i 3m'k

«1 3r • • • • 3r

W2 g l 3m* 3m' dm

Bu j l 3m 3r'

3m a v M 3m 3m1 3m' 3r

«1 *s a a Y j Y t / a b \ 3r 3r nm m r r I 3m' i|> . 3r' u \

3* 3r' m ....m r , . . . r \ /

3r'

3r

(5.8)

Now through Neumann's p r i n c i p l e we can write

91 g v j l j t 91 9 v j l j t „,m ,...m r . . . . r , ,a ,b. m ....m r . . . . r ,_a b B i i k k ( m ' r > = B i , i k, k ( m ' r > l u l s _ l u l s m ....m r . . . . r m ....m r . . . . r

(5.9)

m 9 1 ^ j l j t a h Substituting for B m r r (m' , r' ) from equatifcn (5.9)

m i k, k _ u 1 s .m r .... r

into equation (5.8) we get:

Page 90: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 81 -

B 1 j 1 ... .m r • • • • IT

i k 1 u .... m u r • • • •

3mg

9m'1 3 r'

3r'

3r

6.

(ro , r ) =-

3m ,g l

3r k l

ar' 1

dm

3r

3r*

_m

m

% Bl 3m' 3m

a. 3m

a n

3m . 1

v '1 .m r r a.

3m

3m' u

3r'

3r

u 1 .m r

.r t / 3 m ' a * 3 1 1 m * ~ °s\3m* 3

• r

(5.10)

This i s the most general, a n a l y t i c a l form of Neumann's p r i n c i p l e for f i e l d

dependent tensors. Equation (5.10) can be equally w e l l expressed i n terms

of operator form of the transformation matrices, and 9 (~r) a n d ("^r) ' v 3mJ J N 3r J ' i . e . { R I R } , where I R acts on the coordinates i n M subspace and (R m r m r r

acts on the coordinates i n V subspace. That i s for an unweighted tensor

we can write:

g l g v j l j t m ....m r . . . . r , a D , B i , i k, k ( m ' r } =

1 u 1 s m ....m r . . . . r

a l a v Y l Y t = { R | R } B™ — B r » " r ({ <R } t R } r ) . (!

m r B i Bu 61 6 s m r

m ....m r . . . . r

In the spec i a l case where there i s orthogonal l i n e a r transformation of

coordinates i n both subspaces to be considered, equation (5.10) can be

written as:

Page 91: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 82 -

p q ) = | R I | R J ( R )

1 m' ' r m B ( R ( R ) ( R ) r. (m ,r m m m n 1 1 n n

( R ) 5.12) R B m ru m • m m a* B B au 1 1

where ( R ) and ( R ) are the corresponding elements i n the transforma-m . r i a DB

tion matrices, and p and q are constants and have values zero or one

according to the weight of tensor i n each subspace ( i . e . p = 0 i f the tensor

has even weight, that i s i f i t i s polar, i n M and p = 1 i f the tensor has

odd weight, that i s i f i t i s a x i a l i n M).

Equations (5.10), (5.11) and (5.12) are di f f e r e n t a n a l y t i c a l forms

of Neumann's p r i n c i p l e for f i e l d dependent tensors defined upon spaces

where the transformation operators can be divided into two parts, each

acting on the coordinates i n one subspace only. But there are some cases

where the transformation operator cannot be divided i n t h i s fashion (see

Section 3.8) because of the dependence of the coordinates of the f i e l d

subspace on the coordinates of geometrical subspace. This w i l l be

investigated i n the next section.

5.9 Neumann's pr i n c i p l e for symmetry operations which act on the

coordinates of both subspaces

To construct the a n a l y t i c a l form of Neumann's p r i n c i p l e for s p a t i a l

symmetry operations which act on the coordinates i n the f i e l d subspace,

the appropriate transformation law should be chosen from one of the

equations (3.18), (3.19) and (3.20).

5.9.1 Example

As an example consider a space composed of two subspaces - f i e l d

Page 92: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 83 -

subspace and geometrical subspace. In that space a f i e l d dependent tensor

property B can now be considered which acts l i k e a scalar function (zero

rank tensor f i e l d ) i n the f i e l d subspace. Under a transformation of

coordinates | A } i n geometrical subspace, Neumann's p r i n c i p l e can have one

of the following forms depending on the nature of coordinates i n the f i e l d

subspace:

(a) when the coordinates i n the f i e l d subspace behave l i k e (covariant)

vectors i n geometrical subspace ,

B , . 1 - m f • \ r |= • • • • — k l M a r ' 1 a 3r* / * I *1 r . . . r \ / 3r 3r 3r

6 s Y l Y t • B* ...r. (m , r B ) , (5.13) k o4 6 a „ , s 1 s 3r' r r

where r i s the a.. element of the transformation matrix (A) 3 r . j ID

(equation 5.13) can equally well be written for f i e l d s which are contra-

variant vectors i n geometrical subspace, and also for weighted f i e l d

vectors). For li n e a r orthogonal transformation of coordinates (A)

equation (5.13) can be written as:

B (± a. m » a. r.) = a, ...a, B (ni » r„) , V'-rk 1 0 1 " ]B 6 Vl Vs V " r Y a 6

I s I s

(5.14)

where ± signs i n the bracket on the £.h.s. of equation correspond to

whether the f i e l d i s a polar or an a x i a l vector.

(b) When the coordinates i n the f i e l d subspace are second rank tensors

i n geometrical subspace ,

Page 93: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 84 -

3\ j a 1 9r' 3r B m a. a 1 1 2 3r

s p B t r ) a a 1 2 s s 9r 3r (5.15)

where m . are the components of the f i e l d tensor along the coordinate 1 2

axes i n the geometrical subspace (the f i e l d tensor can have contravariant

indices as w e l l ) .

When a lin e a r orthogonal transformation of coordinates, denoted

by A - where there i s no difference between covariant and contravariant

indices - i s considered equation (5.15) can be written as

B . (± a a m , a r ) = V " r k Vl 1 2 a 2 a i a 2 j B B

1 s

a . .a. ^ B (m , r Q ) , (5.16) 1 1 s s Y, Y 1 2 1 s

where ± signs i n the bracket on the left-hand side of equation (5.16)

refer to the f i e l d tensor being either a polar or an a x i a l tensor.

(c) When the coordinate in the f i e l d subspace act l i k e tensors of

ranks (u) higher than two ,

j j j a u p B m p a 1 • u u •

j 1 s 6 i r " ) m B 1 s

(5.17)

Page 94: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 85 -

The f i e l d tensor can also have contravariant indices. When a l i n e a r

transformation of coordinates axes i n geometrical subspace i s considered

equation (5.17) can be written as

B (± a. a. m > a _ r Q ) = r. . . . r . i , a i a a,...a j£ B k, k 1 1 u u l u 6 1 s

a, ...a, B (m , r Q ) , (5.i8) k,Y, k Y r . . . r a,.. .a ' B 1 1 s s y. y 1 u

1 s

where again the ± signs, in the bracket on the l e f t hand side of equation

(5.18), r e f e r to f i e l d tensor being a polar or an a x i a l tensor.

Using equation (5.14), (5.16) and (5.18), the r e s t r i c t i o n s imposed

by the ordinary c r y s t a l groups ( i . e . type I Heesch-Shubnikov groups, where

only s p a t i a l symmetry operations are present) on the f i e l d dependent

tensor properties, which have been defined through transformation laws

(3.18), (3.19) and (3.20), have been investigated i n Appendix I . The

r e s u l t s for f i e l d dependent tensors up to rank four in geometrical sub-

space, with zero and f i r s t and second rank f i e l d tensors are l i s t e d i n

Tables A3

5.9.2 The general case

We may generalize the concepts of Section 5.9.1 to write Neumann's

pr i n c i p l e for f i e l d dependent tensor properties which have ranks higher

than zero i n the f i e l d subspace, where f i e l d components are themselves

tensors i n the geometrical subspace. To do t h i s the symmetry operations

{ B } which act on the f i e l d components can be derived from equation m (3.23), as:

Page 95: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

OD

1 i 3r u

{ R } = m 1 (5.19)

3 r' u

where u i s the rank of the f i e l d tensor i n the geometrical subspace, and i l a l

3r /3r' i s an element of the transformation operation { jO which acts

on the coordinates i n the geometrical subspace. Now equation (5.10) can

be used as Neumann's p r i n c i p l e .

There i s also the p o s s i b i l i t y that the symmetry operations i n the

f i e l d subspace can be a combination of the operations of the form derived

from equation (5.19), and other operations which are defined only i n the

f i e l d subspace, where again Neumann's pr i n c i p l e w i l l have the form of

equation (5.10) and the geometrical part of symmetry operation should be

worked out from equation (5.19).

In addition to the r e s t r i c t i o n s imposed by the symmetry operations

of the space under consideration, a f i e l d dependent tensor may exhibit

i n t r i n s i c symmetry. I n other words the physical nature of the property

may dictate certain r e s t r i c t i o n s , on the f i e l d dependent tensor com­

ponents. An example of i n t r i n s i c symmetry i s provided by Onsager's

theorem (Onsager 1931 a,b) which i s based on thermodynamical arguments

(for further d e t a i l s see any textbook on i r r e v e r s i b l e thermodynamics such

as, for example, de Groot 1951). This theorem has been used to find the

r e s t r i c t i o n s on the form of transport properties i n the next chapter.

Page 96: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 87 -

CHAPTER 6

FIELD DEPENDENT TENSOR PROPERTIES OF CRYSTALS

6.1 Introduction

The concepts of the l a s t chapter reveal that when a f i e l d -

dependent physical property, such as one of the transport properties, of

a c r y s t a l i s under consideration the usual form of Neumann's pri n c i p l e

(equations 5.4 to 5.8) f a i l s to give correct r e s u l t s as far as the symmetry

operations of the f i e l d coordinates are concerned. In t h i s chapter the

magnetoresistivity tensor for magnetic materials i s considered. F i r s t

the ways other workers have tackled the problem of finding the e f f e c t that

symmetry operations acting on the magnetic f i e l d coordinates can have on

the magnetoresistivity tensor and the discrepancy i n the r e s u l t s obtained

are discussed. Then making use of the transformation law of f i e l d depen­

dent tensors (equation 3.10) and the generalized form of Neumann's

prin c i p l e (equation 5.10) the r e s t r i c t i o n s on the form of the magneto­

r e s i s t i v i t y tensor have been found.

Furthermore, the forms of the magnetothermoelectric power tensor Q i j ^ f ° r e a < * °^ t* i e m a 9 n e t i c point groups have been obtained using the

same method as for the magnetoresistivity tensor. I n addition the way

that the permittivity tensor behaves as a f i e l d dependent tensor i n a

magnetic material i s described.

6.2 The conductivity of a c r y s t a l ->

When an e l e c t r i c f i e l d , described by a polar vector E, acts i n -*•

a conductor, an e l e c t r i c current of density J flows. In an iso t r o p i c •+ -*• medium J i s p a r a l l e l to E and the relationship between t h e i r components

Page 97: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 88 -

i s given by (Ohm's law):

J OE , (6.1)

where a i s ca l l e d the conductivity of the medium. That i s

Jl = o E 1 , J 2 = 0 E 2 , J 3 = a E 3 (6.2)

where E^, E^, E^ and J ^ , J ^ , are the components of the vectors E and -y

J i n a rectangular cartesian system of coordinate axes, Ox^, Ox^, Ox^.

Now when the medium i s a c r y s t a l the conductivity i s not necessarily

i s o t r o p i c , the vectors E and J need no longer be p a r a l l e l ; the conduc­

t i v i t y cannot be represented by a s c a l a r . However usually each ompoonent -> -v

of J i s s t i l l l i n e a r l y related to a l l three components of E, and Ohm's law (equation 6.1) may now be represented by

J l = °11 E1 + °12 E2 + °13 E3 '

J„ = o_, E, + CJ E + a E_ , (6.3) 2 21 1 22 2 23 3

J = o„. E. + CJ E„ + cu_ E„ 3 31 1 32 2 33 3

Or

J . = o i j E j , (6.4)

where each a^ i s .constant. Thus according to the quotient law (see

Section 2.12), i s a second rank polar tensor ( f i e l d independent).

The symmetry operations of the c r y s t a l impose r e s t r i c t i o n s on the form

of (see Section 5.4). Moreover there e x i s t s a r e s t r i c t i o n imposed

by the i n t r i n s i c symmetry dictated by Onsager rec i p r o c i t y r e l a t i o n

which can be shown by

Page 98: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 8 9 -

oj . = a. . 6 . 5 )

The s p a t i a l symmetry r e s t r i c t e d form the c o n d u c t i v i t y tensor o i s w e l l

known, see f o r example, Nye ( 1 9 7 2 ) , B i r s s ( 1 9 6 6 ) and Bhagavantam ( 1 9 6 6 ) .

6 . 3 The magnetoconductivlty p r o p e r t y of a c r y s t a l

I f one now considers e i t h e r a c r y s t a l t h a t e x h i b i t s spontaneous

magnetic o r d e r i n g or a nonmagnetic c r y s t a l t h a t i s subjected t o an

ex t e r n a l magnetic f i e l d , the r e l a t i o n s h i p between J and E i s s t i l l l i n e a r

but the c o n d u c t i v i t y o _. must be replaced i n equation ( 6 . 4 ) by a tensor

a ( B ) which depends on the d i r e c t i o n o f the magnetic i n d u c t i o n v e c t o r , -> B , so t h a t

J. = o. . ( B ) E ( 6 . 6 ) i 13 j

-y

where (B) i s c a l l e d the magnetoconductivity tensor, and i s a second

rank p o l a r (magnetic) f i e l d dependent tensor. Ohm's law (equation 6 . 6 )

can equally w e l l be expressed i n the f o l l o w i n g form:

E = p . (?) J. , ( 6 . 7 ) i iD 3

where ( B ) i s the m a g n e t o r e s i s t i v i t y tensor and i s the inverse o f the

magnetoconductivity tensor. I n t h i s case the d e t a i l s o f the a p p l i c a t i o n

of Onsager's theorem (equation 6 . 5 ) and Neumann's p r i n c i p l e (see

Section 5 . 8 ) have t o be re-examined. I f a c r y s t a l i s subjected t o a

magnetic f i e l d H, one t h a t may be an e x t e r n a l f i e l d or may a r i s e as an

i n t e r n a l f i e l d i n the c r y s t a l , i t i s then p o s s i b l e t o show (see Onsager

1 9 3 1 a,b and DeGroot 1 9 5 1 ) t h a t equation ( 6 . 5 ) has t o be replaced by

o .(B) = a..(-B) , ( 6 . 8 ) i ] Di

Page 99: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 90 -

and as f o r the m a g n e t o r e s i s t i v i t y tensor, the Onsager r e c i p r o c i t y

r e l a t i o n w i l l d i c t a t e

P. . (B) = p . . (-B ) . (6.9) ID 33-

I n o b t a i n i n g the r e s t r i c t i o n s imposed by the symmetry

p r o p e r t i e s of c r y s t a l s on the forms of the magnetoconductivity and the

m a g n e t o r e s i s t i v i t y tensors through Neumann's p r i n c i p l e there has been

some controversy among d i f f e r e n t workers (see B i r s s 1963, 1966, K l e i n e r

1966, 1967, 1969, Crackne l l 1969, 1973, 1975 and AkgSz and Saunders 1975a).

I n the next s e c t i o n we s h a l l give a short review of each o f the methods

adopted,by d i f f e r e n t workers and comment on them and a t the end we s h a l l

g i v e our own method.

6.4 Magnetic symmetry r e s t r i c t i o n s on the forms o f the magneto­

r e s i s t i v i t y and the magnetoconductivity tensors •

The symmetry o f a magnetically ordered c r y s t a l or o f a nonmagnetic

c r y s t a l i n an e x t e r n a l magnetic f i e l d H can be described by some magnetic

p o i n t group G' which can be w r i t t e n as (see Sections 5.5, 5.6, 5.7)

G' = H + /A (G - H)

where G i s the corresponding c l a s s i c a l ( s p a t i a l ) p o i n t group and H i s one

of i t s subgroups and /A i s the anti-symmetry operator, which can be

i d e n t i f i e d w i t h the magnetic moment (spin) i n v e r s i o n operator. Previous

workers have i d e n t i f i e d the magnetic moment i n v e r s i o n operator w i t h the

ti m e - i n v e r s i o n operator. This together w i t h the f a i l u r e t o t r e a t the

magnetoconductivity and the m a g n e t o r e s i s t i v i t y tensors as field-dependent

tensors (see Akgdz and Saunders 1975a) has l e d the procedures adopted

Page 100: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 91 -

by these workers ( p r e s c r i p t i o n s A, B and C) t o wrong r e s u l t .

6.4.1 P r e s c r i p t i o n A - By Bi r s s

I n t h i s p r e s c r i p t i o n B i r s s f o l l o w s previous workers i n the f i e l d

(Juretschke 1955, Mason e t a l 1953, and others) t o express the components -*•

o f the m a g n e t o r e s i s t i v i t y tensor p ^(B) as ser i e s expansions i n ascending

powers of H, the magnetic f i e l d . That i s (Birss 1966, p.112, equation 3.26)

E = p J. + R. ., J. H + (6.10) i i ] ] i ] k j k

Now p , R . . I ... are second, t h i r d , ... rank f i e l d independent tensors, i j i j k To correspond w i t h these expansion c o e f f i c i e n t s , t h e usual experimental

p r a c t i c e i s t o r e s t r i c t measurement t o the low magnetic f i e l d r e g i o n , so

t h a t terms higher than second order can then be neglected.

I n d e a l i n g w i t h the anti-symmetry o p e r a t i o n , B i r s s f i r s t i d e n t i f i e s

t h i s operation w i t h the t i m e - i n v e r s i o n o p e r a t i o n on the ground t h a t since

e l e c t r o n s p i n i s associated w i t h angular momentum which i s a time-

antisymmetric p r o p e r t y , t i m e - i n v e r s i o n o p e r a t i o n reverses the d i r e c t i o n o f

sp i n and t h e r e f o r e the d i r e c t i o n o f magnetic moment ( f o r more d e t a i l see

B i r s s 1966, pp.74-78). Then he s t a t e s t h a t f o r c r y s t a l s where t r a n s p o r t

p r o p e r t i e s are present there e x i s t s an i n t r i n s i c a l l y p r e f e r r e d d i r e c t i o n

o f time, t h a t i s , t r a n s p o r t p r o p e r t i e s are time-antisymmetric) the a p p l i c a ­

t i o n o f Neumann's p r i n c i p l e y i e l d s the erroneous r e s u l t t h a t a l l t r a n s p o r t

e f f e c t s are p r o h i b i t e d f o r non-magnetic ( i . e . time-symmetric) c r y s t a l s .

Therefore he concludes t h a t "Neumann's p r i n c i p l e cannot be a p p l i e d i n

space-time." Then B i r s s gives the f o l l o w i n g p r e s c r i p t i o n ( r e f e r r e d t o as

p r e s c r i p t i o n A by K l e i n e r 1966) f o r f i n d i n g the r e s t r i c t i o n s on the forms

o f t r a n s p o r t p r o p e r t y tensors, based on what has been s a i d above.

Page 101: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 92 -

( i ) Use Onsager's theorem, i . e . ~ P j j / ~ H * '

( i i ) use Neumann's p r i n c i p l e only f o r the u n i t a r y elements of the

magnetic p o i n t group (elements which do not co n t a i n t i m e - i n v e r s i o n

operators i n any form),

( i i i ) ignore the a n t i u n i t a r y elements o f the magnetic p o i n t group

(elements which con t a i n t i m e - i n v e r s i o n o p e r a t o r ) .

The o b j e c t i o n s on t h i s procedure are as f o l l o w s :

(a) Working w i t h the low f i e l d c o e f f i c i e n t s (which are f i e l d -

independent tensors) has some disadvantages, which are described i n

Section 3.3.

(b) K l e i n e r (1966,1967,1969) o b j e c t s t o B i r s s ' procedure on the

grounds t h a t by i g n o r i n g the anti-symmetry elements, i t does not e x p l o i t

the f u l l y symmetry o f the s i t u a t i o n .

(c) I d e n t i f i c a t i o n of the s p i n - i n v e r s i o n o p e r a t i o n w i t h the time-

i n v e r s i o n o p e r a t i o n i s not always c o r r e c t (see Section 5.7), e s p e c i a l l y

when there i s some t r a n s p o r t phenomenon present i n the c r y s t a l . The way

i n which t h i s i d e n t i f i c a t i o n leads t o i n c o r r e c t r e s u l t s f o r the conduc­

t i v i t y tensor o f a paramagnetic m a t e r i a l w i l l now be discussed here.

Consider the c u r r e n t d e n s i t y J i n a paramagnetic c r y s t a l , subjected t o

an e l e c t r i c f i e l d E i n the absence of any e x t e r n a l magnetic f i e l d ( i . e .

H = 0 ) . Symmetry o f the c r y s t a l w i l l be described by one o f the type I I

Heesch-Shubnikov p o i n t groups, i n which /A, the magnetic moment (spin)

i n v e r s i o n operator i s a symmetry operator on i t s own as w e l l as i n com­

b i n a t i o n /AiS w i t h the s p a t i a l symmetry operators iS o f the c r y s t a l p o i n t

group. Now i f 8 the opera t i o n o f time i n v e r s i o n i s i d e n t i f i e d w i t h /A,

Page 102: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 93 -

i n consequence of the f a c t t h a t the c u r r e n t d e n s i t y ? i s a time a n t i ­

symmetric p r o p e r t y , then

0 J = - J . (6.11)

-*• -> Taken t h i s together w i t h Neumann's p r i n c i p l e (J = 8J) leads t o

J 8 J = - J . (6.12)

That i s the c u r r e n t d e n s i t y i s n u l l . This cannot be t r u e . From the

p o i n t o f view o f the c o n d u c t i v i t y tensor, from Ohm's law ,

J. = o £ . , (6.13) i i j 3

a f t e r the opera t i o n o f 8 ,

6 J , = 8 O . . 8 E J (6.14) i i j J

Ej i s a time-symmetric p r o p e r t y ,

8 E. = E. . (6.15) 3 3

S u b s t i t u t i n g from equations (6.11) and (6.15) i n t o (6.14) we get

6 ° i j = ~°ij * (6.16)

But Neumann's p r i n c i p l e d i c t a t e s .-

0 O i j = +°ij ' ( 6 ' 1 7 )

t h e r e f o r e

o = - o ^ = 0 . (6.18)

Page 103: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 94 -

This i n d i c a t e s t h a t a l l the paramagnetic c r y s t a l s should be i n s u l a t o r s

i n the absence o f an e x t e r n a l magnetic f i e l d . This i s not t r u e . Thus

use of 8, the op e r a t i o n of t i m e - i n v e r s i o n does lead t o the i n c o r r e c t

r e s u l t t h a t the c o n d u c t i v i t y tensor i s n u l l . We o b j e c t t o B i r s s ' s t a t e ­

ment t h a t Neumann's p r i n c i p l e does not h o l d f o r t r a n s p o r t phenomena i n

magnetic c r y s t a l ; f u r t h e r we consider t h a t i f a p p l i c a t i o n o f Neumann's

p r i n c i p l e does lead t o an i n c o r r e c t r e s u l t , then such a f i n d i n g casts

doubt not on Neumann's p r i n c i p l e , but on the i d e n t i f i c a t i o n o f the time-

i n v e r s i o n operator, 8 w i t h /k. Furthermore as the j u s t i f i c a t i o n f o r

i d e n t i f i c a t i o n o f 8 w i t h /A, B i r s s proves t h a t the t i m e - i n v e r s i o n operator

has the e f f e c t o f reve r s i n g the d i r e c t i o n o f the s p i n ; however he does

not prove t h a t the two operations have e x a c t l y s i m i l a r e f f e c t s which i s

a necessary c o n d i t i o n f o r such an i d e n t i f i c a t i o n . I n f a c t the time-

i n v e r s i o n o p e r a t i o n has a much broader e f f e c t than the simpler o p e r a t i o n

o f magnetic moment i n v e r s i o n : 8 a c t u a l l y changes the d i r e c t i o n (or sign)

o f a l l the dynamic phenomena which depend on time t o an odd degree.

6.4.2 P r e s c r i p t i o n B; By K l e i n e r

K l e i n e r (1966,1967,1969) o b j e c t s t o the procedure adopted i n

p r e s c r i p t i o n A on the grounds t h a t no use i s being made of the antisymmetry

operations o f the corresponding magnetic p o i n t group. He proposes a

procedure which he c a l l s " p r e s c r i p t i o n B", i n which he t r e a t s the problem

on microscopic grounds and obtains the f o l l o w i n g equations.

T B j A v < U ' l ) - E E V x ( U , S ) ^ ^ ^ ^ ° ( A ) ( U ) A V ' ( 6 - 1 9 )

f o r the s p a t i a l symmetry operators of the corresponding p o i n t group ,

and

Page 104: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 95 -

V A. (b'» = E £ V ai 'V d ( B ) ( AV* ° ( A ) ( a ) x v ( 6 - 2 0 )

u v K A A K

f o r the symmetry operators which i n v o l v e 8 , the operation o f time-

i n v e r s i o n . I n these equations T (U>,B) are the components o f a t r a n s p o r t B A

tensor, u i s the angular frequency (which f o r Ohm's law i s z e r o ) , 8 i s (A) (B)

the magnetic f i e l d , D ( u^Xv a n d D ^ K u a r e t* i e t r a n s f o r m a t i ° n

matrices corresponding t o the u n i t a r y ( s p a t i a l ) symmetry opera t i o n s , and (A) (B)

D ( a ) , and D (a) are the ones corresponding t o a n t i u n i t a r y symmetry A V K|X

operations (those which c o n t a i n 6 ) . Equation (6.19) i s the same as the

commonly accepted equation based on the d e f i n i t i o n o f a field-independent

second rank tensor and the use o f Neumann's p r i n c i p l e . Equation (6.20)

d i f f e r s from equation (6.19) i n t h a t the t r a n s f o r m a t i o n matrices on the

rig h t - h a n d side o f equation (6.20) are the complex conjugates of those

i n equation (6.19), and also the t r a n s p o s i t i o n o f the s u f f i x e s on the

righ t - h a n d side o f equation (6.20) does not occur i n equation (6.19).

I n K l e i n e r ' s procedure, r e l a t i o n s between t r a n s p o r t c o e f f i c i e n t s are

found by using i n equations (6.19) and (6.20) the u n i t a r y and a n t i u n i t a r y

elements, r e s p e c t i v e l y , t h a t are contained i n the group G' (or J or J(B)

i n K l e i n e r ' s n o t a t i o n ) : G' i s the group o f the operations which leave

the Hamiltonian #(8) i n v a r i a n t (G1 i s c a l l e d the Schrodinger group o f

the system and i s u s u a l l y the same as the magnetic p o i n t group or the

magnetic space group o f the c r y s t a l ) = I t i s p o s s i b l e t o choose, on

p h y s i c a l grounds, a Hamiltonian w i t h more (not less) symmetry than G' ,

the magnetic p o i n t group. Considering t h i s f a c t , i n K l e i n e r ' s p r o ­

cedure, Onsager's theorem has been d e a l t w i t h i n a d i f f e r e n t way from

t h a t which B i r s s employs. Instead o f using the group G' t h a t includes -»•

only the operations which leave the Hamiltonian #(H) o f the system

Page 105: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 96 -

i n v a r i a n t , K l e i n e r constructs another group K ( 8 ) . I n a d d i t i o n t o the •+

operations o f the magnetic group G', A(B ) also includes a l l the operations -*• -*• -* t h a t send H(B) i n t o # ( - 8 ) . By using the l a r g e r group X(B) i n s t e a d o f

G', Kl e i n e r i s able t o d e r i v e the generalized Onsager r e c i p r o c a l r e l a t i o n s

as a consequence o f r e q u i r i n g the tensor t o be i n v a r i a n t under the opera-

t i o n s o f the group K(B). Therefore i n p r e s c r i p t i o n B, Onsager's r e c i p r o c i t y

r e l a t i o n s are not used,because they are assumed t o be covered by the use

o f K(B). The group K(8) having been contracted, p r e s c r i p t i o n B c o n s i s t s

o f the f o l l o w i n g steps:

->• ( i ) Use equation (6.19) f o r the u n i t a r y elements o f K(E).

( i i ) Use equation (6.20) f o r the a n t i u n i t a r y elements (those which

contain 8, the t i m e - i n v e r s i o n operator) o f X(B).

The f o l l o w i n g o b j e c t i o n s can be made to t h i s procedure:

(a) C r a c k n e l l (1973) ob j e c t s t o K l e i n e r ' s procedure i n using the group

Jt(B) and st a t e s t h a t : i n using the group X(B) i n s t e a d o f G*, K l e i n e r

assumes t h a t only even terms i n 8 appear i n / / ( B ) , the Hamiltonian o f the

c r y s t a l . This i s not j u s t i f i e d , since the only p h y s i c a l reason f o r t h i s

assumption i s the modified Onsager r e l a t i o n

° ^ ( B ) = o. (-B) (6.21) i j j i

which means t h a t the diagonal components o f the e l e c t r i c a l c o n d u c t i v i t y

tensor are even f u n c t i o n s of B. This i s c e r t a i n l y a d i f f e r e n t c o n d i t i o n

from the assumption t h a t a l l the components be even f u n c t i o n s of B.

Furthermore Cracknell f i n d s the assumption " p r e s c r i p t i o n B leads t o

c o r r e c t s i m p l i f i c a t i o n s o f a t r a n s p o r t tensor p r o p e r t y of a c r y s t a l w i t h

symmetry described by one o f the magnetic p o i n t group, because the r e q u i r e ­

ment o f inv a r i a n c e o f the tensor under H[B) leads t o the r i g h t answer f o r

Page 106: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 97 -

the generalized Onsager r e c i p r o c i t y r e l a t i o n u n j u s t i f i e d .

(b) We have the f u r t h e r o b j e c t i o n t o the procedure adopted by K l e i n e r

t h a t i n c o n s t r u c t i n g the magnetic p o i n t group G', 8 , the o p e r a t i o n o f

time-inversion,has been i d e n t i f i e d w i t h the ope r a t i o n o f magnetic moment

i n v e r s i o n o p e r a t i o n ( f o r more d e t a i l on why t h i s i d e n t i f i c a t i o n i s not

c o r r e c t see Section 6.4.1(c)).

6.4.3 P r e s c r i p t i o n C ; by C r a c k n e l l

C r a c k n e l l (1973) f o l l o w s B i r s s ' macroscopic approach t o the

problem, and he also assumes w i t h o u t any pr o o f t h a t the magnetic moment-

i n v e r s i o n operator can be i d e n t i f i e d w i t h 6, the t i m e - i n v e r s i o n operator.

Then i n de a l i n g w i t h the a n t i u n i t a r y operations which do i n v o l v e 8, he

adopts the f o l l o w i n g procedure:

I . Consider Ohm's law i n the absence o f any magnetic f i e l d

( i n t e r n a l or e x t e r n a l )

Ji = o . (6.22)

« -*• -*• •*• 8 w i l l reverse the sign of J , but w i l l leave E u n a l t e r e d ; t h a t i s J

i s c tensor ( i . e . a tensor which changes s i g n under the o p e r a t i o n o f 8)

o f rank one and E i s an i tensor ( i . e . a tensor which remains i n v a r i a n t

under 8 ) o f rank one. Therefore, from (6.22), o i s a c tensor o f

rank two,

9 0 i j = " °ij < 6 * 2 3 )

From t h i s C r a c k n e l l comes t o the conclusion t h a t 6 cannot be a symmetry

ope r a t i o n o f the complete c o n f i g u r a t i o n o f specimen-*-J + E. Then he

regards the specimen as a "black box" which contains some m a t e r i a l e n t i t i e s

and a magnetic f i e l d B, and considers a c r y s t a l f o r which 8 i s a symmetry

Page 107: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 98 -

ope r a t i o n . Now since 6 i s a symmetry operation o f the black box, then

9 0 ^ = FFJLJ (6.24,

Then Cracknell claims t h a t equations (6.24) and (6.23) are not i n c o n f l i c t

because equation (6.24) a p p l i e s i f the symmetry o f the specimen i s des­

c r i b e d by one o f the grey groups, and i f i t i s assumed t h a t Neumann's

p r i n c i p l e s t i l l holds f o r 6, w h i l e equation (6.23) r e f e r s t o the a p p l i c a ­

t i o n o f 8 t o a l a r g e r system o f which 8 i s not a symmetry o p e r a t i o n .

Therefore i f equation (6.24) holds, then equation (6.23) cannot h o l d ,

because would then be n u l l .

I I . Now i f B »* 0, t h a t i s , when the black box co n s i s t s o f a magnetically

ordered c r y s t a l or consists o f a non-magnetic c r y s t a l s i t u a t e d i n an

ap p l i e d magnetic f i e l d , 6 i s not a symmetry oper a t i o n on i t s own. But

there are c e r t a i n a n t i u n i t a r y operations o f the form 8S, where S i s a

s p a t i a l p o i n t group o p e r a t i o n , which are symmetry operations o f the black

box. Then Cracknell supposes t h a t Neumann's p r i n c i p l e s t i l l holds

(despite B i r s s ' argument) f o r these operations 8S. That i s ,

(8S) a±i (H) = (B) . (6.25)

Now t o make use of the t r a n s f o r m a t i o n p r o p e r t i e s o f the tensor under these

a n t i u n i t a r y operations, the r e s u l t o f the a p p l i c a t i o n o f 8 t o a (B) must

be determined. For t h i s C r a c k n e l l s t a t e s t h a t "the e f f e c t o f 8 on the

motions of a l l the p a r t i c l e s i n the black box w i l l be t o reverse the

d i r e c t i o n s o f t h e i r v e l o c i t i e s and, t h e r e f o r e , the Lorentz forces

p. j i Q e (v x. H); t h e r e f o r e , the Hamiltonian w i l l only remain i n v a r i a n t

i f H i s also reversed. Consequently, the c u r r e n t f l o w i n g i n a given

d i r e c t i o n as a r e s u l t o f the a p p l i c a t i o n of an e l e c t r i c f i e l d w i l l be

Page 108: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 99 -

un a l t e r e d i f the d i r e c t i o n of B i s also reversed; t h a t i s

6 0 ^ (1) = 0 (-B) . (6.26)

Cr a c k n e l l describes equation (6.26) t o be simply a statement o f t h e f a c t

t h a t the compound opera t i o n o f ti m e - r e v e r s a l p l u s changing the sign o f

B i s a symmetry o p e r a t i o n o f the system i n the black box. Equations (6.26)

and (6.24) only apply when d i r e c t c u r r e n t i s under c o n s i d e r a t i o n . For

a l t e r n a t i n g c u r r e n t , C r a c k n e l l defines the f o l l o w i n g equations t o replace

equations (6.24) and (6.26) r e s p e c t i v e l y ,

6°ij = °ij ( 6 , 2 7 >

and 6 0 ^ (B) = a* (-B) (6.28)

Then s u b s t i t u t i n g from equation (6.28) i n t o equation (6.25) C r a c k n e l l

gives the f o l l o w i n g treatment ,

o 1 ; J ( 8 ) = 6S 0 (B) - S S o ^ t B )

S o j j (-B)

That i s ,

or

i . e . ,

V S ) = S i p S j q a p q [ S _ 1 ("S)J ( 6 ' 2 9 )

a i j ( 5 } = S i p S j q ° p q ( l ) ' ( 6 - 3 0 ) '

a..(8) = S. S. 0* (B) (6.31) i j i p j q pq

Page 109: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 100 -

Cr a c k n e l l , t h e r e f o r e , a r r i v e s a t the f o l l o w i n g procedure, f o r f i n d i n g

t h e r e s t r i c t i o n s on the form o f magnetoconductivity tensor, imposed by

magnetic symmetry o f the c r y s t a l , (which he c a l l s p r e s c r i p t i o n C):

( i ) Use equations (6.5) and (6.8) based on Onsager's theorem,

( i i ) use

• R i 0 (6.3: i j i p Jq pq

based on Neumann's p r i n c i p l e f o r the u n i t a r y elements R o f G', the

magnetic p o i n t group, and

( i i i ) use equation (6.29), based on a modified form of Neumann's

p r i n c i p l e , f o r the a n t i u n i t a r y elements 0S, o f G'.

P r e s c r i p t i o n A and p r e s c r i p t i o n C w i l l always lead t o the same

r e s u l t s , except t h a t , as a r e s u l t o f p a r t ( i i i ) , p r e s c r i p t i o n C may lead

t o some f u r t h e r s i m p l i f i c a t i o n on the form o f beyond t h a t achieved

by p r e s c r i p t i o n A.

He have the f o l l o w i n g o b j e c t i o n s t o t h i s p r e s c r i p t i o n :

(a) I n p a r t ( i i ) o f p r e s c r i p t i o n C magnetoconductivity tensor com­

ponents have been t r e a t e d l i k e f i eld-independent tensor components, which

i s n o t c o r r e c t (see Akgfiz and Saunders 1975a).

(b) I d e n t i f i c a t i o n o f the t i m e - i n v e r s i o n o p e r a t i o n w i t h the magnetic-

moment i n v e r s i o n o p e r a t i o n i s not c o r r e c t (see Section 6.3.1 f o r more

d e t a i l ) , and t h i s leads t o the f o l l o w i n g weaknesses i n Cracknell's d i s ­

cussion t o j u s t i f y h i s p r e s c r i p t i o n ; i n p a r t I o f h i s d i s c u s s i o n despite

Cracknell's claim we b e l i e v e t h a t equation (6.23) i s i n c o n f l i c t w i t h

equation (6.24), because equation (6.23) always holds and i s always

a second rank p o l a r c tensor (which changes s i g n under the opera t i o n o f

Page 110: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 101 -

time- i n v e r s i o n ) and i f 8 i s the symmetry o p e r a t i o n o f the system i s

a n u l l tensor. Furthermore i n p a r t I I , we f i n d the discussion on the

e f f e c t o f 6 on (8) which leads t o equation (6.26) u n s a t i s f a c t o r y .

F i r s t l y because i t says t h a t as a r e s u l t of the o p e r a t i o n o f 6 on the

system, the v e l o c i t y v (and t h e r e f o r e the c u r r e n t d e n s i t y J) w i l l be

reversed, and f o r the Lorentz f o r c e , and t h e r e f o r e the Hamiltonian, t o

remain i n v a r i a n t under 6, B the magnetic f i e l d should also be reversed.

Then i t says t h a t as a r e s u l t o f reversing the d i r e c t i o n of 8, J the

c u r r e n t d e n s i t y w i l l remain unaltered. These two statements are con­

t r a d i c t o r y . Then there i s the f u r t h e r o b j e c t i o n t o Cracknell's procedure

i n d e r i v i n g equation (6.31) t h a t : i n w r i t i n g equation (6.29) C r a c k n e l l ,

w i t h o u t any di s c u s s i o n , recognizes the need t o operate the symmetry

opera t i o n on the argument o f (g) as w e l l as on i t s components, b u t -1 •+ -V

i n w r i t i n g equation (6.30) he replaces S (-B) by (B) which may be

c o r r e c t f o r c e r t a i n symmetry operations, b u t i s not t r u e f o r others.

6.4.4 P r e s c r i p t i o n D ; Present work

A major weakness of the e a r l i e r p r e s c r i p t i o n i s t h a t they a l l -»•

s u f f e r from the l a c k o f t h e i r authors t o appreciate a^(B) i s a f i e l d -

dependent tensor. A new p r e s c r i p t i o n has t h e r e f o r e been developed i n

which the magnetoconductivity tensor components are t r e a t e d as the compon­

ents o f a field-dependent tensor, and the generalized Neumann's p r i n c i p l e

(see Section 5.8) i s employed t o f i n d the symmetry and antisymmetry

r e s t r i c t i o n s on the form o f c ( 8 ) . Furthermore the antisymmetry operator

A, i s not i d e n t i f i e d w i t h 8 , the time i n v e r s i o n operator. To f i n d the

e f f e c t o f A on (B) we must ensure the i n v a r i a n c e o f Ohm's law under

t h i s o p e r a t i o n . Ohm's law f o r d i r e c t c u r r e n t i n the presence o f a magneti

f i e l d can be w r i t t e n as ,

Page 111: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 102 -

J ± ( B ) = ai ; j ( B ) . (6.33)

Under the operation of magnetic moment i n v e r s i o n (the antisymmetry

o p e r a t i o n ) , t h i s becomes

A J±(B) = A o (B) A E_j . (6.34)

->•

To f i n d the e f f e c t of A on ° ij( B)» i f c i s r e q u i r e d t o know the e f f e c t of

A on J^(B) and E^. The e l e c t r i c f i e l d v ector E^ i s i n v a r i a n t under A,

A = . (6.35)

->• The e f f e c t o f A on B i s defined as ,

/A B = - B (6.36)

when the operator A acts on a system c o n t a i n i n g a magnetic moment and -»•

a c u r r e n t d e n s i t y J ^ B ) , the only e f f e c t i s t o a l t e r the d i r e c t i o n o f -*• B and so ,

A (S) = J M A f f ) = J i(-B) . (6.37)

For Ohm's law t o hol d i n the system under the op e r a t i o n o f magnetic

moment i n v e r s i o n , s u b s t i t u t i o n from (6.35) and (6.37) i n t o (6.34) leads

t o ,

A o (8) - a±i (-§) (6.38)

For the symmetry operations A iR , Neumann's p r i n c i p l e demands t h a t ,

AIR 0 ^ ( 8 ) = o ( A IR B) f (6.39)

or IRAQ (8) = o ( i R A B ) , (6.40) l j l j

Page 112: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 103 -

since A IR = IR A, s u b s t i t u t i n g f o r /A o^.lB) from (6.38) i n t o (6.40),

we o b t a i n

IR o (-8) = o ( IR A 8 ) = o j L j (- IR B) .

Therefore

IR ° i j(B) = o i 3 < IR 8 ) . (6.41)

Thus we o b t a i n

V | , R | R l q V l < R | R 2 q S q ' R 3 q V = Rim Rjn °mn 'W'

(6.42)

Therefore, the a n a l y t i c a l form o f Neumann's p r i n c i p l e f o r a(B) (or

P^^(B)) applies t o c r y s t a l s belonging t o any o f the three types ( I , I I ,

I I I ) o f Heesch-Shubnikov p o i n t groups, f o r both kinds o f s p a t i a l symmetry

operations (the ones which are elements of the magnetic p o i n t group on

t h e i r own, and the ones which i n combination w i t h A, the op e r a t i o n o f

magnetic moment i n v e r s i o n , are elements o f the magnetic p o i n t group).

When H / 0 , the form of j (B) does not depend on whether the specimen

co n s i s t s of a non-magnetic c r y s t a l (paramagnetic and diamagnetic and some

ant i f e r r o m a g n e t i c c r y s t a l s ) i n an ap p l i e d magnetic f i e l d or o f a magneti­

c a l l y ordered c r y s t a l . Furthermore since o i s a second rank p o l a r tensor

and B a f i r s t rank a x i a l tensor they are both i n v a r i a n t under the opera­

t i o n o f i n v e r s i o n i n the space (see Table A.1). ->•

Therefore our p r e s c r i p t i o n D f o r f i n d i n g the forms o f o ( H ) f o r a

c r y s t a l belonging t o a magnetic p o i n t group i s as f o l l o w s :

( i ) Find the corresponding c l a s s i c a l p o i n t group G o f the magnetic

p o i n t group G*, noti n g t h a t G' depends upon the d i r e c t i o n o f B ,

Page 113: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 104 -

( i i ) take the enantiomorphous p o i n t group o f t h i s c l a s s i c a l p o i n t group

and use i t s generating elements i n equation (6.42), which i s based on the

t r a n s f o r m a t i o n law f o r f i e l d dependent tensors and generalized Neumann's

p r i n c i p l e , t o d i s t i n g u i s h the non-zero components f o r a chosen magnetic

d i r e c t i o n , and

(iii) apply equation (6.8) based on Onsager's theorem.

Thus we have concluded t h a t the symmetry r e s t r i c t e d forms o f

a ^ ( B ) f o r c r y s t a l s belonging t o magnetic p o i n t group G' are i d e n t i c a l t o

those of the c r y s t a l s belonging t o the corresponding p o i n t group G. The -»•

l a t t e r have been l i s t e d f o r B d i r e c t e d along the major c r y s t a l l o g r a p h i c

axes by AkgiJz and Saunders (1975a).

6.5 Symmetry r e s t r i c t i o n s on the forms of other t r a n s p o r t p r o p e r t i e s

I n a magnetic c r y s t a l or a non-magnetic c r y s t a l i n an e x t e r n a l -+ ->

magnetic f i e l d the e l e c t r i c a l and heat c u r r e n t d e n s i t i e s J and q are

r e l a t e d t o the ele c t r o m o t i v e force E and the temperature g r a d i e n t VT by

the phenomenological l i n e a r t r a n s p o r t equations

E - P s i(H) J + a..(B) V. r (6.43)

q i = * i j < H ) J j " K i j ( 8 ) 7 j F (6.44)

where each component o f the second rank t r a n s p o r t tensors - the magneto--*• -y r e s i s t i v i t y P ^ ( 8 ) (the reverse of the magnetoconductivity a^(B)), the

-+ -> magnetothermoelectric power ^ (5) , the magneto-Peltier e f f e c t ^ j ^ ) and -*•

the magnetothermal c o n d u c t i v i t y k^^(B) - depends on the magnetic f i e l d .

Thus these t r a n s p o r t p r o p e r t i e s should be d e a l t w i t h as field-dependent

tensors. The s p a t i a l and magnetic symmetry r e s t r i c t i o n s on the forms o f

Page 114: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 105 -

a l l these tensors are the same as those on the magnetoconductlvlty tensor.

The only difference i s the i n t r i n s i c symmetry dictated by Onsager's

theorem, which i s not the same for a l l these properties. That i s

° i j ( B ) = °ji (~ B ) ' (6.45)

P i j ( B > = P i j ( _ B ) ' (6.46)

K i j ( B ) = K i j ( " ^ ) ' (6.47)

and (1/r) TT±^ (8) = " ^ ( - 8 ) (6.48)

Therefore the magnetoresistivity tensor P ^ j ^ a n d the magnetothermal •+ -> conductivity tensor <^ (H) take the same forms as a (g). The forms of

-> the magnetothermoelectric power (Bj) and the magneto-Peltier e f f e c t

•>

^ i j ^ f ° r c r v s t a * 8 belonging to the magnetic point group G' are the same

as those of c r y s t a l s belonging to the corresponding c l a s s i c a l point group

G, i n a magnetic f i e l d ; they are di f f e r e n t from a ^ ( B ) . These forms

have been tabulated by AkgSz and Saunders (1975b).

6.6 The permittivity of a c r y s t a l -*•

In an anisotropic body, the magnetic f i e l d i n t e n s i t y H ( f i e l d

strength) and the magnetic induction B (flux density) are connected by

the r e l a t i o n (see Nye 1957) ,

B i = ^ i j H j ' ( 6 , 4 9 )

where i s c a l l e d the permittivity of the body and i s a second rank

polar tensor with respect to s p a t i a l transformations. But, as considered

i n Section (3.7), there are cases where we have to deal with more

Page 115: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 106 -

complicated transformation operators of the kind (IR^ I iR J «v^} , with

IR operating only on the spin (magnetic) space coordinates. Therefore P the behaviour of p.^ has to be investigated i n t h i s space, and to do

t h i s the t e n s o r i a l behaviour of B and H i n that space have to be found.

Magnetic f i e l d i s a vector ( f i r s t rank tensor) i n the magnetic

subspace and so i s the magnetic induction. Therefore, using the quotient

law (Section 4.6), i t can be shown that permittivity must be a second

rank tensor i n the magnetic subspace as well as i n the physical subspace.

This means that i n the combined space of magnetic and physical subspaces

magnetic f i e l d and magnetic induction w i l l each have nine components

(each of the three components i n the physical, or geometrical, subspace

w i l l have three components i n the magnetic subspace). Therefore the

permittivity tensor w i l l have eighty one components i n t h i s combined

space. Equation (6.49) may now be written

(B ±) = (HJ (6.50) a

i 3 ap 3 B

where a and $ refer to the coordinate axis in the magnetic subspace and

i and j to the coordinate axis i n the geometrical subspace.

A l i n e a r relationship between the magnetic induction, B, and the ->•

magnetic f i e l d H does not hold for a l l the substances. There are some

cases where permittivity depends on the magnitude of the applied magnetic

f i e l d . In the ordinary physical subspace t h i s may be shown by

B± = ^ j ^ ) H j • (6.51)

In t h i s case permittivity can be dealt with as a f i e l d dependent tensor

f i e l d and every transformation operator w i l l operate on the components

of i t s argument (H) as well as on i t s own components.

Page 116: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 107 -

APPENDIX I

SPATIAL SYMMETRY RESTRICTED FORMS OF FIELD DEPENDENT

TENSORS OF RANK ZERO IN THE FIELD SUBSPACE, WHERE

FIELD COMPONENTS ARE THEMSELVES TENSORS IN

GEOMETRICAL SUBSPACE

A.1 Introduction

I n dealing with the f i e l d dependent tensor properties of s o l i d s ,

the si t u a t i o n where the f i e l d components have some kind of t e n s o r i a l

dependence on the coordinate axes i n geometrical subspace i s frequently

encountered. The magnetoresistivity tensor i n magnetic c r y s t a l s i s an

example of such physical properties, where the components of r e s i s t i v i t y

tensor depend on the magnetic f i e l d which i t s e l f i s a f i r s t rank tensor

i n geometrical subspace. Here the transformation operations of the co­

ordinate axes i n geometrical subspace w i l l a f f e c t the coordinate axes of

the f i e l d subspace too (see Section 5.9), unless otherwise stated.

Inserting symmetry operations of t h i s king i n Neumann's pri n c i p l e

(equation 5.18), the general forms of these f i e l d dependent tensors for

each of the 32 c l a s s i c a l crystallographic point groups have been obtained

i n t h i s appendix. Three-dimensional rotation groups have been employed

as the instrument for i d e n t i f i c a t i o n of the non-zero components. The

forms of f i e l d dependent tensors up to fourth rank i n the matter tensor

and second rank i n the f i e l d tensor (the argument of the f i e l d dependent

tensor) are tabulated a t the end of t h i s appendix.

To avoid writing long sentences we use ' f i e l d dependent tensor'

to mean " f i e l d dependent tensors of rank zero (scalar function) i n the

f i e l d subspace" i n the r e s t of t h i s appendix.

Page 117: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 108 -

A.2 Application of Neumann's Prin c i p l e

Transformation law of a f i e l d dependent tensor (equation 3.20)

requires that both the tensor components and the f i e l d components (the

argument of the tensor) be transformed. Therefore Neumann's p r i n c i p l e

(equation 5.18) based on t h i s transformation law for an orthogonal trans-i

formation of coordinates (in the geometrical subspace) x± = can

be written as

c d B<4i. C|(71 o o ..F ) = I o | a. a. o. . ...B t (F ) (A.l) i j k . . . 1 1 mn op np 1 1 i r j s kt r s t . . . mo...

where a l l the indices refer to the coordinates i n geometrical subspace,

f i e l d components are denoted by F , o 's are the elements of the * mo... i j

transformation matrix, and |o|its determinant. Both the f i e l d dependent

tensor (matter tensor) components B and the arguments ( f i e l d tensor)

F can transform either as polar (zero c and d i n equation A.l) or

a x i a l (c and d equal one i n equation A.l) tensors. This r e s u l t s i n four

d i f f e r e n t kinds (labelled a , 0, y, &) of f i e l d dependent tensors which

can be described by the following equation for the a n a l y t i c a l form of

Neumann's p r i n c i p l e :

tensor type a - polar matter tensor (d = 0) dependent upon polar f i e l d

tensor (c - 0 ) .

B (o a . . . f ) - o. o. a , ^ . . . B (F ) (A.2) i j k . . . mn op np... i r j s kt r s t . . . mo....

tensor type 3 - polar matter tesnor (d = 0) dependent upon a x i a l f i e l d

tensor (c - 1)

B. .. (|o|o O ..F ) - 0. 0. a l A _ . . . B _ (F ) (A.3) i j k . . . 1 1 mn op np.. i r j s kt r s t . . . mo...

Page 118: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 109 -

tensor type y - a x i a l matter tensor (d = 1) dependent upon polar f i e l d

tensor (c = 0)

B. (o a .. F ) «= p a o a B . (r ) (A.4) i j k . . . mn op np.. i r j s kt r s t mo...

tensor type 6 - a x i a l matter tensor ( d e l ) dependent upon a x i a l f i e l d

tensor (c = 1)

B^. (|o| a a ... F ) = lol o. o. o...... B (F ) i j k . . . ' 1 mn op np... 1 1 i r j s kt r s t . . . mo..

(A. 5)

The matter and f i e l d tensors can be further c l a s s i f i e d into those

of even and odd rank to give the following nomenclature:

tensor of kind a - even rank matter tensor and even rank f i e l d tensor»

tensor of kind b - odd rank matter tensor and even rank f i e l d tensor;

tensor of kind c - even rank matter tensor and odd rank f i e l d tensor;

tensor of kind d - odd rank matter tensor and odd rank f i e l d tensor.

Combination of t h i s nomenclature with the a, 3, y, 6 c l a s s i f i c a t i o n

leads to sixteen d i s t i n c t types of tensor l a b e l l e d oa, ...., fid.

To find the maximum si m p l i f i c a t i o n i n the forms of these sixteen

types of tensor the s e t of generating matrices used by B i r s s (1966)

(see Section 5.4) has been employed i n equations (A.2), (A.3), (A.4)

and (A.5). During t h i s substitution of generating matrices, certain

e q u a l i t i e s or relationships have been found between tensors of the same

rank for different point groups. These w i l l now be l i s t e d .

Page 119: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- no

1. The forms of the tensors for c r y s t a l s belonging to centro-

symmetrical point groups are affected by the f a c t that o^ 1' i s a generating

element; for

-1 i f i - p

0 i f l | i p

and the determinant |c/*M i s -1. I n general

B^, (±a o .. F ) » ±o.. o.. a . . .... B... (F ) i j k . .. mm oo mo.. i i j j kk i j k . . . mo...

(A.6)

where the + sign corresponds to polar and the - sign to a x i a l tensors.

This can be written as

B... (±(-1)" F ) - ± (-1)° B... <F ) (A.7) i j k . . . mo... i j k . . . mo...

where m and n are respectively the ranks of the matter and f i e l d tensors.

Thus four different sets of equations, which depend upon both the rank

and p o l a r i t y of the tensor, r e s u l t :

XjK.... mo.•• i j x . . . . mo....

for t h i s case, does not introduce any s i m p l i f i c a t i o n and therefore

the appropriate enantiomorphous point group generating elements are suf­

f i c i e n t to produce the maximum s i m p l i f i c a t i o n of the tensor.

( i i ) B (F ) = -B (F ) = 0 (A.8b) l j J c . . . . mo. • • i j K . . . . mo....

hence the matter tensor i s n u l l .

Page 120: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- I l l -

( i i i ) B . (-F ) • B4 (F ) (A.8c) l j K . . . . mo... l j K . . . . mo...

the matter tensor components are even functions of the f i e l d tensor.,

components,

(iv) B (-F ) = -B, (F ) (A.8d) l j K . . . . mo... l j K . . . . mo...

the matter tensor components are odd functions of the f i e l d tensor com­

ponents. Inspection of equations (A. 8) for each of the sixteen d i f f e r e n t

types of tensor leads to the general r e s u l t shown i n Table A.l.

2. For those point groups which contain only the generating elements

o ( 0 ) , o ( 2 ) , o ( 3 ) , o ( 6 ) , o ( 7 ) and o ( 9 ) whose determinants are unity, the

forms of a l l the f i e l d dependent tensors of the same rank for a given

point group are i d e n t i c a l for both the polar and a x i a l matter tensors;

t h i s i s independent of the polar or a x i a l nature of the f i e l d tensor.

(3) (5) (3) (5) 3. The generating matrices o and a are such that a = -a

and | a ( 3 ) | = 1 = - | o ( 5 ) | . Therefore

{ - l > n a . <3> o. ( 3> o <3> .... B (F ) = i r j s kt r s t . . . . mo...

= ±CJ ( 5 ) o 4 ( 5 ) o < 5 ) ... B ^ (F ) (A.9) i r j s kt r s t . . . . mo...

where n i s the rank of matter tensor. Thus for even rank polar or odd

rank a x i a l f i e l d tensors, the two generating elements o^ 3' and ^ have

the same ef f e c t on the even rank polar or odd rank a x i a l matter tensors.

A.3 Tabulation of the forms of the f i e l d dependent tensors

The equalities and other relationships between the f i e l d dependent

tensors between and within point groups are shown i n Table 2. Null tensors

Page 121: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 112 -

are also shown where they occur. To make matters easier, the plan used

i n construction of the table i s based upon that used by B i r s s (1966),

i n h i s similar table (4a) for constant tensors. Where tensors are labelled

with a different c a p i t a l l e t t e r , t h e i r forms are d i s s i m i l a r (some c a p i t a l

l e t t e r s have bars on them. This i s to increase the supply of l e t t e r s and

has no other special meaning). The subscripts m (for even numbers) and

n (for odd numbers) show the rank of the matter tensors . (F ) and (F ) P <1

represent the f i e l d tensor, here p shows an even rank and q an odd rank

tensor; where they occur the superscripts o and e show that only odd or

even functions of the f i e l d components are present. The significance of

a dash on the l e t t e r s B or C representing the matter tensor i s that there

i s i n t h i s case a simple relationship between the pair s of forms B and B'

or C and C , namely that i f even or odd terms are present i n the dashed

l e t t e r they are absent i n the un-dashed one and vice versa. Thus, i f a

component of B i s an even function of the f i e l d components, then that

component of B" i s an odd function. Furthermore, i f a component of B

contains both odd and even terms, then that component of B' i s zero and

vice versa.

The complete forms of the tensors represented symbolically i n

Table A.2 are detailed i n Tables A.3 to A.14. The forms of the f i e l d

dependent tensors up to fourth rank (m=0, 2, 4; n = 1, 3) for the

matter ..tensor and up to second rank (p = 0, 2; q = 1) for the argument

have been obtained by systematic substitution of the generating matrices

for each point group into equations (A.2) - (A.5). The matter tensor

components are represented by X, Y, Z and of course for higher rank

transors i n combination such as XY. The f i e l d tensor components are

shown as x, y, z, also i n combinations such as xy for a second rank

f i e l d tensor. Each column shows a p a r t i c u l a r tensor component and a

Page 122: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 113 -

row shows a l l the components of a p a r t i c u l a r tensor; certain components

e x i s t only as either an even or an odd function of the f i e l d tensor -

t h i s i s indicated d i r e c t l y . When an equality between components occurs

then i t i s shown by writing i n i t s place that term (or even or odd part

of the term) i n the same row to which i t i s equal. To reduce the s i z e

of the tables a system of permutation of the matter tensor component

s u f f i c e s ( s i m i l a r to that used by B i r s s (1966)) for constant tensors has

been adopted. Thus the notations of the type XZ(2) show permutations

which apply to every component i n the column and the number i n brackets

gives the number of d i s t i n c t components obtained. In addition the f i e l d

dependent tensors require a s i m i l a r permutation xy2 and yz2 of the

s u f f i c e s for the f i e l d tensor. The forms presented i n tables A.3 - A.14

provide the basis for studies of the anisotrppy of the f i e l d dependent

properties of c r y s t a l s .

A.4 Use of the tabulation to find T 2 (F ) for the point group 3m

To exemplify the use of these tables l e t us extract the form of

a second rank polar matter tensor which depends upon a f i r s t rank a x i a l

f i e l d tensor for the point group 3m. In Table A.2 t h i s type of tensor

occurs as T (F ) i n the tenth column i n the 3m row. This i s one of m q those tensors which obeys case (1)(equation A.8a) and so has the same

form i n t h i s chosen point group (3m) as i t does for the corresponding

enantiomcrphcus point group (32). The ranks of the tensor sought lead

to T^(F^) and the form can therefore be obtained from the section for

m • 2 and q = 1 i n Table A.7. In the even and odd terminology (see

for example, Akgbz and Saunders 1975 a, Akgoz and Saunders 1975 b,

SUmengen and Saunders 1972)

Page 123: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 114 -

even odd

T (F ) 11 1 T (F ). 13 l '

T (F ) 22 V l '

, T 3 1 ( r i } ' T 3 3 ( V

T 1 2 ( F 1 )

T 2 1 ( F 1 } * T 2 3 ( F 1 }

T (F ) 32 1 r

T (F ) = i j 1 2'

T n ( F 2 ) . T 1 3 ( F 2 H

T 2 2 ( F 2 )

•T (F ) 11 V 2' T (F ) 13 1 2'

T ( F : ) 2 2 V r

L T 3 1 ( F 2 ) . T 3 3 ( F 2 r - T 3 1 ( F 2 ) . T 3 3 ( F 2 )

T (F ) " 1 1 1 3'

T U ( F 3 >

T 3 3 ( F 3 , J L

T 1 2 ( F 3 )

-T (p \

(A.12)

A. 5 Conclusion

The forms of the tensors shown i n Table A.3 have been obtained

by reference only to the symmetry r e s t r i c t i o n s imposed by the point

group operations. In addition a f i e l d dependent tensor may exhibit

further symmetry i n t r i n s i c to the physical nature of the property i t

describes. Then the tensor w i l l be si m p l i f i e d further.

Page 124: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- i l D -

O O O 9 9 o 9 9 a a a < < a < < a . a a 9 9 a 9 9

3 3 9 3 N . •i »i •i 9 9 0 •1 1 o •1 1 9 9 3 0 0 9 0 0 PC PC ft 9 3 PC 9 3 PC PC PC j r Hi •a Hi 9

a H« 0 o M- 9 tr Hi 0 0 Hi 9 9 rf 9 0 H - rf ^ H - 0 rf M rf 9 rf 9 rf a 9 a rt M 9 r-> rf

»1 0 a •1 a 0 rt rt 1 1 9 rf 9 rt rf rf 9 9 9 rt 9 9 9 rf 0 . 9 0 9 3 9 9 9 0 U O 9 0 U 0 3 •1 0 •1 0 0 0 O 0

•i O 1 i 1 0 1 •1

0 9 Hi 0 9 •1 0 w- •1 0

9 9 rf 9 9 rt M rf »-• rt 9 OQ 9 •0 a 0 9 Q . 9 4> • 9 •1 3 o <5

a 1 < 1 9 O 0 r-> r-> rf a rt 9 rf c 3 0 0 <B rf 9 9 rf /~\ 0 •a rf •1 •1 9 9 9 9 3 H -IB c 9 0 Hj 9 C n 0 oq 0 Hi 9 O 9 0 0 e 0 M 0 H 9 9 H - 0 •1 (i 0 •1 9 O M w 9 9 O Q 0 rf

rt »1 o 1 9 9 •1 M rt O H- Q rt rf 0 •1 u a 0 0 0 o 0 o 9 C tt 3" 9 9 o 9 o o 9 H- Hi rt O rt 9 IS 9 •o 9 9 0 H » Hi w c 9 rf o •o 0 0 •d O H - 9 0 3 9

0 o 9 o •» O oq 0 3 a» Hi 9 9 0 9 H * "2 O u 3 9 9 Hi 9 9 9 0 1 O rt 9 rf 9 M H -ID rf 0 rt rt 9 9

a 0 1 rf

9 TO 9 Hi 0 9 Hi 0 9 9 1 9 H» H. 0 H- •1 0 9 o 0 9 9 rt 9 9 rf rf c 9 rf M rf 0 U •a rf a O 9 a 9 0 X o

H' a 1 < •1 H » M /"» 0 m o rf a rt 9 0 0 9 1 9 9 9 rf 9 9 rf M 1 C O 9 9 O 3 Hi 9 9 0 M 0 9 •1 0 C 9 0 Hi 3 H | 3 t-> u 0 1 •o O 3 0 0 c to H - V

9 e 0 9 1 . H . O O •1 9 O TO 0 rf rt Hi rf O rf •1 O H. b-l rf 9 H I H » e O H - 0 rf a 0 9 H- f*» 9 in o 0 O o H- O •1 10 H- o oq a 3 o 9 O 0 rf o M- TJ •a 0 9 •a 3 9 <r rf

9 9 O o o to •o 3 S 9 M M* 3 O o 3 o 0 *J rf 9 3 9 H> 3 0 O 3 O to 1 r* 3

H> 9 3 Hi 9 O rt 3 rf 3

to rf 0 rt W to

H > 0 9 H I 0 9 9 cm 9 H * M 0 H » 0 9 *i 3 9 9 rf 9 9 rf 3 o 0 •o > M rt M rf rt d 3 o X a . O 9 a 9 9 0 •o rt M H -

a 1 < •1 H - 0 0 rf a rf 9 0 TO O 3 N . f-1 • (0 rt 9 3 rf *1 9 9 C O 3 Hi 9 9 9 9 3 O l_i 0) . Hi 9 (0 e 9 0 Hi 3 9 *1 M 0 H ' n O 9 0 O c U U •o 0 -<; 9 rf •1 o O 1 3 O c 0 3 1 rt M rf

rf •J n •1 Hi rf O 0 / - \ a 9 o f* O rt H I H - c 3 H - •1 0 O o o H - o H - 3 0 0 fJ- rf B 9 o 9 0 0 0 TO o ^ 9 rf

u 9 *S 3 9 H- •1 3 Q 0 "9 0 U •o 9 0 o 0 3 9 0 0 9 o 3 M H - O to 0 Hi 9 9 O 3 rf 9 3 0 9 9 3 Hi 9 i .-+ 1 f+ . 9 rf 3 0 rt 0 rt

0 0

0 oq 9 Hi 0 9 Hi 0 9 •1 9 H- 4 0 H - 1 0 9 0 0 9 0 rt 9 9 rf » > c 9 M rf f-1 rf X X 0 •o rt a 9 0 a 0 9 H 1 H "

e H- < •1 a •l 0 0 • H » oq 0 rt 9 rf a M M

Hi 9 9 3 9 3 rf 0 rf 9 0 C _ 3 9 3 Hi 0 Hi 3

o 9 4 M O to Hi 3 0 C 3 * ^ H - U •1 "3 M 0 O c W O 3 to 0 rf

9 0 3" JC •1 3 O 1 O O l-J rf 9 rt O rt * n H. rt h a A i+ H- c 9 -~> o rf o H - •1

9 u 3 H - o o o O n ri-oq 0 H - 9 o o 5 3 o 9 rf

•o o r 3 9 0 9 3 0 9 0 •1 c W V o r u 3 H * H- 3 O 3 0 o O to 9 9 9 o 3 9 Hi 3 -t c s rf 3 H, 0 3 9 9 rt 3 rf 3 9 « rt 0 rt rf 0 0 0

Table Al

Page 125: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 116 -

u if

i i n E r s > If1 IT B ™*

5 5 5 f S' f 8 ? - * I I B S •

s"5

i ( 9

II Is

-S S . 8 "l IF

5 5 5 5 55 5 5 5 5 S55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5'? 5 35 5 5 5'5 5 35 5 35 35 5 5 ?5 5 5 5 3 3 5 5 ? i 'H i

its

••• r

1*2

.•V . --! -!

f ?? .y .••

."• .»• -5 -5 -5 .«

5 35 5 . - • . i f * ^ *

35

355 35

555 35

555 5 5

35 5 35

i 55 i 5

i 5 »_ »_

3555355

3355555

5 5 5 5 5 5 5 .° . r A ." ." S 3 3 3 3 3 3 «_ V *- *_

553155

3 5

•i 5

1 5

3

35 5

s

I * *

3 5 5 ^ •• .* .« .5 _a .3

l I 3 5

33

*? 1 3

i l l

?

I 1

5

»"" L= •! <

a

5 5

5' 5' 5' 1 5 3 ?5 5 5 5'5 5

5 5 5 5 5 5 3

?55 5 3'53

35 5 5 3'5 3

1 5' 5' 5' 1 5 5

v -2 -z

55 .• 3

355 35 5 5 5 5 i 55 s .1 f ." »- 'Z '2 'Z

5 5 35 5

•J - i »- »- 5 5

355 35

< c < < v "Z *- *3 «_ »- •,

35 5 3 5

1 5 5 1 5

555 3 5

*'«•' 5 * 5 3 5" 5 5 5 5 5 1 5 5 1 5 5

•e s < i * { S »_ «_ »_ *. »_ 55 5 555 5 53 5 555 5 5 55555 5 5 5 5 a

35 5 ? 5

.» .» ." ."

5-5 5355 5 3 5 5 5

3 5 5

5 5 5 5 5 5

1 5

35

35

« 33

11

53

55

1L H

i n

:jl i i

Page 126: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 117 -

Table A3

Tho f o n i B o f f i e l d dependant t e n x o r o o f z e r o t h r i n k fn>o> I n the u t t e r t a n x o r

= 0 X ' « l 'l = 1 X ' » ) X I I ) P a 2 X l x x ) X f y y ) X f t x ) X f x y ) X f y x ) X f x z 2 ) M y z t )

) 9

X f x ) W Xf l ) X f y J x m A fF_> o 2

Xf v i ) X f y y ) X f x i ) X f x y t X f v x ) ' X f x x ) X f y x )

) D X f x ) V V even e v e n X'7> B I F . ) o t X 'x>> X f y y ) x r « ) X f x y l X f y x ) e v e n oven

) D — rfo'V odd odd — V V -• - — - — odd odd

) 0

e v e n r I F , i o 1

X l > ) X*y\ e v e n W even e v e n e v e n e v e n e v e n X f x x ) X f y z )

0> X f i ) 0 <F,>

o 1 e von e v e n e v e n D f F i

a 2 X f x x l X f y y ) X f * x ) even e v e n e v e n e v e n

) 0

e v e n 1! I F ) ° 1

e v e n e v e n X ' z l V V e v e n e v e n e v e n XI xy ) X f y x ) e v e n e v e n

) 0 w — — odd V V — _ udd odd — —

> 9

add w — — — V V odd odd odd — — — e

> 9

X f « ) V V e \ e n e X f x t X f z l V V X l x x ) X f x x ) « i x i > X f x y ) X f - x y ) X i x x )

1 9

e v e n ' o ' V e v e n e X f x ) e v e n V V X l « » ) X ( - x x ) e v e n X f x y ) X f x y ) e v e n x7xx)

) 0

— v v e v e n -x7.) — v v X ( . « ) - X l x x ) — X f x y ) - X f - x y ) e v e n -x7xx)

) D

add V V e v e n e - X ( « ) odd V V Xf »x) -X I - X I ) odd X f x y ) - X f x y ) e v e n - X f x x )

) a

X ( x ) U f F . ) o 1 e v e n xTx) e v e n V V Xf xx> X f x x ) X f t i ) e v e n x7xy) e v e n x7xx)

> 0

e v e n H ( I " . ) o 1 e v e n x7x» X l x ) v v wvirn x f x x ) even X f x y ) X l - i y ) e v e n X*f I I )

) o

— S ( F . l o 1 — — odd V V — — — add - X ? i y l — —

) a

odd ° o ' V — — — V V odd "> odd add — — — —

) o

e v e n v v e v e n x7») oven V V Xf xx) X I - x x ) e v e n • v o n x7xy> e v e n x7xz)

o ' — v . 1 e v e n -x7.) — V V X t z x l - X f x x ) — e v e n -xVxy) e v e n -x7xz)

) o

odd e v e n - x f . ) — V V Xf xx) - X f - x x ) odd e v e n -x7xy) • v « n - X ? x z )

) o

X f x ) S o ' 1 ! ' X (< ) X l y ) X l r . ) V V Xf xx> X f y y ) X « z z ) X f x y ) X f y x ) X f x z ) x7yz)

) o

X f x ) V ' . ' e v e n X(>» e v e n V V X f u ) X f y y ) X f x x ) e v e n oven X f x x ) e v e n

o> even a 1

X ( « ) e v e n M i l V V even e v e n e v e n X t x y ) X f y x ) • v e n X f y z )

o> — V V odd - odd V V — — add odd — odd

o> odd v v — odd — V V odd odd add — — odd —

X f x ) V V e v e n e v e n X f z ) V V X f x x ) X l y y ) X f x x ) X f x y ) X f y x ) e v e n e v e n

> o

oven V V S i x ) \ f > 1 e v e n V V e v e n e v e n e v e n e v e n e v e n Xf i i > X f y z )

— V V odd odd — V V — — — — — odd odd

F ) o odd v v — — odd V V odd odd odd odd odd —

F ) o X f i ) V V e v e n even *i\tm V V Xf I X ) X i v y ) X f z i ) e v e n e v e n e v e n e v e n

F ) o

e v e n F f F , ) o 1 e v e n e v e n X I / I V V e v e n e v e n over. X f x y ) X f y x ) e v e n e v e n

F > o — C ( F . ) o 1 — — oild V V — — — add odd — —

F > o

add l'l f F . ) o 1 — — — V V add odd add — — — —

F ) a e v e n 1 f F ) o 1

e v e n Xf ; ' ) V V e v e n e v e n e v e n even oven Xf X f ) o v e n

F ) o — J f F ) o 1 — odd V V — — — - — udd —

F > o odd it ( F . )

o 1 — — V V add odd odd — — — —

F ) O X f i ) f. f F 1

o 1 oven x f . . r. I F >

o l Xf r v l X f XX 1 X f xx ) a von x7yx) X T i y )

F ) a

X f x ) i ( F ) o 1

e v e n x f x> \ V » V V X t x x ) Xf XX) X f x x ) even x7xy) x7xy) X?xy)

F ) o

even 5 ( F . ) o 1 e v e n x7») X?«) V V evon x7xx) x7xx) e v e n x7xy) X ? x y ) x7xy)

F 1 o — O ( F > o 1 — — — V V — — — e v e n - X ? x y > - X ? x y ) x ' fxy )

F o > oild P I F . )

o 1 V V odd xVxxl X?xx) e v e n - X ? x y ) - X 7 x y ) x7xy)

Page 127: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

•->:. The forms o f f i e l d dependent t e n s o r s b i roriTTaie ( n = 1) f o r t h e n a t t e r t e n s o r and ranks z e r o ( p B O) and one (<\ = 1) f o r t h e f i e l d t e n s o r .

n = I n = 1 p = o X ( x ) V ( x ) Z ( x ) '1 = 1 X( x ) X ( y ) X ( z ) Y ( x ) Y(y) Y ( z ) Z ( x ) Z ( y ) Z ( z )

v v X ( x ) Y ( x ) Z ( x ) V V X ( x ) X ( y ) X<z) V ( x ) Y(y) Y ( z ) Z ( x ) Z ( y ) Z ( z )

v v — — Z ( x ) v v odd odd — odd odd — even even Z ( z )

B'l ( V X ( x ) V ( x ) — V v even even X ( z ) even even Y(z) odd odd —

v v odd odd even v v — - — odd — — odd Z ( x ) Z ( y ) oven

V V — — — vv odd — — — Odd — — — odd

V V — — odd v v — Odd — odd — — — — —

F l ( F o > — — Z ( x ) vv — odd — odd — — even even even

W — — even v v odd — — — odd — even even £(z)

V Fo> — — Z ( x ) v v odd odd — o

-X(y) X?x) — even Z?x) Z ( z )

V V — — even vv odd odd — X?y) -X?x) — even Z?x) even

V V — — — v v odd odd — X?y) -X?x) — even -Z?x) —

v v — — odd v v odd odd — -X?y) X°(x) — even -Z?x) odd

v v v v —

odd vv M 1 ( F 1 )

odd odd —

o -X(y)

X?x) —

— odd

V V — — Z ( x ) v v — odd — -X?y) — — even Z?x) even

°l ( Fo> — — even v v Odd — — — X?x) — even Z?x) Z ( z )

V V V V v v

— —

vv v v vv

odd odd

odd — — —

-X?x) -X?x)

X?x)

— .

— — Odd

v v — — Z ( x ) v v X ( x ) X ( y ) — Y(X) Y ( y ) — Z ( x ) z(y) Z ( z )

v v — — — v v odd — — even Y(y) — odd — odd

v v — — odd v v — Odd — Y ( x ) even — — odd —

vv — — 7.1*) vv even x(y) — odd — — even Z ( y ) even

v v — — even v v X ( x ) even — — odd — Z ( x ) even Z ( z )

v v — — /.(x) v v odd odd — odd odd — even even Z ( z )

v v — — 9 von v v Z ( x ) Z ( y ) even

V V — — — v v even even — even even — odd odd —

V V — — odd vv X ( x ) X ( y ) — Y(x) Y ( y ) — — — odd

v v — — — v v odd — — — odd — — — odd

V V — • odd vv — odd —

Odd — - — — — —

G.(F ) 1 u — Z(x) — odd —

odd — —

even even even

f l , ( F ) 1 o — — even

i i l < F l > Odd

— — — Odd

— even even Z ( z )

T,(F ) 1 o — — .-• ' Vv — — — — — — odd — —

J , ( F ) 1 o — — — v v — — — even even — odd — —

K,(F ) 1 o — — — v v odd — — even Y ( y ) — — — odd

L (K > 1 o — — — L l ' K l >

odd — — — X?x) — — — X?x)

M,(F ) 1 o — — — v v odd — — — X?x) — — — X?x)

N,(K ) 1 o — — — — — — — — — — — —

0,(F ) 1 o — — — v v — — — — — — — — —

1 o — — — vv odd — — — X?x) — — — X?x)

Page 128: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

wo

X f « ) X<yy« X l x z ) X ' » > 1 » ( > « ) X ( x z z ) X ( v z J ) Y ( « l Y ( > y ) Y ( x z ) V ( « y ) Y ( y > ) V(vx2> Y ( y i 2 ) 7.f xx ) z«y>» Z ( x x ) Z f y a ) Z ( x z J ) Z f y z J l

/ l a x ) / ( « • > Z l«> ) / l i a l Z f x z ) Z1 > r )

Z l x x ) Z l y y ) Z f x x ) Z ( » y ) Z l v x ) O V O H e v e n

— — — — — odd odd

• Veil e v e n • v o n • Veil W e l l Zf x z l Z l v z )

— — — odd odd — —

odd odd odd — — — —

X l M ) Z«yy> Z f x z ) • v » n e v e n e v e n e v e n

ft i n n oven evon Z ( « y ) Z ( y > l e v e n oven

Z f x x ) Z l x x ) Z < z z ) Z ( x y ) Z f - x y ) oven z f x z )

/ r i m ) 7.1 - a x ) evon Z ( x v ) 7. (x> ) e v e n Z f z z )

Z l x x ) -7.<xx> — Z ( > y ) - 7 . 1 - x v ) e v e n - V . f z z )

/ . « « « ) oild Z . x y ) -7.1 x>> e* en - 7 ? z j >

— — — odd •77xi i — —

D i M Z ? x x ) odd — — — —

Z l a a ) Z l X X ) Z l r . » ) ev en z7xo f j VHII 7.?xr.)

f r i m i z ' / x x ) 1 Vf l l l X ( > y ) /.(»>•) nvon Z ? x z )

-• — — odd 7.f xy ) — —

— — — odd Z.f a y ) — —

— — — odd -7.fav> — —

Z { » « ) 7. ( v . ) Z < « > / f a y ) Z f y z ) 7 ( y « >

— - — odd odd — odd

oild odd odd — — odd —

/ ( « « ) 7.1 yy) Z ( » n • 1*11 •f ven 7 . (xz ) e v e n

even e v e n R V O I I 7.1 xy) Z f y x l o w n Z f y z )

Z ' « « ) /.(»•>•) 7 . ( zz ) Zf *>•> 7.(yx) e v e n e v e n

e v e n ev411 e v e n e v e n e i e n Z f x z ) Zf v z )

- — — — — odd odd

o<ld o.ld Odd odil odd — —

— — — odd odd — —

odd odd odd — — — —

Z . d i ) ?•'>•>> Z ( z x ) • v a n • von e v e n e v e n

e v e n OVOI I • von Z . x y ) Z ( v x ) e v e n e v e n

odd

o'ld

— — — odd O d d —

— — — x f y x ) X ? z y ) — —

— — — x f x y ) x f x y ) — —

— — — x f x y ) x f z y ) — —

— — — x f z y ) x f z y ) — —

— — — a

- X ( i y ) X ? l y ) —

X f x x ) X f v y ) X ( » ) X ( x y ) x r y x l X f x z )

— — — — — odd

X f x x ) X f y y ) X ( z z ) X f z v ) X f y a ) oven

odd odd odd odd odd —

X ( y z )

odd

— odd

— — odd

o d d

o d ' l

o i l d

o d d

m i d

u i h l

XI x x l X ' y i l

odd odd

X ( x x ) X ' t t )

even m e n

A l x v ) S f v x ) X ' x z )

odd odd —

— — o.lil

e \ v ' i e v e n S ' x z l

X f x y ) X ' y x l even

oild

mid

odd

odd

oilil

odd

odd

odd

odd

oilil

OiHI

X (v r.)

Ollll

« k m

H v z l

add

V l x x ) Y l v y ) Y ( Z £ ) Y f x y ) Y l v x > Y fe»> W v z )

— — — — — odd odd

Y I x x ) W v y ) Y ( z z ) Y(x>> Y l y x ) e v e n e v e n

odd odd odd odd odd — —

— — — — — odd —

— — — — — — odd

— — — — — - x f v z ) x f x z )

— — — — — x f y z ) - X f x x )

— — — — — X?v»> - X ? x « )

— • - - — — - - - x f v z ] X ? x l )

- — — — — - x f v z ) —

— — — - — x f x r )

— — — - X ? x z )

— — — — — x f v » ) —

u

_ — X<yz) —

— — — — !vf>z) —

— — — — — - x f v z ) —

W i l l i l . x ) Y f k i ) Y ( > I )

even evi-n VI xz ) e v e n

Y l z v ) V ( > « ) e v e n V ( y z )

H i l l W v » )

VI X X ) YI v V I

I 'VI ' l l »-Vf*ll

— — mill

odd odd

o id odd

X ( x x ) X»>y )

e v e n e v e n

odd odd

XI x v ) X '>>) e v e n

e v e n c \ c n \ r x r )

oild odd

W h X ) W > v )

mid — odd

— — n d d —

— — odd odd

odd oihl — —

Y f x y ) Y f v x ) e v e n even

• i \ en i-ven W x z ) Y f v z )

— — — — a d d —

— o d d —

— — odd

— — — — — — odd

— — — odd

odd odd —

odd odd —

u d i i

odd

- X ? z y )

X ? z > )

X ? z y )

- x f z y )

odd oild

W a x ) i I v y )

e v e n c . v n

— e v e n even even e v e n

xfxy) xfxy) X?«y) xfxy) Xfxy)

Page 129: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

Table A6 m = 2 — — P = o XXfx) YVf x) Z Z f x ) XYfx) YXfx) X Z ' 2 ) f x ) YZf2

v v XXfx) YYf x) Z Z f x ) XYfx) YXfx) XZf x) YZf x

V V XXfx) YYfx) Z Z f x ) XYfx) YXfx) — —

" i ' V XZfx) YZfx

C fF ) 2 o even ever even even even odd odd

D.fF ) 2 O XXfx) YYfx) Z Z f x ) — — — —

w even even even odd odd — —

W — — — XYfx) YX'x) — —

V V Odd odd Odd even even — —

W XXfx} XXfx) Z Z f x ) XYfx) -XYfx) — —

V V XX(x) XXf-x) even XYfx) -XY(-x) — —

W XX ( x ) -XXfx) — XYfx) XYfx) — —

K (F ) 2 O XXfx) -XXf-x) odd XYfx) XYf-x) — —

v v XXfx) XXfx) Z Z f x ) — — — —

M 2 f F ^ even XX Px) even Odd -XY?x) — —

V V — — — XYfx) -XYfx) — —

v v odd XX?x) Odd even -XY?x) — —

V V XXfx) XXf-x) even — — — —

V V XXfx) -XX(x) — — — — —

V V XXfx) -XXf-x) odd — — — —

V V XXfx) XXfx) Z Z f x ) XYfx) -XYfx) — —

V V XXfx) XXfx) Z Z f x ) — — —

W even XX? x) even odd -XY?x) — —

V V — — — XYfx) -XYfx) — —

w 2 ( F o ) odd Odd odd even -XY?x) — —

V V XXfx) XXfx) Z Z f x ) XYfx) -XYfx> — —

V V even XX?x) even even -XY?x) — —

C„(F ) 2 o D (F )

a o

odd XX?x> odd odd -XY?x) — —

V V XXfx) XXfx) Z Z f x ) — — — —

V V even XX?x) even odd -XY?x) — —

v v — ' — — XYfx) -XYfx) — —

V V Odd XX?x) odd even -XY?x* _ V V even XX?x) even — — — —

V V — — — — — — ' —

V V odd XX?x) odd — — — —

V V XXfx) XXfx) XXfx) — — —

M„<K 1 2 o XXfx) XXfx) XX'x) — — — —

N,(F ) 2 o even xxVx) XX? s) — — — —

O fF ) 2 o — — — — — —

P„fF )

a o

Odd XX?x) XX?x) — — —

Page 130: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 121 -

' i M i ' i i i ! i i i M ' i s i 1 I i s i ] \ | i j i \ ] ] j j ; i f ; ;

I ! i i - i I ' ' I i i i ! ! i ' i | | I i 1 i . ! i | I M • i ! i I i i I !

m i ' ' i ' M I i ' I I 1 1 I I ! i I I • i f I ! | i t . i J i i - n I

l - m • ' i ' ' i I ' » I I 1 1 ! i I m - • I* 1 1 1 i | 1 M I

1 i i $ • M i i I i i i ! i I , i | | |4 a, . . a, f, j , i ?. §. . . M | M I |

H H 1 1 5- 1 H * i 1 H 1 H H H §•• H M | f 1 1 1 I 1 1 1 H I

k k k k * 1 I 1 1 f I > * I 1 1 1 M N ! I ' i ! i ! ! ! ! i ' i i I I I ? §

H H 1 s I ' ' I f ' i I ! i ' i I I H , g . | 4 | s. i* i i i i | i i " " 1 t 1 1 i ' 1 S i 1 1 i S 1 1 ! U i i i 1 1 I i 1 1 i S 1 1 S M ' I 1 S

i i i i i i i i | i i i i a i M . i | . i , i | , , i | i i i | , , | i i | | ^

' ! I i • i i | i ! I i ' | ' i i ! ! i i i 1 i M ! i i | M | | jjf

i i i i i . . I f i i I , i a ; j . i j i i i i i , i | | | | 2 1 . i 1 . | | j >

i . . . i s i i i i , . i | f M . I | ' ' i H , , m f.| | i i | i | a a

• i i i i i i M i i i i | i i 3 i i | > i • H 1 1 H H i 1 1 I 1 i | !

» H f ' i l ' l l ' H H ' l n M | f H . I ! M i 1 1 i i s s |

i i i i I I i i i i i | 1 i i i i | | i i i i i i i i k I I i i i I i i | i i §

l - l - l - r l l , S l , S | I i S i , | s S S | | S l l S i i i i i , | s

I • 1 1 1 I I I I I I I I I I I I I i I I i i i I I I I I 1 S i 8 | E

H H l l , g | ' M i | M I ' M H H l l l H l 4 l , , S | l | H ' I ' 1 I i | i i I I | i i i i i i § , S L i | . ^ | . i l i i i i ! | i

I I I I I I I I I I I I I I I I I I 1 1 1 * E 1 E I

Page 131: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

• -°' X' «r „~ „=•«- „- < ' <• 5 J « . 5 J « _ 3 J " . 5 S . 9 . 3 „ 3 _ 3 _ 3 3 3

•C ' ' J " _ 3 _ 3 _ 3

J 1 J" J - J ; f s ^ # .P J;-J 3 J 5 J 3 3 3 3 J 3 J ! j " J 5 J 3 _ 3 JS

' ! J f i ' i i ' i g i

5 S 5 5 ft i I 1 i i S I 3 3 3 a • 9 n

3 3 S 5 i i i i i S g I 5 • 3 S

9 9 !

i ! i i i ' i ' * | 1 &

i i i i i i i i i I ! i M

• • O M • Q •

i i ' * = § 1 ' i

i s i i s 5 a 9 a a K •

a g o n a n a

B & | : a a B s a & , ] a : a 8 J a a ? a £ 8 , i ? i

i 3 8 l 3 3 a a 3 3 6 , i ^ a ? 3 a 8 , | 3 l

1 f 1 ' I

3 9 9

| 3 I i 3

B B S S E S S E

S H • •

I | I S • M O O

l I l l

I 1

B B S S . S B 5 . 5 . S. a S £ « 5 S 3 B

!• * * i ' ' i "

3 3 3 3 I i | I ** *« «3 H W >4 w w

I 3. 3 3 I i S I M M

X m M M Q • 0

S X K S 1 | 1 1 3 5 3 3 5

B fi B B § 1

i a a s s s a 1 i J 3 i

I 9 i i 9 a I

| B J C S B B , | B

f f i f i 5 1 i i s i i i i

f i - i f i ' i | i | ! i ! ' ' i i i i i i '

i 3 1

E.

i 3 i

i I i . 3 , 3 . 3 , 3 , 1 1 2 i ! 2 3 i

H H M H 4

I f 6 1 3

i 3 1 i I

a a a s n a j a ~ > V •« w

5 3 a a 3 3 A B

3 3, i 4 3

3 3, i : B

M M M M _ M M

3 ? a i **• M * •

M M M M -> M

I *± • M M M M N

• " 1 8 • •< •« M M M M M M M M fi M O a M ' -t m tm . m . — M M . H H M H

I a i i 3

I 3 i 1 3

I i I

• a a A 1 3 3, a. 3 4 a a

8 E « S

T H. 5 3 3 ~ i 1 S i a a I I

1 1

a B I I B a 3 f B S I I B 8

5 9

I 3 3 B

• m

* ~

a ! I -S B

3 3

3 a 3 a

3 i

3 , 3 , 5 , 3 , 1 i | i 1 3 1 1

H H 1 1 f , , | | , i 3 f i , }

• 1 i B

i a s , a. 3 a a a

3, i 3. ? 3. 3 3 3 ? i 1

5. 3. 3. 5, i i | i i | | , 1 3 I i 1

B B B a

I i | 1 i i a i * B

! 3 1

B B 3 E

1 I | 1 I I | i I I | I

M M M M

a B B S

?

K. 3,

I I I I

I I I I

I I I I

I 1 1 1

I i I 1 1 1 1 I i I I

• O N *

i 3 i i i i i B ' *

• N

O N • O a N < & a -* i a

• 3

3 3 3, S. B B a a

J a 3, a. ' a B B

R U H R I I I I B o n n f S I I M H O a s & i « 5

• N • •

1 | i I I a a, 5.

a 3 i 5 B \ ° '

5 I

l 4

3, a. a, s. a. a, i i a a a a a a

3.3. a. 3. a. a. i i 8 fi B B fi a

: a a a n a | • I I I I I

a, a a R a a i i l l i t a i

i g i i i I i i

a J a a a a , i i ' i i i i

3 3

3 3

3 3 M M

a S

i i i i i i i s i i i s

i i { a 1 a i

« a a

I f ' '

' i ' ' ! i ' i ! i i s I i j t a. J. i i JL i. i i SL a. i i \

fi • *• • ' 8 ' i ; !

I l | | 1 I 1 I \ 3 i

3 - I 1 I ! 3 S 3 1 2 • 8 O • M M

I I J | I 8 1 I S S 5 S '

I 5 ' '

I s ' '

i ! i s

• » M O M M M M • M O

3 s i i B : 3 j

3 3 3 3 3 3 3 3

' 8 B 8 E E 3 E

S H « . Q M M M M M « . O

B i j | l 3 5 2 5 3 l l

i I 3 3

3 1 | 3 B 3 B

3 1 1 3 a * a

I 8 B i s

I a a I I

I a a i a

i 3 3

I M S

a i | a

i a a a a

M M

1 ? 5

I 5 5 •3 9

Page 132: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

i i I I I i i £ I i I i i I 3 ! ! i I ! i » * I I i i I ! | J | i i I i i 3 i " " s " i l l " •

i i i i i i i i f i i i i a \ i f i i f i i i ! I i i i s i I i i ,

i i i i i s I I ] i i i 1 | ; = s i I | i i i 1 | i i { | } | | } i i

M M • <

«< •< R N

M O • M

I 2 8 i 5

a 3 s

• M

I I I I I i

I I I I I I

I i I

l 8 l |

* i B

I i i I i M M M • < ^ M M

j •? 2 2 i f i ' i • a a a

1 1 1 2 . M M M

M M H • M M

I I I I I I • < • < • < . N N M

M M M O O

I I I I

5 . 2 5 > 2 5 , S 5 S S S

3 a a s j -» - B 3 M * 3

N H N

M M M M •

3 •* "* "* 2 i I I 5 * » » * M

1 I a a

2 2 j f t H N nam i i l

M M M O O

s & a s

I I I I I I i j

3 X K

O < • 4

a —

g * M

?> * 5- ? * 3 M M X • <

K M M M M

M M <4 K •5 = i 1

2 . I M M M M M

*< H K N H *« »< • * • w w w . * •< w

5 i i H i *« a

N •« M H

1 = 1 1 1 . 2 . 2 . I I 2 . 2 . 2 . 2 . I } | • < • < • < x a a

n M N N

I I I I 0 O • a a a a I i I = I I & ! I I I 2 . 2 . | | 5. 2. S. S. S S

j , a a

•< o • 2 St 9

a a ; a

• M O

I I I | 5 8 I I I I | • M O

I 8 I ? • M M

I I I I I I I I I I I I 1

I I I I • M O

« N a • M O < M a I i I I I I I I I I

O M X

I I 1 8 - 1 5

I I I I I I I I I I I I I I I I I I

i i i i i i i i i O K • M

I I S 2 | 2 I I I I I I I I I I I I I i

I I I I I § I I • M O

I i s s i i I 9 I s i i i I I I I I I I l 1 S

9 i * I I 2 5 3 =

5 N N a J a 1

I ? ; a s « I I I 1 I I I I I I I I I

• • I I I I S S I

I .? S 1 1 1 8 O M •

1 I I ! 1 I i I I i i l l s

I I I I I I I I i i i s • < o

I ? I I I I I I I I I I I I 8 9 |

I I I I I I I I | | • a I .? I I I i I I I I I I I I I I I I i a

l I I * l I I I I I I I I i I I I i I I I I I

l I l I l I i l I I I ; S I I s a i i

l i l l 8 S i l l I I I

I I I I I I I I I 8 a I 5

I I I I I I I I I I I I 3 I 5 M w

I I l l I l I l I l l I S i 5

I i I I I i I j 5 I i i i i i A A M

N N M M 5 o I 8 1 I

( 1 0 -

|. I I I I I i 1 5 s I 1 5 J i i 3 S. i i . M M M M

I I N ft N N • • M M •* ft

a. a. a, a. i i i e i

Page 133: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 124 -

J " J>- J- . « • r r i • • - • a t « • • • ' m 0 1 « • • • „ « « « - I » i

J * u " ( i u- u

c c c C *Z C C v »z c c c o o 0 O ^ 0 c •: •: •: c c i J i i i i i i i i i

i i i i • | 3 i i i i

I i i i l I I I | B i

1 l l l i a 3 a i i !

r sr? i I I I I I I I I I I

I I I I I I I I 5 5 I ?

i ; i i i i i i i . E i H H M

I I I I I I I I I I I

I I I I I I I I I

i S I i i S I i S i £ £ £ "

i 3 I 1 t 1 I 3 3 1 ? £ £

I 1 i B S B I 1 H 1 3 £ 8 £ £

H i ' i ' i l l 1

M « M

t i l

K H «

S E I • 5. 2 3 1 5 - - - 1 11 r -• M M

a 3 *. a • m m m M M » ' M

S f i N N • I K ^

5 V * i -J

§ I I I I I | 3 I

B i 1

8 1 I S 1 | S I

i 1 I s i

M M

a a a

M X

3 H H

m m m

* 1

7 5 »

M

2 5_ I W M

A & 1

a* 5»

S 3 3. a i -« 8 S « ff i . •W W W

C B 0 0 C 1 S , M « N H V •

I I I I I I I I

I I ! I I I I I

I I I

I I I

I » ^ M

I I I

I I I

' 5 & ! 2 •

S B B N H H

I I I

I I I

I I I I I I I I £ E I 5

1 1 1 1 1 1 1 1 I 3 1 3

S N • •« 0 •» N . 4

1 i s i t * 1 s • 2 a

£ T i i

I I I I I I I I 1 5 I S M *

I I I I I I I I S 3 1 3

5 S s c ; E s , ; 1 s s N R N N B N O I J I N N

M H K M

B K 2 2 J 2

I I I I I

I I I I I

M O • M M M M M S . O H M M k ' M O

a & i j a a a a a & i a a a a s a s B &

• M R M M M M M

3 V ' i s I § a s 1 1 ] s s • < ^ *4 O,

K M H M

B ! i f S B N N N a M M M tt. • < - ! - ! &

hi M M

M JC X

M M M H M

• • I M M M

2. 5 3, M N M

I 1 1 K M * N N M

» Z Z HUM

I I I M H M M <

N M

4*, JW. ( M H M H

M I I

3 2 5 I M M M

M M •*

t I M W I M M N N

K < N N

M t l t i

• I M M • M M N N C N N ^ -e *•

V I •

B S

a 1

M H N I

" . • I I I K

I I I 1 I 1 N N

n g M M M M w

N N I N A

E a. 1 3. a a a N M A

^ 3

I I B I

1 1 ! 5 1 5

j a s

2 N « I 5 >» M

1 - ' n M

I 5

% s i

» M •

• M 3 9 ^ 7

™ 1*

M M M «•* « «

T a b l e A9

Page 134: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 125 -

±y* . o i . r * * • • * • ° « « • a i

—5 J? J5 ^ ^ 3 3 5 J5 5 ^ ^ 5

I i i I I I i i I i i .1 3 M

l I I I I I I I I i I i n

m tsi , > * * « e H

i 1 H i i I H I I I I I

I I

i l i .

I I

i l

i i 1 1

I I I I I I £ I I I I I [

! i i . i i i I i i I ! i 3

1 I I S. I 11 I * ' l I 3 & a a a S

I I I I I | f I I I I I |

I I I I I I 1 I f J I l i i a g ti

I l l l I l I I | ! i i i

[L i • | L l i i i ! I i I i w £ w "

i i i i I i | i i I i ! s

M i l

e N a N

a ;

• N N •

I 1 5 H I

1 l &

I i

• | I ! •

i i

i i

i i M •

3 i

I i l

l I I

M M M B B S - O - O M M I t

O M •

I I !

I I I

i I I

I I I

I I I

I I

I I

• M

w

I I m

I I

• •

s 3

B. B, H M

5 i P

i I

I i

i l

I I

• K

a, i

o n O L a >

u w W * U U

* i n 3

i a,

I I

I I

I I

i I

i !

i i

i i w

M

S, 5, M H M

I I I

M M M M

3 3 I I

6 B M M H

i I I

1 I I I I

I I I I I

I I I I I

I I I I I

| | I I I

' L l . i i M

I I I I

i i i i

M h

M ! ' H M

w

I I I I

& l i & a

• 0 M I I J a. K I I • O. M

I s a | 3

I I

i I | s s

I I 3 i 3

m u

• U K

i * 3

a a N

I a a I u N o a N

I a s | a

1 i i

> I I 0 M C. K b -C

* & ! i I | | i 1 , , | | | i I t i } | | i | | I | | | | i i | | , , i | } | |

i i i i i i i i i i i | I | i i i 3 H i i i i i i i i i i i i i i i i = i 3 ' ' a a a a a a a ~ * i t

J J jL JL » I i i I I I I 2 f .. I 3 | 1 1 3 3 . 1 * 3 . . . 3. £ 3. 3 3. I I i I i { I 3

1 1 1 1 1 1 1 1 1 s 1 1 3 | . I | 3 1 i 3 i i . . 3, 3 i 1 3 3 « i I I i . | I 3 * M M M R

I I I I I I I I I I I

S. =„ I I I I 5. I I I i I .1 H. 3 i i i i i . . I I i i i i i i | i I 3 I 3 m m * H N a «

i I i I I I I I I | I I I I S 1 a 1 I I S i i i j | i i j " | | | 1 1 i i B I J 3 M H

I I I I • 1 1 1 1 1 ' ' i 2 I i I ! i i 5 i i i ! 1 i i 1 I i i 3 i i " I M I

I i i i I I i i H i i I I i | S B i I ! H I ! I 3 i i ! B 3 n I 1 i 8 ! ' H 3 "* u. s « • » • • », s a i l s a a

I I I I I ! I I } I i i i 1 2 I 3 I i I 3 i i I S. | i I J, 3. a, i . 1 f i i 3 I f 3 ^ , C« W W W * W W W W W w

Table A10

Page 135: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 126 -

I I I I I

H * B •* 5 3 a 9 a a & 2* c £° c"

X K M M 0 3 3 3 s i C 5 ° 5 ° 5 "

I I I I I

I I I I 1

i i i i i i n m i a i i i U ' i i m . ! i i i M n

M M l i H • N M M M H H I I M

i s l l l a j i l S i i l B l l l l i i I I I I I I i i i i 5 1 8 i l l • a s

I I I S I I & i fi I i B i i i i 1 I. . i I I I ! i I I i i I I §

I I I I I i I

a s v a a ! 3 . So 5 , 2 S

I I * *

1 1 1 1

i i i I

i 2 2 !

n i l

a, a, a, i H I I H

M •

a. i » 4 —a » I I

1 1

3, a,

a, i M M

a, a.

E, I N H K H

3 3 M M

a. 3 M M M H 2 3 3 3 i ^ a i># X M »< M

M M M

5, 5, Hi H U M

I I K M 14 M

3,3 3 3 "6 t-H *>G N N N M

* g * M

a. a. s s ~ o - a

I I

I i

i 3

" i

i i

* I

" !

i i

* 3

* !

• •«

i i i i i i i i i i i i i i i i i i i i

• I I I S } I 1 I 1 § } S I I I I | 8 I 8 B ' S 3

: i i l § | i i i i | S S S o i ^ s i i B f i B B S ' r j ? ^ c 4 r ° "-o - o **« • -©

M N H H '

I I I I I I I I I I I I I I I I I I I I I I I

H

• • . 0 M •

' I i ' 8 a i I 3 f I i f 3

m H "

• • • *1 •

' s i i 8 3 i

i ! i i M 1

M i * ' i 3 • • • M «

1 5 1 1 * 5 5

• • . 9. * f •

' I S ' * S 1

! I I I I 3 I

* a i f i l l M • • •

a M 1 > i I

* I i I i 1 i

I I i M

> i 3

* 3 1 m

* 3 i k

! B a • • • ' i | | i s i

l S i H • • •

1 | 2 3 I i 2

i * I

H • • • M M

B • • • I I i i

a • • • i l l

3 i i I

3 3. a. I ,

§ L i 1 M « *•«

3.3 3, 3 i f, 3 i 2 3 3 3 3 3 3

• • . f . ^ • O # *4

• I 2 1 * 5 I 8 I f 5

I I I

I 3 3 i » i i

1 ' 2 1 1 2 I i

i ' i i ? I 1 i

i i 3 | 3 3 3 3 £ £ » £ i

1 1 i S i 1 i i

• © o a • 4 1 1 I 3 i i i i

i M S I 3 3 3

f • * • • *

' ' I s i s i i

• ' § i i i i i i 1 S | S S S 5

* H I I I * I t

i i i i 1 1 s. i - O A * « d « i «

»« X H '<

i i i i i i i i

a s , * * * *

I 3 3 s 3 3 H

M U S H H • H V M H

• i i i i n i % S i • s s

2 5 S 3 I i 3 3 5 3 5 3

i : i l V, I 5

i & I I i I s

i i I i i i s

I I i I S I I H M

i I i | M . 3 • • M o • M

i i i h n i 3 I \ I d s

i i I 1 i a

l I I S I | 3

i 9 i I I 3 3

I | " 5 a I 2 1 I 5 2 - S 5

i i i 3 I ' i 3 O M « • N N

* 3 1 I 1 3 s

i i i | 2 i i

• i n 1 i 3

M i l 1 3 3

' i ' 3 l i s

Table A10(Cont.)

Page 136: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 127 -

3 S , •

1. 1 I I 1 t £> w *

' i •

i •

1 ! a pi »•*

• 1

i i • 2 •*

t j H 9 %

fi B •n •*! V H

1 1 •

M 3 P

M

3 <-« H

M N

2. K

1 M

3. p

• > ! i

a i M P>

• *

i S •a

M

5. • *

3 a a 3 i r a ? r • i

s A a i

I M

E.-P

1 M

• i m

K N •*J

P

M M

• M N •* 5

n

1 M M S 3 P P

p p

( M S <*•» P

M a i

p

M 3 P

i M N •4

P

a i p

i a ; «

; i > . B P P

M •< 1. — • •

5 ii 3 S i n . i S S l i p • «• i i

«

1 I 1 N 3 •

a

i 1 i N M •t

• I

N «f M •

N M S B

£* 3* ' i

1

I N M 2 .

H M

§•

• 14 M 2 .

S 1 -* *<

< i 1 1 5 1

* i s

p

S *

M * M W

? * I • i •

1 l i S M «•

• & S

• *

3 9

M -J M

"«1

H M •*

N M «*. -+ •

5 5 - O - « • P

1 1 p

1

B -C H

N M <•** •

B 2 « •J

N M •4 —«» •

2. 1

N i ! i I *

• H

i 5

3 •»•# M

3 3 3 3 i * • • •

• i • M L

p .

• B 3. •

i a m

s p « . i

p

i •

i ' l M

P

& •<

N

S K < H

H N

-« -»» P ">

1 1 M N M M •« •*

r i

1

5 *•* P

N •* •«

P

N M -t P

N

p P

C , •< 1

P_ p

i i > 3 5 « K

Table A10(Cont.)

Page 137: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 128 -

>• « <

M W H W H U M ** **

I I I I I I I I I I I I 1 5 1 D

l I j S ft l I l l l l l l I

I l l I l l I ' l l l I l | E i

I I I I I i I I i i i i | S I 5

I I I I I I i i I I l l { E 1

M M M W N)

C t« K U ~ S U t S U fct U L .

3 )3 3 5 5 * i

£ i a

3 i *« w

E ft

I I ' 4

I a i i i i i I i

I a I I I I I I I

I I I I I I I I I 1 ft I E | | I 1 2 i D S

1 1 I I 1 I i I I I I S { i 1 E { i

i E i i : i i

i E i i i i i I

ft E i i i i i |

i E i i i i ft |

ft S ft ft ft ft i 5

l l

I I

* i <4 - • :

\ * 1 * 1 * " l * . M N M '

1 1 1 1 ft E i a

K

B M Mi

1 1 1 1 ft 5 >

K X M

** »<

1 1 1 1 ft m »

X

B

m M

1 1 1 1 ft S I a M

5 •

1 ! 1 1 ft E l ?

8 «< N

1 ft ft 1 1 i i s ?

ft 1 1 ft 1 0 0

3 t M

9

|

i i i i i I a ft i i i i | 3 i

I I i i i j 3 ft I i i i f 3 ft 5 f

i i ! I i | 3 ft i i i i { 3 £ a a

I I I l l | }

I i l l l | |

a, 2, 3. 3. & 3 § • N x m H u

i i i i i i I

i i i i i i i

.i i i i i i i

I I I I I ! I

• i

M a* y M M Q

n K * M M ft I 2» > i 2e ^ » I * f * S V

*• H " v s

» « i

3 3 i i i i i ? B

I ! I I ] 3 ft I

i l I I I 3 ft

I i i ft 3 | i ft ft i ] a

I ft ft i 3 3 i ft i ft 3 I I

j j j ft I ft I j B a 5 ft I ' s i

a s ft i ft i i n i B s I S i

1 5 ft i ft- i 1 S } B ft I £ !

N » S 2 I S £. M ! I

I I I I I

I I I I I

i i ; i i

I I I ! I • i

i I 3 | 3 i i i i i i i i i i

3 i i i > i i i

ft 3 4

3 3 i i i i i 3 a

3 3 i i i i i I I

1 3 i i i i i

I i l I ft 3 i 3

l l l l ft 3 i 3

H H M H H

S o S . E > 5 . f . * i f

I 1

I I

I I

I I

I ft 3 i 3 | I

I ft 3 i 3 I I

I ft 3 i 3

ft 3 a

I . 3 I I I I 5 . 5 . I I I S . H o l M M M « B r •* M M M M M N M

ft ft I I i ft 3

I B I I I • N

S 8

1 8 1 I I R. 8 3 S B

» ft I E 8 I 1 ! | ft I § I g I M

9 tt M H M M

. . . N O . 0 N N

B | 8 ft I | 1 8 8 H M B h M M I I ' f If

I B I I I J a I i 3 ~ 5

I 8 a

O N O 4 0 N •

S e>- a & c. N « N a a c. N «

J N N N N N

I ! 5 I! S li S

I i >

a 9 I

V K f H

Table A l l

Page 138: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

L t a. ?. i * i i y i

i i i i

i i i i

I I I I

i i i i

i i i i

i i i i

• i i i I ;

| ' M |

1 f 1

I I 1

s c t

i i

i i i i i 2 1

I I i i I jj i

i i i i

i i i i

i i i i

i i i i

i i i i

i i i i

i i i i

• t m m »• • |

a h a a. • * E B r M

_ • • i.

I I I I I I

! ! ! ! ' •

1 i

i i i i i i

£ M M M - t •

?. 1 3. > I . * » • • •

a 5 a ' 3 I 1 A r» & * • • •

t I I I I I

- 129 -

t i I j !: 3 j i I ;: !i S f! !i !• : : ; i ' j j i

i i i II j j B i i c i i i i j

i l l

I • * | ! | ! I *« 3 I • I ?. | i j S l l I l J s a l l l l i

E ! :

i J 3 t i l i } s 3 i i i i i

I I . 3 i " i I 3 3 3 i i I I i e t c c t : :

i j 5 I i i I 3 | 4 i i i i i 4 4 4

I j I I I i l 5 l 5 i i : i i

S 4-J J 1 4 f 4

i l i i l l

l i U l l h B i l l

l D t a

I S I

t I I

I I I

I I I

I I I

I I I

( I I

I I I

I I I

I I I

I 1 9 3 3 l

l I ? a

I I 3 c

I I 5 4

I 5

I I I I 3 I 3

I I } i I I i j 3 ; I I I I i r i ! I I I ! I i E. i i

I I I .

I i 3 } i l i t 3 j 3 i i i r a

I I | 3 I i I 3 I i 3 i i i i I i

l l i 3 I I j 3 I i 3 i i i 3 a a

l l l l B E 3. i B g g i S i i i i l l i t s S

t i l l I I J 3 1 i 3 . | i I 3 i i i

n i i i i i i 3 i • 3 i i * 3 i i i

l s 1 l 3 j i I j 3 I i a i i i • f i

i i i i i i t i i . i i } I s

i i i i i

i i i i i

i i i i i

i ; i i

i i i i i

I ! I l I 1 3 i 3

I I I I I I 3 i s

! I I I l I 3 i 3 t :

l l l I I ! 3 i 3 4 1

I l l I I I 3 i 3 5 ?

I l J S S J B J I I [ i I

I S I I . I j 8 f B 1 I S i i i | B I i E E B B j B I i \ I E 5 I £ I I £ f • £ I I 5. l i s

J S ! i I i ! B J B . i B i i i i B 1. i B B B B \ 8 ! i j i E a a " ? a ' 5 a a s a a i

} E i i l i j | ] B i i n i i i j B . . i n 2 B 3 } S l i } i l i s :

R { l J I l j ? a i I I n I I i B j I I 5 | i S ? j I i } I 3 4 4 4 4 4

5 5 i I I i i I I i i I E I I I 3 } i 1 S B B a B } i I j i B ? i I i i i i i ?. i i • i

j j . i i i n | B i . i . i . ; j i . i j j i i | . i g i \ i i i i & i

T a b l e A l l ( C b n t . )

Page 139: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 130 -

I I I I I I i » I i s ' i i s i | } i i | i i i ! I i i { } ] } i } 3 S N I N

. - I ?

I I I I I I I i | 3 I i 1 i } 3 j 3 1 i 3 i i i 3. B I i 8 3 8 tl w w 3 ** " *S

5 2 3 5. B

I I I I I I I I | 3 1 i I i 3 3 3 3 ! i 3 i i i I 3 I i a H 3 a " 5 5 5 : r s - ~ ~

3 5 3 a a a

I I I i i I i I 3 J B i 3 i B. 3 3 H i 3 i i i 3. 3 3, i 3 3 3 3 | 3 I ^ • ok * S < 4 -N# o» " O os # 4 * * • «*4 ON o» ON ON 3 ON B S

L s s • r r

c n | B 9

I I 3 a

i I I I I I I | S

! I I I I 1 i | }

I I I I I I I I I

l I i l l l I i i

I l

l I

l I I

I I I

l l I I

1 1 l I

I I I I I I 1 I |

I } 3 3 } i n

• i i

S a a s S | n a n a f » **0 "-O ON ON* O-O .0% ON OH «4 <« I *«

M N M *« i f *4 I »4

H N •« H

I I I

I I - i 3 3 3 3 i I 3 3 I I a 3 i ft 3 3 a - - - - - -J 4 j J

3 3 3

i 3 ' 3 3 3 4 i

I | I 3 M . M

I i I 3

I | I 3 4

i i H i i 2 I i 3 i i i L i i i LL&l i 1 W H M «

i i I 3 i I i i M i " " 1.1 i i 8 .11 B &

B ? ; B

i l l I 3 3

I 3 I 3 s

l 3 I 3 i

I 3 S I i 3 3 I i fl I I i I B 1 B

I i I I I I I I I

i 3 3. I i 3 i i i i i i i i i i i i i i

i i S i fi

l i s t 5

I l l I I I I l I I l I l I l l l I l l l I i I i I 3 i 3

I | 3 i i 5 3 i i 3 I i I I I i i i i i i i i J ? 5 5

I 3 3 i i 3 J i I 3 I I I i i i i i i ii i i i i

i 1 3 I

I 8 H |

Table Al l (Cont . )

Page 140: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 131 -

I I- I I I I I I I " 3 1 fi s B

I e l I I I I I I I I l l s

S H i l l I I 8 i I S | | I i B | I U 1 I I 1 I I I I I I 1 8 I I I I i I H - - - - - 3. 3 Ti C H h H M H

l I I I I 1 3 I i i i I 3 5 * l 8 l 1 5 « I l I i I l I ? £ B a

I I I I I I I I I 3 I 3 B a

I I I I I | 3 I i i i 1 i | s 1 8 i 1 S S i i i i i i I i i i i i i , i I B , §

I I I I I I I I I I I I I I I I I I I I I I i I I i i ] i i i i i i i i I S i a S B w w

I l I I I. I i I l I I 1 I 2 s I I I 3 ! 3 I I I l l I I I ! I i 3 i 3 3. 3. i 5 $

i I I I I i I I I i i I I § 8 i I 8 3 1 3 w £

I I I I I I I & B i a

i § e s 5 a s • a - , 1 S j i l l i ? a a a g a g , • a s a a B s • , g , s o M

S 3 H U M H H ». H

i i i i i i I i i i i ' i s i i i 8 3 I 3 i i i i B 3 i 3 3 S 3 i I l i r r ? ? s r

• O N

a a a I I a

a ii a

3 x M

3 a a

a 3 ? a M M

a a

3 a

i 3 § i i

i I I

3 3 3

3 3

a •

3 3

8 I 3

8 « 1

8 I !

< l 3

' ' I

i i 3

I . j I 8

• 3 |

* I 3 I 6

I . ; 3 I

. I 3 ! 8 4

I 1 3 1

5 S . a M M M M M

a a a a s a s s

! ? s I | a B

I I M M M M O

a a a a s I s n R M M K N M M H 3

5 5 2 , • M M M K M

§ a s I § a a a a I i a a K M C

a a

M 8 I } a E •

! 5 o x a

3 5 ' s a |

§ a i g a s a I '

I 3 I 1 s a | a l i s

X H

a a

a i

M ft a : —« 3

a I

I i I.

i I

a X

K M M M M O

I | a a a a N H N H M M M S N M

9 3

I s a

O M

& a M M M M

s a •o a I I

a J a a << S« M M H M M *

l a a ? a

I a 3 f I

I 3 a B B

a s 5 '

t i a a

3 i / -» 3 3

t | a a

9 3 3 3 3 I » I I I I • O K © • H

9 9 ' -

Table Al l (Con t . )

Page 141: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 132 -

i I i I i i i i i i

M M M M M Q * . • O

5 a j 5 5 i i j I i * h I M •

ft • M • A • w a s* so

H l h i i j f i I » I * *«

M M M « S, t* M S# W

a a 3 a a i i a i J ? J 5 ' 8 * 1 * 3 5 >

a a a a i • i i i I a s s s M M M M ft ft B

a a a a i i i i i i W • N H 9

3 5 H M A O M

- a a a i i « 3 i i 5 . 4 i i I

a a 111 i i I i i s i st st s i

• 4 K M M M O S O

a a a a s a | a I i 5 3 3 5 ? A

a a a a a s i 3 I i s | s | s

a a a a a & i | I i » » ! S I

K M M M M ft B

a a a a a i i i i i ST St Sf st •« N N N N M

a a a a a i i » ! i M M N * M

M •< St s i St

a a a a a i * 3 \ • i i i " " *

K M M M M •

•a a a a a i i j i i ft M • If if

2 I 1 * 2 I i * a

i ! * & s*

• M O

i 3 &

5 3 I

| 2 I •

2 i •

2 2 I

1 3 !

1 3 i a

2 3 i

s j

9 3 I ? • N

! i •

1 i <

S 3

ft - N

I 2 5 s*

> 1 3 E

> ! ! 4

ft M

I 2 3 s t J>

Q M «

ft •« 1

8

* ' I

8 I 2

8 I !

t i 3

O M

I ft -e

8 i 1

2 H 2 i 2 >

M M M M M M N N N N < < • < • < - 4 • < ox * x *s ox ox

B M • K H If I t M M

M N M M M N M N N N

0 • • • •

I J S S i i i

a i 9 a » s

• M M M M M e

I | -3 3 8 3 a s I I I I I I I I t M M kt w G> s* x* s*

I I n 3 s i 1

H M s t

M K M X M N N N N B M M O ft M N M M M O

s 3 3 8 l 2 3 3 3 3 3 8

2 3 2 2 2 > 4

2 3 2 2 2 '

a 3 i * * i <s *s a a a B P

O M ft N M M H

s 3 | a a a s I •a 4 4 a. 4 H ft M M w H

s a i a a g a i M St s t Sj

a a a a

' 2 2 2 2 2 2 '

1 2 3 2

« x *

! | a i

• S B *

8 3 2 2 . 4

8 3 2 2 1

I 1 1 § B

I a a

I N N

I 2 5

& 8 1

m N

' 2 3 i t N

• N

I \ a

• N

I ? a

• i a 4

I i 3

8 ' 2

I I 3

3 2 3 2 2 2 ' ' 2 2 2 2 i 2 I I 2 2 3

I « M M 1 i ? ?

B B 3 C 3 & •< 4 -4 •« -< a

N M N N 0 M M K M a • < K -< ^ a

fi B B K S 8.

B > 2 I i 5

ft < i « s S

B

a «< l

i ! S 4

8 I i

i i 3

ft N ft ft ft •c • i •

a 9 9 9

• H • • * S S 3 S 3 a a a a

3 3 1 1 2 1 3 8

a a a

I s B a a u 53 a I g < 3 ^ •« < S

B*^ * "IT 1? I T s* s t w w N

i j n n M st s t SI s» x s i st s t St s i

I 2* n 3 S 3 !

I 8 ! B B B B ,

! S 3 S 3 3 3 i <s a i-» -S «•» 1

S| St St St SJ H M M • K W S* So V SK

' I 2 I I I 2 l

' I I I a

I 5 B J 1 2 2 S

I 3 3

8 i -3

& 5 fi

a -<• i F 3 3

3 3

a B : ; • £ S S

4

S »« a a

a 3 i S os 3 3

' i 13 B

i l

« H t a e

. 3 . 1 1 1 I 2 1 i S i i | 9 a 9 a a a

3 3

I t 3

° i 2

Table AlKCont . )

Page 142: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

3 M M M M

a a a s

M M H M M O

6 I I 6 I

! 3 i N

: 3 3 «•••

I S 3

I i 8

- 133 -• •< -e M M £

I | s s a a a S N I *« I

m «* ««r

0 • •« S H

£ l i 5 I 2

• 5, 3 3 5 M M M Q

a a 3 I »* •« H H ** ** w w S| Vf „

I I 1 1 M M M M M M 3

a a a a a a i * » # * N «»*>

E M i m • i H

M M M • M

• -1 0 - I •<

I I B | I S 5 i

i i a i i a a

i S S . M M M . K M M M M M M M

i s a i a a a i a a a i a s a s a B w C S> w w

*W M A A M 3 3

s. 2. a, a. a. • ' ? i &

i . 1.3. a, 1 i i ! i i 9 s « fl .

M M M M M M M O . 3 - 4 3 •< <

a . i a . a a a a a & i f s f i s s M P M • H I P K P P M M N H M M M M P P w w w S w p w w W W

8 I i I a

a s i i f a

O - < 3 < M M M

I M | a a, a. a. I P M *4 ** •« H M H M M

H *• m n N • H 4 * * I *4

2. 5

t 4 w M

A 9

a, I w v

3 3 3 r n

1 g

I M M

S, 2 V. 1 •4 M W M

M M

3, a w w

3 2 3 i a <••« H

M M M M M

a 3 a a 5 *-*9 -*«>

•4 *4 *< M M p H P N *«J

I I 3 3

M M M M M . 3

a, 1 s. a. a, i i s " i s B a 8 i

a a I i ] i i

u a a a a I i a i i s ? s s e

3 3 3 3 3 §. i I 3 3 3 ; a 5 c r T

3. 3, 2. 2, 3 1 I I I *

3 B 3 ~»

i a M

i s

a 5 M 3 - * 3

B 3 B

O -4 •

S B 3 3

i 1 2

i i | a a s. " t i t

M M M

a, a, a. i M M M

i 3, a. 3. * s *

3. 3 3 i — • - « 3 *<3

t a B B B a B B B a U

i i i a a s 3 « 3 i s s g g s g s 9 <«» »>* m #•» *<0 » - •» * K

N N <4 *« M 4 *4 *« S *«l w w * 4 w * « t w w w * « w * « i w

& a | 3 I S 5 M N

» i i I I I I M M

* 3 . *

' l i s

i i a | i a a M M K

w w M w H w

M M M

i a. 3 &

I 5 ri

I 3 M

i 1 1 S n g, i §, g n 3 g i M M P I M I M M I * I P I N M B P P P P N P M M M p f i

M M M

M m •»!

i 5, N.. E, E, I S S B S S

« « #^ v

a. a, a, a. a, i ' » i i M H M H N H • « « « • « • < .**t M

M M M M M

2, 2, 3, 3, 2 —o ~*o t-a *~t

M M M K • «4 X I *< • < <4

«*> w w w w

M M M M M

8 a a a s I P I N *<

! i S " -M M M M M

a a a a s

i a i s

i

3 H

I 3

i i i

3 3 14

I l i a

I i i s f i i | a i •

i i >

i i i i i i | i

i i i 1 i • j v r 3 v i

I I 1 I I

• M l p H J N P P P P 3 w i , i * P P P P w w

M M M M M 3 O N 3

2 . 2 , 2 . 3 . 2 . 1 1 1 1 * 3 1 P N P P *« M

* • »< » « • « P *C

I l M M X M M 3 3

2, 5. 2. So 1 1 i 1 »

H I X X N 1 P M P • «

M M M M M 3 N

3, 2. 3. H. 3 . 1 • 3 l I i p p M «< p • • • P M P

3. i 1 i l i I 1 i i I i i H i i 1 3

I 1 2 I i i a a 5 3 3 i i 3 3 3 3 3 3 ! i ! a i i a a

i i M i a a M H P

P B P

I ! 3 | a s 3, 1 i 3 3. 3 3 3 3 3 i I B \ \ i a I " » M *

H ** **

M M : H

• i i a m a

1 3 1 2 3 3 3 ( 3 3 5 3 3 3 3

3 *C M M M .

h N N H I - S A A i , 1

S P H M <4 M P N N

A 4

B B a B 8 B i A 5 « 4 A A A 1

1 M M l S l i . 1 1 i i a . l l l ! 3 « ^ *-3 « -3 *a3 « - 0 « 4 « - 0 rWJ

1 " M 3 5 3 | .« i 1 § S 3 M I «tf *4 *< <<

3 M « N

I I a I I s S !

I | a B 3 5 3 £ i i 3 5 3 M I B p i • • n

M M P M H

I M M

A 2 1 A 2

-* 3

a i

i I

3 i 3 5 5 5 5 5 S : 5 5 3 5 H * —«D *» . <-« A M ^ <-0 #S M OH A H M P P i N i M P P I P I H * M P P H M M P S p p M M M w w w w p w p w w w p w p w

I a •< S S M K t< I M C M C C £ Q I

w w w w w w

' i M i J - i J H ! i s i i n i J i

3 N 3 M 1 3 3 I S * C s C

3 N 3 M

1 1 3 3 1 9 9 3

* K

I I a

W w w

8 N t 1 2 I

B * i i a a i n i i i a n U i

P P •* P p p P H M M

B B B i i B B B B B B , - * 3 ' « ' < a * - * *-a ^ -*» *

C H 3 3 f*

& a | | | a I 5.

3 1 3 1 3

3 3 3 3

I I S 3 * I ?

• • H s i 1 1 9 9

i '* i a s |

T a b l e A l l ( C o n t . )

Page 143: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 1 3 4 -

_ i i ^ r . „ » i

C '2 «Z

O f K

8 I | " 3. 3 .

3. >

3 1 O l -J? T i l

• I * 3

° w ° V ° w QZ

3 3 3 M I * -

• H X I X •5 I •*

s i > i « <

H H "

M m m » » • 3 3 3 3 3 3

5 5 3 I 3 s g i is H 3 3 3 3 3 3 3 . 3

3 3 X X • * * • M X

3. 3 H M

* » * * * • , » ; V V * « * „ * „ * , » „ * _ ~

• o o o o «3 - » ° w ° w * » . ^ ° w ° w

i I I I H § s i ' i ! i 0 I I » ' i I i <

M • K

M U M

3 1 3 3 3 3

5. "• fi­

l l • R • • « ^ w w

§ l 8 \ g S , g g , § \ B i | \ B i |. 1 E \ \ \ \ . | | 1 | § § I i i 3 j i

» ' 1 i i i I * ' i a » • i I i i C" - • • »

1 i n g i i i i i ! § I I

• * "1 * 3 3 3 2 . 2 3 , H U H • * » X X X

n R E s

3 3 3 3 3 3 H H H

I I I I I I I I

I I I I 1 t I I

i i X M Mj

A i 3 . 5 ? >

X X

3 3 X H

* • • 3 3 3

3 . 3 3 .

s a i l » M

3 3

M M H M

s s r • •> «« K •< X X X •« 3 3 i

f I i i j j i i • J j j | i j i i ! i

I l I I i I 3 i i a 3 3 1 X M M M 9

w v w w

i l l i

> > < < i > ' > i n i 1 1 » n i » i i * i < i § § H i i i > i i i 3

H M • M M M K N

I I I I I i I i I I I ! I | S I I | { § g | | | | | | | | | | | | | | | I | I E i • ( • 7 K

i i ' i ' i i I I ! i | 1 I i 1 i i I I i i i i ! | i 3

I I I I i I I I I I I I I I I I I | | | | | | | | | | | | | | |

1 1 ' ' 1 1 1 1 I l I I I I I I i i i i i i j I i I I I I I I I 5 i 5

T a b l e A 1 2

Page 144: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 135 -

i i i s i § * i i 1 1 m 1 1 i a k i i 9 a a n * 1 1 s m 9 1 1 m i • m =

S 5 3 S | 5 S | S S S | S a 5 , e s 2 r s 5 3 , a s a s ' 2 i j , ' - < » n h 1 U 1 i H 1 i U 1 i 3 3 3 5 3 * J i 3 3 3 3 3 * I s g i

H 1 1 1 s 1 n 1 1 1 ft i i § ft i 1 1 a 1 1 i 1 1 i i s a 1 5 ft 1 1 1 1 i n j a j a a a a a £ a » £ £ £ £ £ £ £ £ £

1 9 3 ' i 1 1 1 i 1 1 1 1 1 1 i ! 1 > i ! ( ! ! a ft > i a a a a a ft i I a i i a a

a a a a a a a a a a a £ a a £ a ; £ • ~

3 3 3 3 3 H. 1 H . & 1 E, 5 I 1 E, H L 1 | M I I a L 1 I « S B S a * ' I • i W V <W H

H i f 1 1 1 i i ' u i 1 u i ' u 1 1 • 1 6 > i § h i i i z i t i & a a a a a a a ? a a a I a I a a a j a j a

i

: a : I s a i 1 3 3

i i

i ' ' ' • ' " i • i i i i i i i 3 3 i i i i i i i i i i i i i i i i i i i 3 i I t I f « « • -4

• I I I I I

1 1 1 1 1 1 ' i l i ' l l l ' l 1 1 1 ' 1 1 1 1

M U M

i • 1 ' ' i i i i i i 1 1 1 3 i i i i i i i i i i i i i i i i i i i i i i a i s a a a a a a a r 7

' 1 • • I f £ 1 1 1 1 y 1 1 a 1 1 n 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 1 1 £ • £ £ w £ S ° E ' * T ^ z

> 1 1 1 > 1 a a 1 1 1 1 g i § 1 s 1 H i 1 1 1 1 1 1 1 1 1 1 i i i § 1

C*?? 0 " So £« So S S S 2

1 1 1 1 1 1 i L 1 1 • 1 1 § i 1 i 1 i t i 1 1 1 > ' < • • 1 • 1 1 • » 1 1 1 • i

1 1 1 1 1 1 1 I 1 1 I 1 3 3 J 3 I 1 S 1 1 1 I E I

1 • 1 1 • 1 1 ! 1 n 1 * 1 n h 1 • « ' ' 1 j n » n n i s ^ > i > ; ? ? * a a , 2 a . 2 x , a a ? 1 2

T a b l e A 1 2 ( C o n t . )

Page 145: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 136 -

ml 0 1 a I E I r l • ! t . i J*l - ° l . ^ l « l i n n l s i > i • < e <•» ^ * * * * * * *

"»4 " " l

O 5 L 3 * «*• *

• • • • i i a a a

i i i i i i i i i i j i 2 M 2 § I I 2 2 a i a i | J I l i S a " » » » *

i i i i i i S g f i l l i 1 H ' i I i H i i 1 i i i M i 1 1 i i

1 1 1 . I OS8 - 4

M M M M M

I % i % I 1 1 I 1

w ~ tS 2. it • 3 3 2 3 1 3 3

3 a 3 3 3 3 2. S S, 5 M H H N

' 1 1 1 I I ! i > i l l s I I I 1 1 i I 2 1 a a

a a a a & 3 £. a . " " * iT

a a a a a a a a a. a a a

i l i U ' 1

X 2, "* « 1 1 1 1 1 1 s

1 1 1 1 1 ' 1

Sj s i st SI VI

M M M M M

a a a a a 1 | a S. a. a» 2. " i 2. 2. "*

2 I I

I I

2 2

• • 2 2

3 3

l i I I 8 I 3 3. a. 8 ' ' 2 2 3 * I

! M 1 I 1 2 3 3 I 3 I ^ ~ ^ £ . -«B * •

SI SI st st st

1 1 a a a a a I I M K M >f M i * H «

•-•> —» o O —» M M M W H -1

I I « < 3 a I I • 3 3 a

1 ' 1 a a 1 a a

M M M

g a a M X M

St SJ s i

1 1 1 1 1 1 1

2 I l

1 I i St

* ° 2 I &

» * s t a a

I 2 2

I 3 3 3 3 8 3 3 i I 3 2 . i -•o *•« ~. M H M I I I I H H w W w M s r N V w

• 1 2 2 2 2 2 2 1 1 2 I g * H

' 1 l l U L l ' ' H I ' H H M H M M St

I I a \ 1 1 1 i 1 1 n i 1 • m m

' 1 1 1 ' ' 1 s ! 2 ! 1 1 1 I " 2 i i 1 1 I 1 • 1 2 I 1 1 i 2 i i 2 i 1 1 j *

i I 1 1 i i ! i I I ' 1 E *

2 2 1 *

£ I 2 a HUM

I i

1 " 1 a a

I I I I I I I I j . I I I i 1 3 { { a & 1 a I I 1

3 2»

i <

3.

I i

3 3 2 ~°

s a 2 3.

3 2*

a 3,

3 3 M M < • <

3 3

s s ^ s ' s i i s i a j i S a f i & a j . i I i i a m * a m

5 a 5 a

Table A13

Page 146: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 137 -

• • • •

i 1 i i I " i i i i i i i i 1 j i i i i i i | I i i j • i i i | ! i i I

- I S £ *

i i i i i i i i 1 I i i 1 * l 1 I s * i g i i S 1 i i i i i 1 1 1 i i i i 1 g - - - i s

i i i i i"i i i 3 I i * * • ! 1 H ' * i i i i g 1 i i g l I i § i • i I ' i 3 2" M 'l? ? ? :? ^ ~ ^ — H H H H M

I i I I I I J ! j i i i 1 5 I i M

I i 1

•t *•*

ft 4

* 3 JT'

11 1 I f 1 H H

•I a B 8 8 ! J i s s j i ' 3

M I N I M ; i < < H

i i & i a

5 M

I 1 1 E 5 I « •

I 8 8 8 8 13 •3« ^ A ^ 3 S

N M M M

& 2P 3» & 7 Z i 1 i m m

I ' l l ** n n

S 8 i 5 > m N

1 1 M M S 5 a> s m n

M M M M M

B B :! K S « N M N H

8 8 8 8 8 3 I 3, - « • < < - • a » 1 I S I Z £

i i i i i i I I } ! > • | M 1 M •

I * 1

M

e M 8 3

M

1 1 1 3 i i i a a a 3 ; ! 1 * s, «. & « I

* * * * * * * *

i i f i i i i i 5 1 > • 1 8 3 1 **

i i 1

<* **

1 1 1 | " | 1 i s s a | i i s» > J> S» 3 s

H M tt m

O M

U i i 1 1 • 1 1 1 • l i • i n i • i l l u u • I s i i n i • u < n • & 5- * * £ £ £ £ E w i £ i E i - J i J S i * ?

i i i i l } | i i i i l S | i i i & g | j j i i i l i S i i i i l i i i i i f i £ £

I iiIiH ' « • l 8 8 } i I I , j 8 I I I ! I i i I ! I I I ; i i ; ; i £ ? c

' • ' i i i i i i i i r } g i i i i § j . g i i i i i i i i i i i i i i i £ £ '

I I I • S £ B

I I a i # tt K

B I

M PC M H M M M M M a 5> » i i

I i 8 E 8 8 I I I l 1 i 3 I 3 * & a» *? £ N

Table A13 (Cont.)

Page 147: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 138 -

i i i ' i ' " ' ' * * ' I i ' * I 3 * ' a ' ' ' ' H i H g § G i I t i i j i a

I I i I I I * * I ' l I | l l i H i J 3 ! ! I I I i I I I I ! I i i i ! 3 , 3 S £ £ £ £

i • I I I I I I • & * l | | i I i I g | | i I i i I I I I I I 1 i I s i i | £ g

W M M M M N • B B - - - - ' ? ? r v j r i f

I I I I l. I i I I I g i i i i i j g B * s * * I I s * s I H I I ! I | ! g "

' ' I ' I ' I l l l l l l I I I I i I I i i I l ! I I I I I I I I I i i I B I H M M

n I i i s I t t B

& 7 U U i s 1 1 1 1 1 M i ' 11 i i 11 j i y i i | s i y

: : ? : £ £ • ? Ho 5. ?° £ ? ? !

' I 1 ' I 1 I 1 l i i l g j l I } E I .' | i i i i g j j i j j g g j j i i i i i f i t i S 1 1 ; ; ? £° ~° »° x

I i I ' I I I I I I I I I I r I I I I I I I I I I I I I I i I i I i i i i H i B

! i i i i i i i i i i i i I | i i i n | i

! ! M I i i | i i ! i i I § | i i \ s s i

• a i i ! i ' ' ! • 8 § | 5 • M 1 B M « M « 3 3 3

• . • • H O O K s. i i I s i i § i i " i i 9 a i 3

! i i ! I f f f ! i i I M I I I

B i B H B S

l 3

o M • • M M 2 3 J 3 " *s

3 3 M l H P

1 111 . 1 1 ' 1 1 1 N ' i n . i H I n 1 1 1 1 1 H i 1 1 1 i M M I

J . i s

I 1 1 M ' 1 1 11 ' i a 2 n 3 ' ' n s s n > ' M i 1 1 1 £ 5" ? ? S" S* 2. A S* S* M

& 5 3 9 M

w H M

Table A13(Cont.)

Page 148: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 139 -

H 1 L i '• 1 1 1 1 1 1 ' 1 1 L i ' L I 11 H i ' L I L I H I ! 1 1 n , i J

i « § i 3 • 1 i • 1 i i 1 M i i n i § j i i i i i 1111 i i i i n i n a. 3. s« ? S* £ E £ E «

J, *•*

j m i ' 1 I ' ' i i ' 1 I I » ' i 3 I i i i i i i i i i I I i i M I I i s

i 9 i i I 1 1 i 1 1 I i s 1 i I 1 s N I I i i « s 8 i 8 8 8 8 i I M i > I I c - r a S ' S * £ 1 a a £ £ £ £ £ £ E E

| i 111 • < i ^ > ! i • M i 1 M i H i i 1 1 N i i i ! i i i i 8 M § a. "

U l U ' * B ' ' M ' K I i & > f 8 8 I I I i i i M i M ' i i M I M

11 i 11 i ' ! ' i I ? I ' i f i i 8 18 i i i i. M i s f 8 8 i &B i i , 8 8 i i i i * , 5> £ • • • • • • i ? «T "m

M i n i i ! i i M' • I I I i M M | | i 1 1 M i I U . 1 1 1 1 91 1 1 91

a B B = a . 2. 1 5. 1 1 1

h • m m m M i i ! i i I § i 1 i M I a l i i i l n i i 1 1 N « s i «

£ £ 2 S * ? s ? £ sr* « £ a £ i

H i l l ' 1 1 ' i l l ! ' I I 1 U U I I L > L l l l l ! I ' 1 1 1 i 1 I I

U J U ' " i i i 11 i » ! i ' 1 1 1 n § i . . m i i i • • M n n

3 3 I 15 I M . i n i i i n u i M M i l U » 1 -i I ! M !

Table Al3(Cont.)

Page 149: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 140 -

am• • 1 1 1 N & I M t! I M C K M N N N I ' . N (S N N K S B * H C M M M M H S M M M M. M Ml E 2 " » • • • P m m <-d «

i g a ; : i s a 1 • a i i 1 a a

S a l s

I I I I I I l l I I i I = j I I § I I I § I I I I I I I I I I I ! I I e • 3 M » I j K a

' ' ' ' I ' l l l & i i [ j j i s | j j £ i ! j i i i i i i i i i i i i i i i i j i ' j j

I I I I I I I I I I I I I I I I I I I I I ! 5 i 3 •» • • • « mm • •

J § B g 1 I i i ! i • i I i i i n i S g i i i i i i i I I l 1 1 i i I i I I s 3 » E . 5 t - » «

• ' I I I I I I I I 8 I H 1 ' M 3 I i 2 i i i i i i i 1 I I i i i I i i | I |

> • I I I I M I I I I J J j I I ] I J I I I I I I I I I I I :l I I I I I a , i

1 1 1 1 s S , , i , i i g 1 i I i i i I | i i i i i i i I ! I I I s I I s I s s a

I l I I I I I I I 8 * I g j I I } J I I I I I I I , I ; | I I I , | 1 , , | O - t ft M

1 1 1 ' . I I $ I I ' I I 3 3 I I H I H ' ' I I I I I I I ! I » I 5 mm n m

1 1 I ' I I I I I * * l I \ i i I ! 5 | a i i i i i i i g a s 5 i I I i i ? 1 3 3 I I • •

3 1 : ! ! I s ! ! i s S i C " 1 ' 1 ' 1 1 1 S 3 2 " 5 M & r ? i:

. . s i : s i I I ft I « • n M

t s B F 5 3 ; . .. , , j 3 J . t • , . i a 3 - i i : = i « ' , « H ! i « i i j ^ ? ? • < ? 2 - »

' ' 1 I ' § s I I I ' I E g £ ' i S 8 5 g i i I I I I l l i I l I l I I I a I 3

Table A13(Cont.)

Page 150: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 141 -

I I I I I | | I I I i I 3 ! ' * ' » 9 I- 2 I n 3 5 I i l l i : I i

S 1 H H i i i i i i § 1 < ^ i i r H i i i i i i i g§ g g i i ? t . i i £ £ £ £ §• £* ? p.

i i i i 1 I g

l I I I I g g I I I l l g g g i i E E I 2 1 I I l I I I ! I l l l 1 1 1 ^ a h a

i i i i i | l i i i I 1 1 } i i i i l \ I i i i i i i i 8 3 H i 1 1 1 1 i 1 I £ ff? ? £* £o 5* £

? a a ? £* 2 S £ £ p a S* * £ w W W w

s 6 • 1 1 1 1 m • • u u - • • • < > ' > < « 1 1 1 1 1 s § ' § & i • £ » , • » • £ ? J?

I B" I J I I I M I § 1 I " I 1 1 1 1 I ; 1 I I ! I 1 I i '. § ! I E — O M M

« i i i i i i i I i i ' • M I i g i ' s ' ' ' I i i i I i ? I i j i i s i \ \

I U U i i i n i s 1 1 1 n i 1 1 n n i 1 1 n s § i 1 1 1 i s s E ° C ° C P £ • £0 =• w • a ? * * r> ?> w ' 2 2 If M H H

1 I I.I j I ' ' * 5 i I 1 I I 2 I ' I E 3 ' ' \ \ H M I I jj I f a E £ c° E* E ^ s' ?

I I I I I I I I I I ' » 1 1 \ I ! s 1 ' I 1 i ' J i ' 1 \ \ s I ! ! «•» C Z . • 2 * m M «XI

I I N O • N N S 2 N 3 " • S

U h , s 1 I f c ' i ' M s H s s 1 . i 1 s ' 5 a « a • i s : ?• ? a * a £ 5 s - 5«r i l l ? * E* ? = ? r a

I a a

Table A13 (Cont.)

Page 151: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 142 -

r*« m ui

I i 3 I M 1 I § 1 1 I § 3 I B a 1 I 1 a n • J w pi >* M M * n 'n

8 J

I 3 B I B S C S

a s B g

3 3>

3 M

3

a. 5 a

> 2 3 i . 3 i

I 3 M i • i i § § B 1 1 i i i ! i i i a » 5=

a

I I I i I I

I I I

3

5

i i H M

i 1 i

• H • • • . • H •

! 3 1 I I l s § i a M

5 : s i S

1 I *

B B

C S 5» &

* § ' ' I f I I | | a i S B B n a 7 ? ! ' ' i ! i M i i i i f I

S t I ' I i S I I I s a i i i i i i i i s s i i i i I § i f

i ? 1 8 I

i 3 i 9 •*•

1 i 3 3

3 3 M M ~ 5 S S E S T ?

- - a i

i I

S fi ' I'I 5 i e i i >< W W

J 3 *

5 3 S

a

i M § n 1 i n i

3 ? I!

B fi M X > 5, P p

I B B 3. B

B

a. B I 3 § B i l ? 3 i

2i ?* ? I I 9 3 • I I.

7 * > B B

S B ' fi 3 ' • •

I 8 I ; i

Table A14

Page 152: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 143 -

s> a> s« I I i f M ' M M M M M

3. i . ? i a

M 4

Pi

fi_ M 3 3

i i i i I 3 3 & * ? § I l a s s e s s i i S I" ? I. a. 5- !• 1

! I

C 5 S S 5. i - S . 3- i l l i I a n i l ' ' m m - • i

« M N H N M S • M N H H

3 ! s n M i i g h is H M It II S S f l f i

* ' I H • d

i | i t «

a 3

N I 3 »

I 3

fi X

I 5 I I I I I i i

5. 5. i i a I H i i I ' 8 S i 8 8 H I I * B I I

s S B I i i | i> 2, 5. 1 3 1

s & I I I i S fi 5» •:•

H H i I 3 5 2 3 3 I S

i i I I • • • • . • a N o

s i i s ' i i i M

i i i i 1 r 1 | S. 5. S- 5- 5. I 8 jj. | 1 1 I ! H 8 I

I I I I I I I I s i I • M O

I I i B S I K IS

i i i i i i i i i s I I I I fi

Table A14(Cont.)

Page 153: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 144 -

3 3 3 3 3 3 3 3 3 3

' ' ' ' ' 1 ' 1 i l l . 1 i ' 11 11 I ' I 1 1 1 I I s i i i l

a a 3 3 . r 7

H • H

a a ? a a a & 3. 3 2. 2 a. M N p M 1 N M It H SI K S

I 1 I 1 I I I I 5 I i I I i I g a i i I a 1 I I S

o o o o o 8 S ft » ft a a a A s I I c J I 1 S I j H c 5 I S 5 i s I i s a s I 8 i I

i i l f i i i I « . i s i i I i i i i I I 5 1 1 1 1 ' ' 8 ?

I i I I I I i i 1 f i i i I 8 | S f i ! a t i I f j I I | ! | ! 5 ? i I H 8 . S

I I I I I I i i i i i i i i n I i I i B ' ' < ! i I i a a s s j 8 1 e s a a i a 8 ' 1 I 6 1

' ' ' ' ' I ' I 1 g i ' I ' s H ? S I i I I I ! i l a a a a M K M M M M * M M *» V »?

1 a 8 I

I I I I I I I * ' * i i s n i , i i i § a a M M

8 8 8 8 8 g | | I I | 8 I 3 I a a

I I a a a a a a 1 i a a

Table A14(Cont.)

Page 154: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 145 -

1 1 1 1 1 1 1 • 1 1 1 ' 1 1 § i r | i i g i i i [ i , , } i ] 11 ] ,

i i i i i i I 1 ' ' * H i I I i i I i i i i 1 i i i I i i ! ! i i 3 I i

i i i i i i i i | 3 i i i i

i i i i i | ' 2 3 *

3 i I i l | 8 S i 8 S E 3> 3

fl I

H w *e

' * i ! 3 i 3 1. i 3 i i i a g t i n g 6 i i i i E fl

2 3

I I I I I ! I a M M M M M I M I I I S 8 S fi a 1 a 1 1 I

M M I 15 S > a a> 5 3 I I 3

B K

I 3 j s I & 5 a> fi

' 1 I a I l * 3* I 8 S

i i i i i i i i i I i i i I 3 s | i 3 i i i

5>

I J

B &

B B

3» a»

B B B 3 ! I

I I I I I § § 1 i i M ! 3 1 ' I 3 ' ' < i i a» a> s fl i 3 I I

i i i i i i i i I 3 I 3 f I I I 3 3

5. 3

s a I 3

I ! ; ; i i ! I 3 3

i i i i i i i i a a a H X rt

5» £ 2» I a a 3 a I 3 I I I a a a

M M M

a a a a B B

I 3 4 I S 1 a tt 1 3

i a I 1 3 l a a M K 5> 5>

a a 2 ir>

B » M < 3 1

Table A14 (cont .)

Page 155: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 146 -

i i | . s s 1 1 1 » 1 s 1 1 1 3 1 1 1 s 1 1 H i l ' u s s s n 1 1 i » n w w * « w w — M

1 1 1 1 1 1 1 ' M ' ' i I U ! 3 * ' I i i " i a ' i I U s ! ! i i M i

i i i- I i i 8 I M I i i 8 I M ! i M i i i 11 I I M M

H U M a i i i i a s

i i i i i I a ! i i i ' I B * ' e i s

I I I I

I l l I

I I I I

• s s s 1 I a 8

I ! i 1

i i i i i | i i i i

I I I I I I I I I i I I I I I

I I I I I I I I I ! I I I I I & a I

I I I

I I I

I | § 8 I s I j a. a i i i i i i i i i i i | i | |

i §

' i i i i I I i i i i i

i l l

I I

I S i i i i i i I I I I I I l s a |

O M « M I l l l i l l l l l I I I l I

S fi S 3 a i 9

! I 8 l I I a 1 i | I l M M . B B 9 N U

a a a o a ! I I I I I I 8 8 8 8 8 I I 8 I

l I l I l 1 1 i I 8 8 i g i i 8 i I g i i i ; l I I i i 8 8 i I 1 S I I j i s f

1 ' 1 ' ' I I I I I I | 8 I | | I i l i | | , | i i i i i - i i i ; I | i | B ? n m m

' 1 1 1 1 1 1 1 1 1 1 1 i I 8 J N I I 3 i I I I I l I i I . I I I I I I 3 i 3

' i i i i i i i i i i i i i i i } i i , 3 5 I i i i I l l l l l i i i I i i 3 i 3

Table A14(Cont.)

Page 156: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 147 -

i i i i i 1 1 1 1 1 i i i 31 i n 1 1 1 1 i i i i i i 1 1 i i i i i 1 1 i 1 1 ? i 5 S 4

' I I I I I S I I I I I 1 | 1 I jj ! I I I I I I I I I I I I I I I i i I ! i I n M a K

1 I I I I I I I l i i l j j g i i | jj i l' ! i .1 | i i i I a jj H jj I 1 i l i } 7 7 7 * 3 s 3* JJ.

8 3 1 i S •}

1 9 . 1 U K 1 1 1 1 1 1 I i i * 1 i i - 1 H H M *• » f> f

I I I I I I I i a j J

M i i M e M M M M a M M M M C. M M M Mk f » i *

I I a i s s

I I I I I IB S I i i i f | I i I i | « g , , , , i , , , i , j , i , , o N O N O. N

1 1 " • 1 I i i i i i i I g I i I i I B E " i " i i i i i i i i i i i 11 I 5

1 1 1 1 1 1 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i I 3

1 1 1 1 1 i 1 i i i i i n i I I i B f I i I I I I l I I l I I I I I I 1 a

I I < ' < 1 1 i i i i l 1 g I i i I B i I i i i i i i i i i i i i i

B I I I I I i 1 S 1 ! 8 U I I I I I 2 B I I I I I I I I I * I 8 I I I I i 1 a» a x« a» a> a. • •

1 1 1 1 ' ! 1 > i i i i B i i « i i g | » i i i i i i i i i i i i i i i i i O N e. :-J

< 1 > > > > i > 1 1 i i n 1 1 n i i B i i i i i i i i i 1 1 g i

i i i i i i i i 1 1 • NO I 5 a s i s i i i i i i i i i i i i | | l B

Table Al4(Cont.)

Page 157: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 148 -

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I | | I I I 9 I 3

i I I I I I S I I I I I i S f i S § i i i i i i i i i i i i i i i § t

i i i i I I i i i i i I i i i i i i i i i i I i I g i

i i i i i i i i i 6 I i I I S i i B i i i i i i i i i i t 1 n . « m w —

5> <0 <0 fi H 3 I " i 5.

I I I I I I I I 1 s c N H N N 5 a» B . S 5» 7 Hp a» « I I 1 I

I I ! I 3 3 ! i | B i. ' i

B B 3 3 i l 3 "•

5 ^ 3 3 i I 3 3 I I

3 I 3 3 3 ' ' I 2 I i 3 8 ' I 3 1 ' I s n i n s n i i M i i

1 ! ! I ! ' 1 ! 1 1 | i - i | | i ! | | I | | § i i 3 | j | j | i i j i ] i | 9 9

3 3 I i • • ! i M ! i i ! fi I i s s s : s s S ' • 3 I . 3 S 3 I i 5 3 I § 3 H i H I i i

3 3

3 3 ! fi ! I 3 ; 8 1 i 3 3 ! ? ; 1 • i 1 i s 3 s 1 1 i J 3

i i i 3 3 I I I I I i 1 3 I ! i i ; i i i i i i i i j 1 3

B S 3 3 I 3 I fi 3 3 3 3 I i 5 I

Table Al4(Cont.)

Page 158: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 149 - i

C 5

ABB 5 3 3

6 j J ? V t z

fl a § § i J J J 4

A A a a B » 5 « * If II

& I

a . e a i 1 & £

I I

BBS 3. 3 S' a' 3P ;

3 3 M - w w

i I

i <

8 I §

* i E S 3 S i ? S 3 3 3 • 2 S 1 I j a ^ 'T <4 W W

a a s 2 3 1 i „ 3» * > I I

- U l - ! • I ' 1 • 1 5

?« 5 I O M & | 3 M M M > « < < * |

a 3 z J : : 5 5 : i

2. E

a s & I s 3 3." 1 §

I ! 3. a> s a. a i a a a > - ' 1 3 3 5

•4> A —i *

a a i 3 3, 1 5 5 a * ? a * ! M i i ! ! i a

- - - « -

a i » I I I 8 2 I I M PI A a 3.? t 3

a a 3 s 3

I 8

i ; E i * 1 1 a 1 1 n a a a i 1 4 ?

w *< «« w

i i 3 » 1 S 2 B 3 S 3. 5 * a> 5*

fi BA A B B , , I

I I I

I I

» a i S 3 s 3 * H * I i B B A i B B I i j

£ £ E

> . i * > 1 1 1 n i *-> i M m 1 1 i a i i c i

8 8 ' i s 8 i ! I § I I I I i i i I I I | t I I l

i i > a a

m U . U l l U i 1 I

J 3 8 I. B "

s a 8 i a

! I * i i I » ' H I H 3 .8 . i § B I I I 8 » i \\ I I I

1 M ' I S i 8 I i I 1 ! i i 8 | | | | | | . 8 | ! 1 i | |

8 B H ! I i i 8 \ \ BE B B i 8 | j ? -. s

1 1 1 1 4 ' 1 1 ' ' ! I i 8 | i i i | | g I | } i i | } | | | | , i | | g i

I I 5 I I I 1 1 I i ' 1 I i f M f ' ' ! ! ! 1 ! i • i M M \ \

Table A14 (Cont.)

Page 159: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 150 -

a a 3 5 s a f a a 3 a

I ' i 1 1 E s I » ' n 8 S § n ' H M m k E S

| | 3 I g 1 l | I I j g s I i j a I \ g | g g | s I \ g j | j g i I

B 3 r

i S i a

i ii

s g c s s , i S i i j a i i i S i . t B S B S s i . s g c R a B S i j R ; • 3 3 3 3 3 ' I j » i g a » i j B " ' I a B c s s 8 , I B S B B B B 1 I S i 1

s n : S E B B S I . i | i f ! i i ! I i • i s i I H ! i I I • i \ \ i H I i I 1 i i

4 4 M M *

a m • 1 1 1 M M 1 1 1 1 1 { 1 1 1 1 1 1 1 1 r i ; 1 1 1 i j 11 i g £ *, M

1 U i I . 1 M 1 1 N > s 1 i s i [ H i M i i i ! ! i i i i > i i g M g

i • • « •

1 1 1 1 1 1 • i * ' n • • M * i i a n l H < U s H § s i i i n s * * * * M - r ? ! ! ; i 1 i.* ** "» —

j a s a - s 4 a w *4 w

1 a

5 fi 5 S fi 2 , ; a a a a a 8 . 1 I I-1 l I 3 I I n M 8 1 n I H I I 1 i l l s 1 1 8 « i n

a a a j | i • I I j f j I ?

I f f H ' H ! - ' H I ' H I I f f I ' M i n i ' " I "

8 H ! I 1

1 1 4 1 4 1 1 1 1 s n 8 • n 1 M i § i u 1 n i n M 1 1 n n n 1 * l i ' s i i s i i i i i i 1 |

5 S 5 5

i A £> i £

Table A14 (Cont.)

Page 160: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 151 -

S EB a 3 • i ! i 2. 2. 3. 2. 1 1 t J! " » « «

1 i i • 1 1 i 1 s 1 1 1 K s . 1 1 l i t B L i ' i n s i n a i . I : ; E i s s i £ ; ^

! ) I I 1 1 1 J 1 1 1 1 * 1 s 1 1 • 1 3 M M 1 1 1 § 1 * i § s 1 i n ' i n ? 5 s 1 I £ i I I 2 i i i a _ J £ £ 2. I I I

H I I I 8 1 i 8 1 i § 8 1 1 § 8 1 i n j I I 1' § I n I I 1 1 s H ' 3 3 .? C J 3 B a a a s ~ ~ 7 5 ? ? ? ? ? ! s .? ? » g _

n i l i l ' i i ' l I l ' i l l ' l i l i j f i i ' i M i I 8 1 • i 3 i i I 3 ft - - i w w w w w w w w ~ g £ k w w w £ » « w w W W

i 1111 1 1 I | S 2 I 8 1 i § 1 8 3 1 § I I 1 1 s 8 1 j s 8 8 i I s i i • 3 3

i i l U l | l | M i ! | i ' I , l ! i 3 I U l l l U | l l | i 3 i a a

} } } } } ' T 1 " . 1 ' I ' " " ! ! } } } " M i l f f " 1 1 ! c & : a • s 3

I I I I I I I I I I I I i 3 1 I j S 1 I 2 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 3 1 s * ? 5

i i i i i i i i i i i i | § i i j § I i § i i i i i i i i i i i i i i i i | i |

i i i i i i i i i i i i ^ | i . y | i J . i . . . i . i , M i n i i s i

I I I i '| i i | i i i i | | I i § 1 i I | i i i i i i i i i i " i i i i s | i |

i i i i i i I I i i i i J 3 I i § I i 1 § i i i i i i i i I i i I i I i * 3 1 3

T a b l e A14 ( C o n t . )

Page 161: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 152 -

I I i I I i i I I I I I jj I i I | 5 * I § i I i i I I i I I I I i I I i i ! I I i l l I

I I I 1 S I i i l l l I j | I i 5 I i i j j i i i i i i i I 1 I I I i i I i | I 3

i I l I l l l l I i l I | jj I l f H I i | i i i i i i i i i | | | | | | i § | "

I I l I l l l l l i I I j jj I j | s I H I i i i i i i i i i i • i i i i I a i H 3 3 5 5

I I I ! I I I I I I I I j j i , | J i I j I I I I I I I I « I I I I I I a | a

I I ! I I I I I I I I I 1 | I I | | I I | I f I I I I I I I I I i I I I i a i a

I I I I I I i i I I I J H a I s | I s a I I I I I i I I I I I I I a I

I I I I I I I i i 8 I I g | i 1 f a I I a I I l i I l I I ! I I I 1 1 l l I I 3

s .g 8 I I i i I i i I g f i I g I i I a i i i i i i i 1 I ! I I i I <Q - ^ J 3 * «H —« ~>

I I ! I I I I I I I I I i : a i i a •

i i i i i i I i i i i i | s i i | a I i S | i i i i i

I l l I l l I I I I I I I

* » M I i s a

l a |

I ' I l I I ! i I I I I 3 k i I 3 i i l 2 I l I I I I I l l I I I I I ! M I m m H

i i i i i i I ! i i i i ? a i i H i I a I I I ! I I I I I I I I • i * a i a

Table A14 (Gont.)

Page 162: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 153 -

H I i i i j g i i H I i a i I i I I I I I I I i i i i i

I I I l l I l l l i I l i I I I I | 1 i 3 ! i i i I I I I I 1 I i I 1 i

K 1 M

• O « 3

s» s. a» i 5 i 3.

i i i I I I I I ! i i I i | * a a

I I I I I I 3 I I I I I i B I I I f a % I l I I I I I I | l i | i i i

I I I I I \ I I I I I I I i i I * I \ l I l l I l l l I i I l l I I i I I 3 i 3

I I 1 1 1 i 1 1 1 1 • 1 i i i 1 i111 5 ! I ! I 1 I I I ! I I I I | I I a I

a ft n

i i i i i | i i i i i i i i * i i » I i s i i i i i i i i i i i i i i i

I I l I I | | | i i | i I | 1 l l i g i | i i i i i i i i i i i i i i i I g 5

? a * 5* ? ? s - s 5 S I I ft I <

•j ft I I ft I a l ! l l l l l l s B ? 9 l i l

* & 3.

i i i i 1 1 1 1 1 1 1 1 i i 1 1 1 M n i i I I I I a 5 I s i I 1 i * ? ? ** M M M

s a & s a » . S a j i s i 5 a a , , , , B

I I I I I I I I I I I 3 I

1 1 1 1 1 i 1 1 1 1 1 1 1 1 '* i & 1 1 n ' . 1 1 I I i I I I I I I I I s 3 I ;

i i i I I s j s I I I I s I M M I M m 5» M M Ji I I I I I I I I I I I I a i a x

5 1 s 5

Table A14 (Cont.)

Page 163: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 154 -

1 1 1 I " i ! i i .i i i ? i l i i I i M i i i ' i i i i i i i i i i i a % a 5 ;

' 1 i ' i I ! i i i i i 1 | i i i I | ! | i i i i i i i i i i l % i |

II1111 i 1 1 1 1 5 a i ' S | ' i a t u i i s 1 1 s 1 i 1 a l l l l a • ! S B ? * £ * - S

1 1 1 ' i i. i I I I I l I | I i I 1 | f jj I I I I i I \ 2 jj, % 3 l I I l i i J H U M

_ a i i i

1 1 ' i i 1 | s i i i i ] | i i i i { g g i i i i , i i , l I I l l I I i I I

i I l ' l M 2 l l l I \ I I l I l 1 ] J l l l i i I I I I I i I i I I 1 g l 3

I l I l I i H 1 ' ' 1 « s g 1 s 1 s s s l I l l l I l I l ! I i I I l fi 3 i E < .

i i i i i i | i i I I I i 3 l l i a a a I l l l l l l I I l I l I i I i s I

I I I I I f j I I | | | | I I i | I I \ g i i | i ! i | i | i i I I I l I I , s

B B S M M M S> S> 3»

a c s M M at

M *C M «4 4 H

I I I 1 I i. n i i i ? » & ? t t * i

S 5.

I I I i l l ! i i ! I i I I I I 3 I 3 I I I I I I I M •( a | 1 i | | 5 W D M i ; - O • TJ ?

M N H H

I I I i I I I I | | I i I i | S I jj i i i | H § i y u « EJ X M >' K * ^ •* K • H K M M H N M

I N N

i i i I 1 1 1 1 i s i i i : | S { | l i S i i i ? • N O N N N M

M M M M -! 3 -8 I I I

Table A14 (Cont.)

Page 164: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 155 -

I I I I I ! I I | S ! | 1 | & I I I I J C

M M M M M O

I I I I I 8 I a | i i i i S 8 H i >

B B B i

H & B a

I l l s

i

i 1111 1 1 1 I 1 ' 1 1 1 M S I I I B I I I s I I I g § g g J | i l f i I B

I I I I I I I ' i ! i ' i M ! M i " I i i i I i i i ? i i i i i i 3

• 1 i ' ' ' s i i i i i i i n n ' 2 § i i i { i i i f i | f { | , , H § | |

i i i i i i i i

i i l i l l i i | jj I I I i

5 I < i 1 1 ft H i n n n i f i i 3» s a» ~ *4 A A

I I I I I I I

B M M B B S I •« M M •< N S •

* £ i * *

' ft ft ft " A I ft ft ft 5 B I 2» 5 3> a 3i 2 3. 2 5.

I I I

I I I

B

I R B

A M

3 i

S B

n i h

B & I I I

I 1 1 B 8 a a

3 I 5 3 C 3 B » i ? 2> » s 4 M *t *C •

| I S 1 I

U ft I ! J ' I? I l i. I? i

' § ! I I I " ! S 3 ! I » § E s ft ft ft . | f 2 i J 1 ! I I 1

I I I . I I I I I j | I I i I jj I I I

<•* -» M «•» w S<

R R I E * 4. 3. i ' •

I f l l S s i l l 5 K 5 I

s a l 1 t « • l a s ' 1 8. 5, a a s

? « S. 3. s s i i I

Table A14 (Cont.)

Page 165: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 156 -

REFERENCES

AKGOZ Y.C. and SAUNDERS G.A. (1974) J . Phys. C: 2' 1 0 5 0

AKGOZ Y.C. and SAUNDERS G.A. (1975a) J . Phys. C: 6, 1387

AKGOZ Y.C. and SAUNDERS G.A. (1956b) J . Phys. C: 8j_ 2962

AUBREY J.E. (1971) J . Phys. F: • Metal Physics 1 493

BELOV N.V., NERONOVA N.N. and SMIRNOVA T.S. (1955) Trudy I n s t .

K r i s t a l l . J _ ^ , 33j Translated i n Shubnikov and Belov ( 1964 ) .

BELOV N.V., NERONOVA N.N. and SMIRNOVA T.S. (1957) K r i s t a l l o g r a f i y d

2, 315; Translation: So v. Phys. Crystallogr. 2, 311

BHAGAVANTAM S. (9166) 'Crystal symmetry and physical properties'

Academic Press, London

BHAGAVANTAM S. and PANTULU P.V. (1967) Proc. Indian Aced. S c i . ,

6 6 , 33

BIRSS R.R. (1962) Proc. Phys. Soc. 79_, 946

BIRSS R.R. (1963) Rep. Prog. PhysJ 26 , 307

BIRSS R.R. (1966) 'Symmetry and Magnetism', North-Holland, Amsterdam

BRADLEY C.J. and CRACKNELL A.P. (1972) 'The mathematical theory of

symmetry i n s o l i d s . Representation theory for point groups and

space groups', Clarendon Press, Oxford

BRAND L. (1948) 'Vector and Tensor Analysis' Chapman & H a l l , London

BRILLOUIN L. (1964) 'Tensors i n Mechanics and E l a s t i c i t y ' , Academic

Press, New York

BRINKMAN W.F. and ELLIOTT R.J. (1966a) Proc, R. Soc= A, 294. 343

BRINKMAN W.F. and ELLIOTT R.J. (1966b) J . Appl. Phys. 37 , 1457

CORSON E.M. (1953) 'Introduction to Tensors, Spinors, and R e l a t i v i s t i c

Wave-Equations', Blackie & Son Ltd., London

CRACKNELL A.P. (1969) Rept. Progr. Phys. 3 2 , 633

CRACKNELL A.P.' (1973) Phys. Rev. B, T_, 2145

CRACKNELL A.P. (1975) 'Magnetism i n C r y s t a l l i n e materials', Pergamon

Press, Oxford

Page 166: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 157 -

DE GROOT S.R. (1951) 'Thermodynamic of i r r e v e r s i b l e processes',

North Holland, Amsterdam

DIMMOCK J.O. (1963a) J . Mat. Phys. 4_, 1307

DIMMOCK J.O. (1963b) Phys. Rev. 130, 1337

DIMMOCK J.O. and WHEELER R.G. (1962a) J . Phys. Chem. Solids, 23, 729

DIMMOCK J.O. and WHEELER R.G. (1962b) Phys. Rev. 127, 391

DIMMOCK J.O. and WHEELER R.G. (1964) 'Symmetry properties of magnetic

c r y s t a l s ' i n 'The mathematics of Physics and Chemistry' (ed.

H. Margenan and G.M. Murphy), Vol.2, Van Nostrand, New York

DONNAY G., CORLISS L.M., DONNAY J.D.H., ELLIOT N. and HASTINGS J.M.

(1958) Phys. Rev. 112, 1917

DRABBLE J.R. and WOLFE R. (1956) Proc. Phys. Soc. (London),

B69, 1101

FIESCHI R. (1957) Physica 24, 972

FUCHSER T.D., MACKEY H.J. and SYBERT J.R. (1970) Phys. Rev. B2

3963

FUMI F.G. (1952a) Acta Cryst. 44

FUMI F.G. (1952b) Naovo Cimento 9_, 739

GERRETSEN J.C.H. (1962) 'Lectures on Tensor Calculus and D i f f e r e n t i a l

Geometry* Noordhoff P., The Netherlands

BRABNER L. and SWANSON J . (1962) J . Mat. Phys. 1> 1050

HEESCH H. (1929a) Z. K r i s t a l l o g r . Kristallgeom. 21' 95

HEESCH H. (1929b) Z. K r i s t a l l o g r . Kristallgeom. 72, 177

HEESCH H. (1930a) Z. K r i s t a l l o g r . Kristollgeom. 325

HEESCH H. (1930b) Z. K r i s t a l l o g r . Kristallgeom. 21' 346

HENRY N.F.M. and LONSDALE K. (1965) 'International tables for X-ray

crystallography,' Vol.1, 'Symmetry groups' Kynoch, Birmingham

JEAVONS A.P. and SAUNDERS G.A. (1969) Proc. Roy. Soc. A 310, 415

JEFFREYS H. (1931) 'Cartesian Tensors', Cambridge

Page 167: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 158 -

JURETSCHKE H.J. (1955) Acta Cryst. B, 716

KITZ A. (1965) Phys. Stat. Sol. 1£, 455

KLEINER W.H. (1966) Phys. Rev. 142, 318

KLEINER W.H. (1967) Phys. Rev. 153, 726

KLEINER W.H. (1969) Phys. Rev. 182, 705

LE CORRE Y. (1958) J . Phys. Paris JjJ, 750

LITVIN D.B. (1973) Acta Crystallogr. A, 29, 651

LOVE A.E.H. (1927) <A Treatise on the Mathematical Theory of

E l a s t i c i t y , 1 Cambridge

MACKAY A.L. (1957) Acra Cryst. 10_, 543

MASON W.P. (1947) B e l l System Tech. Journ. 26, 80

MASON W.P., HEWITT W.H. and WICK R.F. (1953) J . Appl. Phys.

24, 166

McCONNELL A.J. (1957) 'Application of tensor analysis,' Dover

Publication Inc., New York

MICHENAUD J.P. and ISSI J.P. (1972) J . Phys. C: Sol i d State Phys.

5^ 3961

NAISH V.E. (1963) Izv. Acad. Nauk SSSR Ser. F i z . 2T_, 1496

NYE J.F. (1972) 'Physical properties of c r y s t a l s ' , Clarendon Press,

Oxford

ONSAGER L. (1931a) Phys. Rev. 37_, 405

ONSAGER L. (1931b) Phys. Rev. 38, 2265

OKTO O. and SAUNDERS G.A. (1967) Proc. Phys. Soc. 91^ 156

OPECHNOWSKI W. (1971) J . Phys. Pa r i s 32./ Suppl. CI , 457

OPECHOWBKI W. and DREYFUS T. (1971) Acta Crystallogr. A, 27, 470

OPECHOWSKI W. and GUCCIONE R. (1965) 'Magnetic Symmetry' i n 'Magnetism,'

Vol. 2A (ed. G.T. Radp and H. Sukl), p.105, Academic Press, New York.

PANTULO P.V. and SUDARSHAN E. (1970a) J . Phys. C: Solid State Phys.

3, 604

Page 168: Durham E-Theses Field dependent tensors in solid state physics · 2015-12-01 · The concept of field-dependent tensors (tensors the components of which depend on the direction of

- 159 -

PANTULU P.V. and SUDARSHAN E. (1970b) Acta Crystallogr. A, 26, 163

POURGHAZZ A., SAUNDERS G.A. and AKGOZ Y.C. (1976) P h i l . Mag. 33_, 781

SAUNDERS G.A. and SUMENGEN Z. (1972) J . Phys. F: Metal Physics

2, 972

SHUBNIKOV A.V. and BELOV N.V. (1964) 'Coloured symmetry' Pergamon

Press, Oxford (Shubnikov's book 'Symmetry and antisymmetry of f i n i t e

figures' i s translated i n t h i s text)

SOKOLNIKOFF I.S. (1956) 'Tensor Analysis' John Wiley & Sons, New York

SPAIN B. (1956) 'Tensor l a l c u l u s , ' Oliver and Boyd Ltd., Edinburgh

SUMENGEN Z. and SAUNDERS G.A. (1972) J . Phys. C: So l i d State Phys.

5, 425

TAVGER B.A. and ZAITSEV V.M. (1956) Zh. eksp. teor. F i z . 30, 564;

Translation: Sov. Phys. JETP 2_, 430

TURETKEN N., SUMENGEN Z. and SAUNDERS G.A. (1974) J . Phys. C:

Solid State Phys. 2' 2 2 0 4

VOIGT W. (1928) 'Lehrhuch der K r y s t a l l Physik,' (Leipzig)

WOOSTER W.A. (1938) 'A Textbook on Cry s t a l Physics,' Cambridge

WOOSTER W.A. (1973) 'Tensors and Group theory for the physical properties

of c r y s t a l s , ' Clarendon Press, Oxford

ZIRTER R.N. (1962) Phys. Rev. 127, 1471

ZOCHER H. and TOROK C. (1953) Proc. Nat. Acad. S c i . 39, 681

i77) 2 MOV 19*7