11
DurbachitesVaugnerites a geodynamic marker in the central European Variscan orogen Jurgen F. von Raumer, 1 Fritz Finger, 2 Petra Vesel a 3 and G erard M. Stampfli 4 1 D ept. de G eosciences, Universit e de Fribourg, P erolles, Fribourg CH-1700, Switzerland; 2 Fachbereich Materialforschung und Physik, Abteilung Mineralogie, Universit at Salzburg, Hellbrunnerstrasse 34, Salzburg A-5020, Austria; 3 Department of Earth and Environmental Sciences, Geology, Luisenstrasse 37, Munich 80333, Germany; 4 Institut de G eologie et Pal eontologie, UNIL CH-1015, Lausanne ABSTRACT DurbachitesVaugnerites are KMg-rich magmatic rocks derived from an enriched mantle source. Observed throughout the European Variscan basement, their present-day geograph- ical distribution does not reveal any obvious plate-tectonic context. Published geochronological data show that most durbachitesvaugnerites formed around 335340 Ma. Plotted in a Visean plate-tectonic reconstruction, the occurrences of durbachitesvaugnerites are concentrated in a hotspot like cluster in the Galatian superterrane, featuring a distinctive regional magmatic province. Reviewing the existing local studies on Variscan durbachitevaugnerite rocks, we interpret their extensive appearance in the Visean in terms of two factors: (i) long-term mantle enrichment above early Variscan subduction systems; and (ii) melting of this enriched subconti- nental mantle source during the Variscan collision stage due to thermal anomalies below the Galatian superterrane, possi- bly created by slab windows and and/or the sinking of the subducted Rheic slab into the mantle. The tectonic reorgani- zation of Europe in the Late Palaeozoic and during the Alpine orogeny has torn apart and blurred this marked domain of durbachitesvaugnerites. Terra Nova, 26, 85–95, 2014 Introduction The term ‘Durbachit’ (Sauer, 1893) was first used for a biotite- and amphibole-rich border facies of lam- prophyric character recognized around a granite body near Dur- bach, in the Central Black Forest. Petrographically similar rocks became known in early work as vau- gnerites (Mts. de Lyonnais, Fournet 1833, Lacroix, 1917), or as redwitz- ites (Marktredwitz, Fichtelgebirge, NE Bavaria, Willmann, 1920). The mineral assemblage of these rocks is, in general, K-feldspar, quartz, plagioclase, Mg-rich biotite, actinolitic hornblende, clinopyrox- ene, rare orthopyroxene, titanite, apatite, allanite, zircon and pyrite. Not always, but very often, durbach- itesvaugnerites exhibit a granitoid texture with phyric K-feldspars and the term melagranite is commonly used for such varieties in the litera- ture. Geochemically, the rocks are characterized by a metaluminous composition at mostly intermediate SiO 2 contents (5570 wt.%), and the unusual combination of very high K 2 O contents (49 wt.%) with rela- tively high Mg numbers formerly corresponding to De La Roche et al.’s (1980) sub-alkaline trend. The trace element signature of the rocks typically involves very high Ba (10003000 ppm) and Sr contents (5001000 ppm) and elevated con- tents of Th (Holub, 1977; Gerdes et al., 2000; Ferr e and Leake, 2001; Finger et al., 2007; Janou sek and Holub, 2007). There is wide agree- ment from geochemical studies and experimental work that igneous rocks of the durbachitevaugnerite type represent magmas from an enriched mantle source, variably modified by fractionation, magma mixing and crustal contamination (Holub, 1997; Gerdes et al., 2000; Solgadi et al., 2007; Parat et al., 2010). Durbachites/Vaugnerites seem to represent a rock type that is particu- larly characteristic for the Variscan belt. They are reported from many of the European Variscan basement areas (Fig. 1), but their mere geo- graphical distribution cannot satisfy any large-scale model for their for- mation (c.f. Von Raumer et al., 2012). Linear arrangements of such magmatic bodies have been noted in a regional context (Rossi et al., 1990; Rossi and Cocherie, 1995; Ferr e and Leake, 2001; Finger et al., 2007). Schaltegger (1997) discussed for the first time a possible genetic relation with a palaeosuture; a model involv- ing partial melting of an enriched mantle at the transition from thickening to collapse of the Vari- scan orogenic belt was presented by Solgadi et al. (2007). Von Raumer (1998) discussed a possible belt-like arrangement of these plutons along the whole Variscan orogen, relating the durbachite-bearing basement areas of the Tauern Window and the Alpine External Massifs with those of Corsica, the French Central Mas- sif, Black Forest, Vosges and the Bohemian Massif. New palinspastic reconstructions of the Variscan domain (Stampfli et al., 2011, 2013) may help to better understand the palaeogeographic distribution of these distinctive magmatic rocks and the geodynamic background of magma formation. Occurrences of durbachitesvaugnerites in central Europe a review Figure 1 shows localities from where rocks of the durbachitevaugnerite type have been as yet reported. At first sight, the rocks seem to be irreg- ularly distributed all over Variscan Europe. They have been found in the Bohemian Massif, Black Forest, Vosges (Moldanubian Zone), in the Correspondence:Jurgen F Von Raumer, D ept. de G eosciences, Universit e de Fri- bourg, P erolles, CH-1700 Fribourg, Swit- zerland. Tel.: 0041 26 402 15 31; e-mail: [email protected] © 2013 John Wiley & Sons Ltd 85 doi: 10.1111/ter.12071

Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

Embed Size (px)

Citation preview

Page 1: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

Durbachites–Vaugnerites – a geodynamic marker in the centralEuropean Variscan orogen

J€urgen F. von Raumer,1 Fritz Finger,2 Petra Vesel�a3 and G�erard M. Stampfli41D�ept. de G�eosciences, Universit�e de Fribourg, P�erolles, Fribourg CH-1700, Switzerland; 2Fachbereich Materialforschung und Physik,

Abteilung Mineralogie, Universit€at Salzburg, Hellbrunnerstrasse 34, Salzburg A-5020, Austria; 3Department of Earth and Environmental

Sciences, Geology, Luisenstrasse 37, Munich 80333, Germany; 4Institut de G�eologie et Pal�eontologie, UNIL CH-1015, Lausanne

ABSTRACT

Durbachites–Vaugnerites are K–Mg-rich magmatic rocks

derived from an enriched mantle source. Observed throughout

the European Variscan basement, their present-day geograph-

ical distribution does not reveal any obvious plate-tectonic

context. Published geochronological data show that most

durbachites–vaugnerites formed around 335–340 Ma. Plotted

in a Visean plate-tectonic reconstruction, the occurrences of

durbachites–vaugnerites are concentrated in a hotspot like

cluster in the Galatian superterrane, featuring a distinctive

regional magmatic province. Reviewing the existing local

studies on Variscan durbachite–vaugnerite rocks, we interpret

their extensive appearance in the Visean in terms of two

factors: (i) long-term mantle enrichment above early Variscan

subduction systems; and (ii) melting of this enriched subconti-

nental mantle source during the Variscan collision stage due

to thermal anomalies below the Galatian superterrane, possi-

bly created by slab windows and and/or the sinking of the

subducted Rheic slab into the mantle. The tectonic reorgani-

zation of Europe in the Late Palaeozoic and during the Alpine

orogeny has torn apart and blurred this marked domain of

durbachites–vaugnerites.

Terra Nova, 26, 85–95, 2014

Introduction

The term ‘Durbachit’ (Sauer, 1893)was first used for a biotite- andamphibole-rich border facies of lam-prophyric character recognizedaround a granite body near Dur-bach, in the Central Black Forest.Petrographically similar rocksbecame known in early work as vau-gnerites (Mts. de Lyonnais, Fournet1833, Lacroix, 1917), or as redwitz-ites (Marktredwitz, Fichtelgebirge,NE Bavaria, Willmann, 1920).The mineral assemblage of these

rocks is, in general, K-feldspar,quartz, plagioclase, Mg-rich biotite,actinolitic hornblende, � clinopyrox-ene, � rare orthopyroxene, titanite,apatite, allanite, zircon and pyrite.Not always, but very often, durbach-ites–vaugnerites exhibit a granitoidtexture with phyric K-feldspars andthe term melagranite is commonlyused for such varieties in the litera-ture. Geochemically, the rocks arecharacterized by a metaluminouscomposition at mostly intermediateSiO2 contents (55–70 wt.%), and theunusual combination of very high

K2O contents (4–9 wt.%) with rela-tively high Mg numbers – formerlycorresponding to De La Rocheet al.’s (1980) sub-alkaline trend. Thetrace element signature of the rockstypically involves very high Ba(1000–3000 ppm) and Sr contents(500–1000 ppm) and elevated con-tents of Th (Holub, 1977; Gerdeset al., 2000; Ferr�e and Leake, 2001;Finger et al., 2007; Janou�sek andHolub, 2007). There is wide agree-ment from geochemical studies andexperimental work that igneous rocksof the durbachite–vaugnerite typerepresent magmas from an enrichedmantle source, variably modified byfractionation, magma mixing andcrustal contamination (Holub, 1997;Gerdes et al., 2000; Solgadi et al.,2007; Parat et al., 2010).Durbachites/Vaugnerites seem to

represent a rock type that is particu-larly characteristic for the Variscanbelt. They are reported from manyof the European Variscan basementareas (Fig. 1), but their mere geo-graphical distribution cannot satisfyany large-scale model for their for-mation (c.f. Von Raumer et al.,2012). Linear arrangements of suchmagmatic bodies have been noted ina regional context (Rossi et al., 1990;Rossi and Cocherie, 1995; Ferr�e andLeake, 2001; Finger et al., 2007).Schaltegger (1997) discussed for the

first time a possible genetic relationwith a palaeosuture; a model involv-ing partial melting of an enrichedmantle at the transition fromthickening to collapse of the Vari-scan orogenic belt was presented bySolgadi et al. (2007). Von Raumer(1998) discussed a possible belt-likearrangement of these plutons alongthe whole Variscan orogen, relatingthe durbachite-bearing basementareas of the Tauern Window and theAlpine External Massifs with thoseof Corsica, the French Central Mas-sif, Black Forest, Vosges and theBohemian Massif. New palinspasticreconstructions of the Variscandomain (Stampfli et al., 2011, 2013)may help to better understand thepalaeogeographic distribution ofthese distinctive magmatic rocks andthe geodynamic background ofmagma formation.

Occurrences of durbachites–vaugnerites in central Europe –a review

Figure 1 shows localities from whererocks of the durbachite–vaugneritetype have been as yet reported. Atfirst sight, the rocks seem to be irreg-ularly distributed all over VariscanEurope. They have been found in theBohemian Massif, Black Forest,Vosges (Moldanubian Zone), in the

Correspondence: J€urgen F Von Raumer,

D�ept. de G�eosciences, Universit�e de Fri-

bourg, P�erolles, CH-1700 Fribourg, Swit-

zerland. Tel.: 0041 26 402 15 31;

e-mail: [email protected]

© 2013 John Wiley & Sons Ltd 85

doi: 10.1111/ter.12071

Page 2: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

Massif Central and Corsica, but alsowithin the Alpine domain (ExternalMassifs, Hohe Tauern). Further-more, we find these rocks some2000 km to the west in north-westernSpain and far to the east in Bulgaria.

Bohemian massif

This massif hosts several large durba-chite-type plutons, mostly located inthe Moldanubian Zone. They havebeen extensively studied during thepast years and a wealth of high-quality petrographic, geochemical,isotopic and geochronological dataare available (Central BohemianPluton, Holub, 1977, 1997; T�reb�ı�cMassif, Holub et al., 1997; Kn�ı�zec�ıStolec pluton, Verner et al., 2008;Rastenberg Pluton, Kl€otzli and Par-rish, 1996; Gerdes et al., 2000). Allworkers agree that the Moldanubiandurbachite magmas contain compo-nents from an enriched mantlesource perhaps contaminated by sub-ducted crust, and experiencedvariable later modification by crustalcontamination, admixing of lowercrustal melts or fractional crystalliza-tion. Another important finding is

that all these plutons intruded almostcontemporaneously around 338 Ma(c.f. Table 1). New papers (Fingeret al., 2007; Janou�sek and Holub,2007; Janou�sek et al., 2012) holdunanimously the view that the petro-genesis of the Moldanubian durba-chite magmas must be seen in thecontext of collision of the variousBohemian terrane fragments. Theidea is that processes subsequent tosubduction led to a significant tem-perature increase below the orogen,triggering the melting of metasoma-tized and contaminated mantledomains. A special feature of theMoldanubian durbachite intrusionsis that they are temporally and spa-tially related to the exhumation ofHP-HT rocks (Finger et al., 2007;Janou�sek and Holub, 2007).A few Durbachite plutons occur

also in the Saxothuringian and Lu-gian part of the Bohemian massif(Niemcza area, Polish Sudetes:Leichmann and Gaweda, 2001;Mazur et al., 2007; Meissen Massif:Wenzel et al., 1997, 2000; Nasdalaet al., 1999). These plutons showbasically the same compositions andages as the Moldanubian ones.

The redwitzites (Troll, 1968; Siebelet al., 2003) of the western BohemianMassif (R in Fig. 1) have a slightlydifferent petrogenesis. Althoughrepresenting also relatively maficmagmas with melt components froman enriched mantle source, they can-not be directly correlated with theBohemian durbachite plutons due totheir significantly younger age of~322 Ma (Kova�r�ıkov�a et al., 2007).These redwitzite magmas intruded ata time, when the whole south-western Bohemian massif wasinvaded by numerous, mainly crus-tally derived granitic magmas (for-mation of the Saxo-DanubianBatholith – Finger et al., 2009). Min-gling phenomena between the felsicgranites and the mafic redwitzitemagmas are ubiqitous. The redwitz-ites often appear as comagmaticenclaves in the granites.

Black Forest

The durbachites of the Black Forest(Schwarzwald) form only relativelysmall bodies that appear to be con-nected to late Variscan granitoidintrusions dated at around 333 Ma(Schaltegger, 2000). The durbachiterocks themselves have as yet notbeen precisely dated by geochrono-logical methods. Although the dur-bachites of the Black Forest arename given for this rock type, theyresemble the Bohemian redwitzites atleast in the point that they intrudecontemporaneously with large vol-umes of Variscan crustal granites, inwhich they appear as magmaticenclaves (Oberkirch granite, Otto,1974). Durbachite plutons of a largersize, like those from the BohemianMassif are not known from theBlack Forest area.

Vosges

In the southern Vosges, durbachiticmagmas occur in the form of ViseanMg-K volcanics or as monzonitic–granodioritic intrusions (e.g. Granitedes Cretes, Granite des Ballons),dated at 342 � 1 to 339.5 � 2.5 Ma(Schaltegger et al., 1996). In the cen-tral Vosges, durbachite-type magma-tism occurred coeval with theformation of migmatites and lateVariscan granitoid intrusions ataround 332 Ma (Schaltegger et al.,

MC

CaWL

CIb

SP

OM

Sx

MArm

Alps

PyAq

Mo

Ti

Co

All

R

Fig. 1 Geographical distribution of durbachite–vaugnerite localities (red dots, con-sult references in Tab. 1 for precise localities) and their pre-Mesozoic hosts in Cen-tral Europe (map modified after Stampfli et al., 2006), R – Redwitzite locality;Grey – Subdivision of the European pre-Mesozoic basement areas (light grey) intoGeodynamic Units (GDU’s, first time Stampfli et al., 2006, Hochard 2008) inspiredby Franke (1989). For a better understanding and identification, the contours ofthe specific geodynamic units are used: AM: Armorica; Aq: Aquitaine; BM: Bohe-mian Massif; CIb: Central Iberian basement; Ca: Cantabrian terrane; M: Moldanu-bian basement (Bohemian Massif, Black Forest, Vosges); MC: French CentralMassif; Mo: Moesian platform; OM: Ossa Morena; Py: Pyrenees; SP: South Portu-guese zone; Sx: Saxothuringian zone; Ti: Tisia unit; WL: West Asturian–Leonesezone. Dark contours: geographical limits.

86 © 2013 John Wiley & Sons Ltd

Durbachites as geodynamic markers • J. F. von Raumer et al. Terra Nova, Vol 26, No. 2, 85–95

.............................................................................................................................................................

Page 3: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

1997; Schulmann et al., 2002), closelyresembling the situation in the BlackForest.

French Massif Central

In the French Massif Central, theappropriate rocks are traditionallytermed vaugnerites and are mainlyobserved in the eastern part of themassif, in the neighbourhood of theLate Variscan anatectic–granitic Ve-lay dome. As shown in the classicalpapers by Sabatier (1980, 1991), thesevaugnerites appear in most cases asrounded enclaves in late Variscangranitoid bodies. Larger intrusivebodies as well as dikes of vaugneritesare rare. Ledru et al. (2001, theirfig. 5a,b) mention irregular shapedmonzodiorite xenoliths – ‘durbach-ites’ – narrowly related to porphyric

granitoids (335–315 Ma) emplacedbefore the cordierite–granites of theVelay dome (Ledru, oral comm.).

Central Iberian domain

In the Central Iberian domain, Gil Ib-arguchi (1980, 1981, 1982) describedoccurrences of vaugnerite-type mag-matic rocks from the western coastalareas. Comparable rocks have beendiscovered in the anatectic TormesDome of the autochthonous base-ment (L�opez-Moro and L�opez-Plaza,2004). Many localities are situatedalong the border zone of the allo-chthonous domain in north-westernSpain (Gallastegui, 1993, 2005; herfig. 2.6). In particular, the Bayo-Vigozone contains many outcrops of‘early granodiorites’ with a presumedLower Carboniferous age, which

host rounded enclaves of vaugnerites(Gallastegui, 2005).

Corsica

In Corsica, vaugnerites form eitherindependent bodies of up to 500 mdiameter, enclaves of >10 m within thehigh-K granites, or they appear as syn-plutonic dikes. Dated around 337 Ma,the rocks were interpreted as early oro-genic, mixed high-K crustal and man-tle melts (Orsini, 1976; Rossi andCocherie, 1995; M�enot et al., 1996;Ferr�e and Leake, 2001; Rossi et al.,2012). Rossi et al. (2009) proposedthat the vaugnerites of Corsica followa sinistral transpressional fault zone,sealing the contact of formerArmorica-derived (Corsica) andGondwana-derived (Sardinia) base-ment terranes (cf. Laporte et al., 1991).

Table 1 Durbachite–Vaugnerite age data.

Terrane Locality Ages (Ma) References

Bohemian Massif Central Bohemian Pluton 343 � 6 Zrn ev Holub et al., 1997

Janou�sek & Gerdes 2003

Rastenberg Pluton 337 � 1 Zrn, Rt Kl€otzli and Parrish, 1996

Kn�ı�zec�ı Stolec Pluton 338 � 2 Verner et al., 2008

341 � 8 CHIME

340 � 8 Zrn ev Holub et al., 1997

338–335 Kotkov�a et al., 2003

T�reb�ı�c Massif 342 � 3 SHRIMP Kusiak et al., 2010

Jihlava Massif 348 � 18 CHIME Kusiak et al., 2010

335 � 1 Ma Kotkov�a et al., 2010

Janou�sek et al., 2010

Marktredwitz 324–321 Zrn ev Siebel et al., 2003

Slavkovsk�y les 323–326 Zrn ev Kova�r�ıkov�a et al., 2007;

Kova�r�ıkov�a et al., 2010

Saxothuringian Meissen 340 � 16 U/Pb Nasdala et al., 1999

Wenzel et al., 1997

French Central Massif Gu�eret massif 350–340 Rb/Sr Gal�an et al., 1997

Livradois <360 � 4 mnz Gardien et al., 2011

Velay, related to

coarse granitoids

>335–315 Ma? Ledru et al., 2001

Vosges 340 � 2 U/Pb Schaltegger et al., 1996

332 + 3/-2 U/Pb Schulmann et al., 2002

Black Forest ~330 Hegner et al., 1996

Massif de Maures Reverdit Tonalite 334 � 3 U/Pb Moussavou, 1998

External Massifs Aar-Massiv 334 � 2 U/Pb Schaltegger and Corfu, 1992

Aiguilles Rouges 332 � 2 U/Pb Bussy et al., 1998

Belledonne 335 � 13 U/Pb Debon et al., 1998

Pelvoux, Rochail 343 � 11 U/Pb Guerrot and Debon, 2000

Argentera Massif 337 � 8 U/Pb Debon & Lemmet 1999

Tauern Window ~ 340 SHRIMP Eichhorn et al., 2000

Ahorn Gneiss 334 � 5 U/Pb Vesel�a et al., 2011

Corsica ~337 M�enot et al., 1996

Rossi and Cocherie, 1995

342 � 1 U/Pb Rossi et al., 2009

Central Iberia Bayo – Vigo region ~349 U/Pb Gallastegui, 2005

Tisia Massif Mecsek Mountains 339 � 10 Zrn ev Kl€otzli et al., 2004

Moesian Platform Svoge region 337–338 U/Pb Buzzi et al., 2010

© 2013 John Wiley & Sons Ltd 87

Terra Nova, Vol 26, No. 2, 85–95 J. F. von Raumer et al. • Durbachites as geodynamic markers

............................................................................................................................................................

Page 4: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

Alpine domain

In particular in the external massifs,several gneisses and metagranitoidswith durbachitic affinities and Vis�eanformation ages have been found(Aar: Schaltegger, 1994; Schalteggerand Corfu, 1992, 1995; AiguillesRouges: Bussy et al., 1998, 2000;Von Raumer and Bussy, 2004;Belledonne: Debon et al., 1998;Guillot et al., 2009; Argentera: Lom-bardo et al., 1997, 2011). ‘K-feldsparamphibolites’ (meta-durbachites)with actinolitic lumps and layers(former ultramafic layers) in theMont-Blanc/Val Ferret area havecomparable ages (Von Raumer andBussy, 2004), and vaugnerite–durba-chite magmatic enclaves and intru-sive bodies of Visean age wereobserved in the Pelvoux area (LeFort, 1973; Banzet, 1987; Vittozet al., 1987; Guerrot and Debon,2000). Le Fort’s (1973) Gneissd’Olan is likely to be a volcanic–subvolcanic durbachitic complex ofVisean age (cf. Von Raumer, 1998).Finally, the basement of the TauernWindow (Eastern Alps) comprises aseries of variably gneissified high-Kgranitoids of Visean age that can beincluded into the durbachite group(Finger et al., 1993; Eichhorn et al.,2000; Ahorn-Gneiss, Vesel�a et al.,2011).

Tisia domain

In the Hungarian Tisia domain(M�or�agy unit of the Mecsek Mou-tains), K–Mg-rich granitoids ofTournaisian to early Visean ageshow features of durbachitic magmas(Kl€otzli et al., 2004).

Variscan axial zone of Bulgaria

Syenitic–monzodioritic rocks fromthe Svoge region (Cortesogno et al.,2004) with an age of 337–338 Mawere recently described by Buzziet al. (2010). These rocks have strongsimilarities to the durbachite–vaugneriterocks of central Europe.

Plate-tectonic background

The ideas about the Variscan orogenyin Central Europe and their plate-tectonic reconstructions have consid-erably evolved. If considering recent

reconstructions (Stampfli et al., 2011,2013), the Variscan orogen is seen as acollage of three terranes, Armorica,Ligeria and Galatia (Fig. 2B). Theseterranes split off from the Gondwanamargin in the Devonian, when thePalaeotethys opened, and drifted inthe shape of an elongate magmatic arcsystem in the direction of Laurussia.This new concept involves a longlast-ing and orogen-wide Andean typeevolution in the Devonian. Numerousoccurrences of Devonian HP pressurerocks give clear evidence for this earlyVariscan subduction stage and arealigned in the model along the northernmargin of the Armorican–Ligerian–Galatian arc system. In the Carbonif-erous, the three individual terranesArmorica, Ligeria and Galatia col-lided and were dragged along eachother to form a new thick superterra-ne, which, in turn, collided with theLaurussian continent margin and terr-anes derived therefrom (e.g. HanseaticTerrane, former part of Avalonia).Note that, during the collision of Gal-atia and Ligeria, the intra-AlpineVariscan units moved into the southof the Moldanubian domain. At aboutthe same time, the Armorican base-ment units moved in a position northof the former Ligerian Cordillera.In Late Visean times (Fig. 2C), we

observe a cluster of durbachite–vau-gnerite rocks in the centre of theGalatian superterrane. This plutonicprovince seems to straddle the suturebetween the Armorican terrane andthe Ligerian–Galatian terrane amal-game. Thereby, most of the durbach-ites–vaugnerites are positioned inLigerian–Galatian basement units,i.e. in the upper plate of the collisonzone. Only a few (the Saxothuringianand Moesian occurrences of dur-bachites) are situated within Armori-ca-derived basement massifs.

Discussion

Many durbachites/vaugnerites are, ina broad sense, granitoid rocks. How-ever, in most of the large granite areason earth, they appear to be insignifi-cant. For instance, durbachites–vau-gnerites play, to our knowledge, norole in the granite-rich Lachlan foldbelt (Bruce Chappell, pers. comm.).Neither they appear to play a role inthe voluminous Cordilleran I-typegranite belts along the North and

South American west coast. Thisimplies that large-scale processes ofgranite formation normally do notproduce such rocks. In fact, descrip-tions of igneous rocks similar to durb-achite–vaugnerite rocks exist onlysporadically in the literature, with theexception of the Variscan fold belt,where they definitely reach their high-est concentrations. Monzonitic rocksassociated with syenites and high Sr–Ba granites reported by Andersonet al. (2006) from a distinct zone inthe Fennoscandian Shield could beequivalent to the Variscan durbach-ites–vaugnerites. These 1.8 Ga oldrocks are post-collisional with respectto the Svecofennian orogeny and arethought to be derived from anenriched mantle source heated upthrough slab break-off or a plume.From the viewpoint of geochemistry,but less with regard to rock texturesand modal compositions, the durba-chite–vaugnerite rocks show affinitiesto post-collisional ultrapotassic, maficto intermediate mantle magmatismin Tibet (Miller et al., 1999; Guoet al., 2013), North Korea (Penget al., 2008) or eastern China(Yang et al., 2005; Wang et al., 2007).However, potassium enrichment is onthe whole much stronger in theseAsian rocks.Accepting the common view that

magmas of the durbachite–vaugneritefamily are extracted from enrichedmantle sources (Holub, 1997; Gerdeset al., 2000; Janou�sek and Holub,2007), we conclude that at least twoprerequisites must have existed in theVariscan regions where the rocksformed. First, these regions must havebeen underlain by fertile enrichedmantle material. Second, a proper tec-tonothermal trigger must haveappeared in the Visean to get thissource melted.The common scenario for building

up an enriched mantle reservoir issubduction (Fitton et al., 1991; Haw-kesworth et al., 1995; Wilson et al.,1997). Aqueous fluids derived fromthe downgoing slab infiltrate themantle wedge and bring along water-soluble chemical elements. Where thethermal conditions are appropriate,this fluid input will cause peridotitemelting and arc magmatism. Wherethe melting curve of the peridotite isnot overstepped, the mantle will besuccessively hydrated. The formation

88 © 2013 John Wiley & Sons Ltd

Durbachites as geodynamic markers • J. F. von Raumer et al. Terra Nova, Vol 26, No. 2, 85–95

.............................................................................................................................................................

Page 5: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

of phlogopite in such mantledomains causes an increased fertilitywith reference to a possible latermelting event. Elements compatiblefor phlogopite, mainly K, Ba, Rb,will then be strongly enriched in par-tial melts derived from such a source.Good examples for such a scenarioare the late-Pliocene high K–Mg vol-canic rocks from the Taiwan region,which are supposed to be derivedfrom a metasomatized phlogopite-bearing harzburgitic source in the

lithospheric mantle (Chung et al.,2001; Wang et al., 2006).Turning back to the Variscan situ-

ation, we propose that long-lastingDevonian subduction of the RheicOcean has created a strongly enrichedmantle underneath the northern halfof the Armorican–Ligerian–Galatianterrane chain. A genetic contextbetween durbachite–vaugnerite for-mation and these earlier subductionprocesses is supported by the factthat almost all durbachite–vaugne-

rite-bearing basement areas show arecord of Devonian/early Carbonifer-ous HP-metamorphism or arc mag-matism (see Fig. 2 and our earlierreview section).A crucial point is the geological

situation in the Visean. It has longbeen recognized that this was thetime of fast post-collisional basementexhumation in many parts of theVariscides, which is reflected notonly in the geochronological data ofthe exhumed rocks but also in a high

(A)

AllAAAllAlAlAllAAAAAAAAA HHeHHeeeH TWTWTWTWTWTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA HHHHHHHHHHHHHHHHHHHHHeHHHHHHHHHHHeHeeHHHHHHHHHHHHeeeeeeeeeeeeeeeeee TTTTTTWWWWWW

AreMPo

Lz

MCBr

Mg MeSh

BRK cICA

SxMR

OM

MM

Md

Tz Cr

Ad

Ch

Mo CC

Pt

An

Laurussia

Frasnian

ridge

ridge

Rhenohercynian

Paleotethys

He

All

TWCt

AP

HI

GtRd

D-B

DbIs

Late Visean

Ligerian arc suture

Paleotethys

Br

MgMe

BRK

OM

Ar

MoDb

Sx

Is

cI

CA

MC MdAPCt

MM TzAd

GtCr Rd

HI

An

Pt

(B)

(C)

Rheic Ocean

B

AArmorica

LigeriaGalatia

Fig. 2 Durbachites/Vaugnerites in the context of their Late Devonian to Carboniferous plate-tectonic environment. A – Frasnianreconstruction after Stampfli et al. (2011) for location of B. B – Distribution of durbachites/vaugnerites in their Frasnian context,modified after Stampfli (2012). Red dots: Location of durbachites in their future geodynamic unit (Fig 2C), indicating a certainproximity to the Ligerian suture (Stampfli et al., 2013) and to basement areas (yellow polygons) with Late Devonian HPevolution (compare Stampfli et al., 2011; Von Raumer et al., 2013; their Fig. 6B). C – Late Visean distribution of durbachites/vaugnerites (red dots) with contours of the main Variscan basement areas (grey) and Visean rift-basins (light blue). Heavycontours correspond to geographical limits. Modified from Stampfli et al. (2013). A–B: location of cross-section models in Fig. 3.Identification of basement areas: AA – Austroalpine; Ad – Adria and Sardinia; An – Anatolic; AP– Aquitaine Pyrenees andCorsica; Ar – Armorica; Br – Brunswick; BRK – Betics-Rif-Kabbilies; Ca – Cantabrian and West Asturian-Leonese zones; CC –Caucasus; Ch – Channel; Cr – Carpathian; Ct – Catalunia; cI and All – Central Iberian basement with allochthonous units; Db –Dobrogea; D–B – Dacides–Bucovinian; eM – Eastern Moroccan Meseta; He – External Alpine massifs; HI – Hellenidic; Is –Istambul; Md – Moldanubian (Bohemian Massif, Black Forest, Vosges); MC – Massif Central; Me – Moroccan Meseta; Mg –Meguma; MM – Montagne Noire-Maures and Tanneron; Mo – Moesia; MR – Mid-German Rise; OM – Ossa Morena; Po –south Portuguese; Pt – Pontides (Karakaya); Sh – Sehoul block; Sx – Saxothuringia; TW – Tauern Window; Tz – Tizia.

© 2013 John Wiley & Sons Ltd 89

Terra Nova, Vol 26, No. 2, 85–95 J. F. von Raumer et al. • Durbachites as geodynamic markers

............................................................................................................................................................

Page 6: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

sedimentation rate in coeval basins(Zwart and Dornsiepen, 1978; Matte,1986). In particular along the suturebetween the Ligerian and the Armor-ican terrane, high-pressure, high-tem-perature granulites, initially about1000 °C hot (O’Brien and Carswell,1993; Krenn and Finger, 2010), wereexhumed from mantle depth (ca.60 km) to the surface within a fewmillion years (O′Brien, 2000; Friedlet al., 2011). These HP–HT granu-lites witness anomalously high tem-peratures underneath the collisionzone, which are commonly explainedin terms of rising astenosphere fol-lowing a process of slab break-off(Finger et al., 2007; Janou�sek andHolub, 2007).Considering the new tectonic mod-

els of Stampfli et al. (2011, 2013), thehigh heat flow during the Viseancould be explained in terms of adetachment of a relatively cold maficunderplate, representing the com-pletely subducted oceanic crust ofthe Rheic Ocean. Figure 3 showsthat most durbachite–vaugneriteoccurrences are situated at that timeright above this presumed zone ofslab sinking. Note that the model ofStampfli et al. (2011, 2013) involvesa subduction of the Rheic Ocean oneither side, i.e. subduction to thesouth below the Galatian superterra-ne and to the north below the Han-seatic terrane. The latter represents aribbon-like continental fragmentdetached from Laurussia and consist-ing mainly of pieces of Avalonia.The slab roll-back of the Rheic wasresponsible for the early-to-middleDevonian opening of the Rhenoh-ercynian Ocean along Laurussia,and of the Palaeotethys along theGondwana margin (Fig. 3). Inthe Late Devonian, the collision ofthe Hanseatic and Galatian terranescorresponds to the disappearance ofthe Rheic Ocean that triggered sub-duction reversal on both sides of theamalgamating terranes, i.e. the Rhe-nohercynian started to subductsouthward, whereas the Palaeotethyssubducted northward. The passivemargins of both terranes were thenchanged into active margins and thisis well expressed by the apparition offlysch-like deposits followed by vol-canism at the turn of the Devonian.After subduction reversal in theEarly Carboniferous, slab windows

may have developed beneath theGalatian/Hanseatic terrane collagedue to the subduction of mid-oceanridges on both sides (Fig. 3). Weconsider it possible that these slabwindows have given a particularimportant impetus for the formationof the durbachites–vaugnerites. Othermodels for the Variscides involveonly a southward subduction of asingle Rheic Ocean (e.g. Schulmannet al., 2009; Nance et al., 2010).However, also in that case, a highheat flow scenario can be constructedsimilar to that in Fig. 3, if a processof slab break-off, slab retreat, or aslab window is invoked (e.g. themodel of Vanderhaeghe and Duch-ene, 2010, which involves crust/man-tle decoupling combined with slabretreat).

Conclusion – the general picture ofan evolving orogen

Visean magmatic rocks of the durba-chite–vaugnerite type characterize theVariscan basement areas of the Helv-etic domain, the Tauern Window, aswell as the entire Moldanubian Zonebetween the Bohemian Massif andthe French Central Massif and Cor-sica. Notably, other Variscan base-ment areas of central Europe as forinstance, in the Carpathians, arecompletely devoid of these rocks(e.g. Broska et al., 2013). Becausethe respective magmas are mostlikely derived from an enriched man-tle source, we propose a suprasubduction position for the durba-chite–vaugnerite-bearing basementunits. The significance of theseK–Mg-rich rocks as markers of asuture zone was discussed already bySchaltegger (1997). Edel (2001)related their formation to an envi-ronment of wrenching and orogenparallel extension. The hotspot-likedistribution of the durbachites–vau-gnerites above the suture between theArmorican terrane (lower plate) andthe Ligerian–Galatian terrane amal-game (Fig. 3) probably reflects large-scale thermal anomalies in the man-tle underneath, for which variouslate-collisional tectonic processescould have been responsible (slabsinking or slab break-off, slab win-dows, slab retreat). Following thatlogic, magmatic rocks of the durba-chite–vaugnerite type should also be

discovered in the allochthonous unitsof the Central Iberian basements(Fern�andez-Su�arez et al., 2007) andin the Limousin area, which resem-bles in its tectonic situation the allo-chthonous units of the CentralIberian basements (c.f. Berger et al.,2012). Indeed, we may infer fromrock descriptions given in Gallastegui(2005) that the ‘older granodiorites’from Central Iberia correspondwidely to the melagranitic, K-feld-spar-phyric durbachite types knownfrom the Bohemian Massif (e.g. theRastenberg granodiorite, Gerdeset al., 2000), and a comparable rela-tionship may have existed betweenangular durbachite xenoliths andtheir K-feldspar-phyric granitoidhosts of the Velay area (see above).The gradual post-Visean juxtaposi-tion of terrane assemblages (e.g.Giorgis et al., 1999; Guillot et al.,2009; Schulmann et al., 2009) led toa general narrowing of the orogen,the disappearance of the RheicOcean and the subduction of thePalaeotethys ridge (Fig. 3). Parts ofthe Variscides were affected by inten-sive crustal melting at that time andlarge batholiths formed. We find, forinstance, widespread migmatization(since about 330 Ma) in the Bavarianzone of the Bohemian Massif (Fingeret al., 2007) or the Velay dome inthe Massif Central, with the intru-sion of late Variscan (about 310 Ma)cordierite-bearing peraluminousgranitoids (Montel et al., 1992;Ledru et al., 2001). Equivalents ofthese late Variscan migmatites andcordierite-bearing peraluminousgranitoids also occur in the Externaldomain (Bussy et al., 2000; Olsenet al., 2000; Lombardo et al., 2011),and are followed there by slightlyyounger intrusions (around 300 Ma)of Fe–K-type granitoids emplaced ina pull-apart system (e.g. Mont-Blancgranite, Von Raumer and Bussy,2004). This late magmatic evolutionhas to be seen in the frame of thecollapsing Carboniferous cordillera(roll-back of the Palaeothethys slabafter the closure of the Rhenohercy-nian Ocean). Observations in theintra-Alpine and Carpathian base-ment show that magmatism changedduring the Permian to a bimodaltype, with gabbros on one hand, andfelsic A-, I- and S-type granites andrhyolites on the other hand (e.g.

90 © 2013 John Wiley & Sons Ltd

Durbachites as geodynamic markers • J. F. von Raumer et al. Terra Nova, Vol 26, No. 2, 85–95

.............................................................................................................................................................

Page 7: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

Finger et al., 2003; Vesel�a et al.,2011), and evolves, during the Perm-ian, into bimodal magmatism, gab-bros included, as observed in theAlpine domain (Von Raumer et al.,2013).In conclusion, the durbachite–vau-

gnerite magmatic assemblage is inter-preted as a geodynamic marker for aprominent late-collisional meltingevent within the enriched subconti-nental mantle underneath the Vari-scan orogen and we consider slabwindows as a possible trigger. Thisorogenic configuration of the Viseanwas then strongly overprinted duringthe Upper Carboniferous and Perm-ian extension (Stampfli et al., 2013),leading to a wide post-Variscan basin

and range system and the opening ofMeliata-type back-arc basins. Thefinal lithospheric re-equilibration tosea level conditions was attained dur-ing Triassic times and affected nearlythe entire orogene, before Alpine tec-tonics led to the formation of thepresent-day puzzle.

Acknowledgements

We acknowledge the comments byVojt�ech Janou�sek (Prague) on an earlierversion of this manuscript, and weappreciated the careful reviews and sug-gestions made by two anonymousreviewers and by O. Vanderhaeghe (Uni-versit�e de Lorraine). We appreciated thesupplementary information by PatrickLedru (Saskatton) on the Velay dome.

Klaus Mezger, scientific editor, andAnne Borcherds, editorial office man-ager, are thanked for their encouragingassistance.

References

Anderson, U.B., Eklund, O., Fr€ojd€o, S.and Konopelko, D., 2006. 1.8 Gamagmatism in the FennoscandianShield; lateral variations insubcontinental mantle enrichment.Lithos, 86, 110–136.

Banzet, G., 1987. Interaction croute-manteaux et genese du plutonismesubalcalin du Haut Dauphin�e occidental(Massifs cristallins externs): vaugn�erites,durbachites et granitoides magn�esio-potassiques. G�eologie Alpine, 63, 95–117.

Berger, J., F�em�enas, O., Mercier, J.Cl,Ohnenstetter, D. and Bruguier, D.,

2

200 km

00

200

600400

400

400400

200

200

330 Ma

350 Ma

370 Ma

MGR

RH

Rheic

SxMdHe

STRIKE-SLIP

A

A

B

B

Paleotethys

Rhenohercynian

slab window

Rheic slabat depth

Paleotethys Galatian Hanseatic LaurussiaRheic

Paleotethys RH

RHPaleotethys Laurussia

known extent ofdurbachites

Fig. 3 Model of Stampfli et al. (2013) showing the Variscan evolution (370–330 Ma) from Devonian subduction to Visean con-tinental collision. Map: Distribution of durbachites/vaugnerites (compare Fig. 2B) above a supposed double slab window (darkgrey) formed by the subducted ridges of the Palaeotethys and the Rhenohercynian oceans with relics of a former slab of RheicOcean at depth and its Variscan orogenic framework evolving from the Devonian to the Late Visean (cf. cross-sections). Num-bers: supposed depth (km) of slab. Cross-section models: Section A–B across the Variscan domains of the Devonian Galatian–Hanseatic Rheic Ocean section (370 Ma) with subduction of the Rheic slab and the subsequent collisional evolution during350 Ma and 330 Ma and subduction reversal. The former Galatian blocks: Helvetic (He), Moldanubian (Md), Saxothuringian(Sx) and the former Hanseatic block: Mid-German Cristalline Rise (MGR) basement, separated from the Laurussian domainin the North by the Rhenohercynian Ocean (RH).

© 2013 John Wiley & Sons Ltd 91

Terra Nova, Vol 26, No. 2, 85–95 J. F. von Raumer et al. • Durbachites as geodynamic markers

............................................................................................................................................................

Page 8: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

2012. Ophiolite and eclogites fromLimousin (French Massif Central): keysto Variscan subduction processes. G�eol.Fr., 2012, 65–66.

Broska, I., Petrik, I., Be’eri-Shlevin, Y.,Majka, J. and Bezak, V., 2013.Devonian/Mississippian I-typegranitoids in the Western Carpathians:A subduction-related hybridmagmatism. Lithos, 162, 27–36.

Bussy, F., Delitroz, D., Fellay, R. andHernandez, J., 1998. The PormenazMonzonite (Aiguilles Rouges, WesternAlps): an additional evidence for a330 Ma-old magnesio-potassicmagmatic suite in the Variscan.Schweiz. Min. Petr. Mitt., 78, 193–194.

Bussy, F., Hernandez, J. and vonRaumer, J., 2000. Bimodal magmatismas a consequence of the post-collisionalreadjustment of the thickened variscancontinental lithosphere (AiguillesRouges/Mont-Blanc massifs, westernAlps). Trans. Royal Soc. Edinburgh,Earth Sciences, 91, 1–2, 221–233.

Buzzi, L., Gaggero, L., Grozdanov, L.,Yanev, S. and S. Slejko, F., 2010.High-Mg potassic rocks in the Balkansegment of the Variscan belt (Bulgaria):implications for the genesis of orogeniclamproite magmas. Geol. Mag., 147,434–450.

Chung, S.-L., Wang, K.-L., Crawford,A.J., Kamenetsky, V.S., Chen, C.-H.,Lan, C.-Y. and Chen, C.-H., 2001.High-Mg potassic rocks from Taiwan:implications for the genesis of orogenicpotassic lavas. Lithos, 59, 153–170.

Cortesogno, L., Gaggero, L., Ronchi, A.and Yanev, S., 2004. Late orogenicmagmatism and sedimentation withinLate Carboniferous to Early Permianbasins in the Balkan terrane (Bulgaria):geodynamic implications. Int. J. Earth.Sci. (Geol. Rundsch.), 93, 500–520.

De La Roche, H., Leterrier, J.,Grandclaude, P. and Marchal, M.,1980. A classification of volcanic andplutonic rocks using R1–R2 diagramand major element analyses - itsrelationship with current nomenclature.Chem. Geol., 29, 183–210.

Debon, F. and Lemmet, M., 1999.Evolution of Mg/Fe ratios in lateVariscan plutonic rocks from theExternal Crystalline Massifs of the Alps(France, Italy, Switzerland). J. Petrol.,40, 1151–1185.

Debon, F., Guerrot, C., M�enot, R.P.,Vivier, G. and Cocherie, A., 1998. LateVariscan granites of the Belledonnemassif (French Western Alps): an EarlyVisean magnesian plutonism. Schweiz.Min. petr. Mitt., 78, 69–87.

Edel, J.B., 2001. The rotations of theVariscides during the Carboniferouscollision: paleomagnetic constraintsfrom the Vosges and the Massif

Central/France). Tectonophysics, 332,69–92.

Eichhorn, R., Loth, G., H€oll, R., Finger,F., Schermaier, A. and Kennedy, A.,2000. Multistage Variscan magmatismin the central Tauern window (Austria)unveiled by U/Pb SHRIMP zircondata. Contr. Min. Petr., 139, 418–435.

Fern�andez-Su�arez, J., Arenas, R., Abati,J., Mart�ınez Catal�an, J.R., Whitehouse,M.J. and Jeffries, T.E., 2007. U-Pbchronometry of polymetamorphic high-pressure granulites: An example fromthe allochthonous terranes of the NWIberian Variscan belt. In: 4-DFramework of Continental Crust(R.D. Hatcher Jr., M.P. Carlson, J.H.McBride and J.R. Mart�ınez Catal�an,eds), Geol Soc Am Mem, 200, 469–488.

Ferr�e, E.C. and Leake, B.E., 2001.Geodynamic significance of earlyorogenic high-K crustal and mantlemelts: example of the CorsicaBatholith. Lithos, 59, 47–67.

Finger, F., Frasl, G., Haunschmid, B.,Lettner, H., von Quadt, A., Schermaier,A., Schindlmayr, A. O. and Steyrer, H.P., 1993. The Zentralgneise of theTauern Window (Eastern Alps): Insightinto an Intra-Alpine Variscan batholith.In: The Pre-Mesozoic geology in theAlps (J. von Raumer and F. Neubauer,eds). Springer, Heidelberg, pp. 375–391.

Finger, F., Broska, I., Haunschmid, B.,Hrasko, L., Koh�ut, M., Krenn, E.,Petr�ık, I., Riegler, G. and Uher, P.,2003. Electron-microprobe dating ofaccessory monazites from WesternCarpathian basement granitoids:Plutonic evidence for an importantPermian rifting event subsequent toVariscan crustal anatexis. Int. J. ofEarth Sci., 92, 86–98.

Finger, F., Gerdes, A., Janu�sek, V., Ren�e,M. and Riegler, G., 2007. Resolvingthe Variscan evolution of theMoldanubian sector of the BohemianMassif: the significance of the Bavarianand the Moravo–Moldanubiantectonometamorphic phases.J. Geosciences, 52, 9–28.

Finger, F., Gerdes, A., Ren�e, M. andRiegler, G., 2009. The Saxo-DanubianGranite Belt: magmatic response topostcollisional delamination of mantlelithosphere below the southwesternsector of the Bohemian Massif(Variscan orogen). Geol. Carp., 60,205–212.

Fitton, J.G., James, D. and Leeman,W.P., 1991. Basic magmatismassociated with late Cenozoic extensionin the western United States:compositional variations in space andtime. J. Geoph. Res., 96, 13693–13711.

Fournet, J., 1833. G�eologie lyonnaise. DeBarret, Lyon.. 744 p.

Franke, W., 1989. Tectonostratigraphicunits in the Variscan belt of centralEurope. Geol. Soc. Amer. Spec. Paper,290, 67–89.

Friedl, G., Cooke, R. and A., Finger, F.,McNaughton, N. J., and Fletcher, I.R., 2011. Timing of Variscan HP-HTmetamorphism in the MoldanubianZone of the Bohemian Massif: U-PbSHRIMP dating on multiply zonedzircons from a granulite from theDunkelsteiner Wald Massif, LowerAustria. Min. Petrol., 102, 63–75.

Gal�an, G., Corretg�e, L.G. and Laurent,O., 1997. Low-potassium vaugneritesfrom Gu�eret (Massif Central, France).Mafic magma evolution influenced bycontemporaneous granitoids. Mineral.Petrol., 59, 165–187.

Gallastegui, G., 1993. Petrolog�ıa delmacizo granodior�ıtico de Bayo-Vigo(Provincia de Pontevedra, Espa~na).Tesis Doctoral, Dpto. de Geolog�ıa,Univ. Oviedo, 363pp.

Gallastegui, G., 2005. Petrolog�ıa delmacizo granodior�ıtico de Bayo-Vigo(Provincia de Pontevedra, Espa~na).Serie Nova Terra, 26. LaboratorioXeol�oxico de Laxe. �Area de Xeolox�ıa eMiner�ıa do Seminario de EstudosGalegos. Edici�os O Castro, La Coru~na,414pp.

Gardien, V., Vanderhaeghe, O., Arnaud,N., Cocherie, A., Grange, M. andL�ecuyer, C., 2011. Thermal maturationand exhumation of a middle orogeniccrust in the Livradois area (FrenchMassif Central). BSGF, 182, 5–24.

Gerdes, A., W€orner, G. and Finger, F.,2000. Hybrids, magma mixing, andenriched mantle melts in post-collisional Variscan granitoids: theRastenberg Pluton, Austria. In:Orogenic prozesses: Quantification andmodelling in the Variscan belt (W.Franke, V. Haak and D. Tanner, eds).Geol. Soc. London, Spec. Publ., 179,415–431.

Gil Ibarguchi, J.I., 1980. Las vaugneritasde la Regi�on de Finisterre (Galicia,NW de Espa~na). Probables productosde magmas anat�ecticos residuales.Cuad. Lab. Xeol. Laxe, 1, 21–30.

Gil Ibarguchi, J.I., 1981. A comparativestudy of vaugnerites and metabasicrocks from the Finisterre region (NWSpain). N. Jb. Mineral. Abh., 143, 91–101.

Gil Ibarguchi, J. I., 1982. Metamorfismoy plutonismo de la regi�on de Mux�ıa-Finisterre (NW, Espa~na). CorpusGeologicum Gallaeciae, 2ª Serie I, 1–253.

Giorgis, D., Th�elin, P., Stampfli, G.M.and Bussy, F., 1999. The Mont-Mortmetapelites: Variscan metamorphismand geodynamic context (Brianc�onnaisbasement, western Alps, Switzerland).

92 © 2013 John Wiley & Sons Ltd

Durbachites as geodynamic markers • J. F. von Raumer et al. Terra Nova, Vol 26, No. 2, 85–95

.............................................................................................................................................................

Page 9: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

Schweiz. Min. Petr. Mitt., 79, 381–398.

Guerrot, C. and Debon, F., 2000. U-Pbzircon dating of two contrasting LateVariscan plutonic suites from thePelvoux massif (French Western Alps).Schweiz. Min. Petr. Mitt., 80, 249–256.

Guillot, S., Di Paola, S., M�enot, R.P.,Ledru, P., Spalla, M.I., Gosso, G. andSchwartz, S., 2009. Evidence for a mainPaleozoic suture zone in theBelledonne, Grandes Rousses andOisans massifs (External CrystallineMassifs, Western Alps). Bull. Soc.G�eol. France, 180, 483–500.

Guo, Z.F., Wilson, M., Zhang, M.L.,Cheng, Z.H. and Zhang, L.H., 2013.Post-collisional, K-rich maficmagmatism in south Tibet: constraintson Indian slab-to-wedge transportprocesses and plateau uplift. Contrib.Mineral. Petrol., 165, 1311–1340.

Hawkesworth, C., Turner, S., Gallagher,K., Hunter, A., Bradshaw, T. andRogers, N., 1995. Calc-alkalinemagmatism, lithospheric thinning andextension in the Basin and range.J. Geoph. Res., 100, 10271–10286.

Hegner, E., K€ohl-Ebert, M. and Altherr,R., 1996. The composition of thecarboniferous upper mantle belowsouthern Germany and implications forVariscan crust formation. Schriften derAlfred-Wegener -Stiftung, Terra Nostra,96, 99–100.

Hochard, C., 2008. GIS and GeodatabasesApplication to Global Scale PlateTectonics Modelling. PhD Thesis,University of Lausanne, Switzerland,164 pp.

Holub, F.V., 1977. Petrology ofinclusions as a key to petrogenesis ofthe durbachitic rocks fromCzechoslovakia. Tscherm. Min. Petr.Mitt., 24, 133–150.

Holub, F.V., 1997. Ultrapotassic plutonicrocks of the Durbachite Series in theBohemian Massif; petrology,geochemistry and petrogeneticinterpretation. J. Geol. Sci., EconomicGeol. Mineralogy, 31, 5–26.

Holub, F.V., Cocherie, A. and Rossi, Ph,1997. Radiometric dating of graniticrocks from the Central Bohemienplutonic complex/Czech Republic):constraints on the chronology ofthermal and tectonic events along theMoldanubian-Barrandian boundary. C.R. Acad. Sci., 325, 19–26.

Janou�sek, V. and Holub, F.V., 2007. Thecausal link between HP–HTmetamorphism and ultrapotassicmagmatism in collisional orogens: casestudy from the Moldanubian Zone ofthe Bohemian Massif. Proc. Geologists’Ass., 118, 75–86.

Janou�sek, V. and Gerdes, A., 2003.Timing the magmatic activity within

the Central Bohemian Pluton, CzechPepublik: Convential U-Pb ages for theSazava and Taborintrusions and theirtectonic significance. J. Czech. Geol.Soc., 48, 70–71.

Janou�sek, V., Gerdes, A., Holub, F. V.and Verner, K., 2010. Dating Variscanultrapotassic intrusions in the BohemianMassif - separating myth from reality.In: DATING 2010 (M. Koh�ut, ed.),State Geological lnstitute of DionyzStur, Bratislava, ConferenceProceedings, Bratislava 30. 4. 2010, pp.15–16

Janou�sek, V., Lexa, O., Schulmann, K.and Maierov�a, P., 2012. What drivesremelting of thickened continental crustin the Bohemian Massif?. G�eol. France,2012–1, 128–129.

Kl€otzli, U.S. and Parrish, R.R., 1996.Zircon U/Pb and Pb/Pb geochronologyof the Rastenberg granodiorite, SouthBohemian Massif, Austria. Mineral.Petrol., 58, 19–21.

Kl€otzli, U.S., Buda, G. and Ski€old, T.,2004. Zircon typology, geochronologyand whole rock Sr-Nd isotope systematicof the Mecsek Mountain granitoids inthe Tisia Terrane (Hungary).Mineral.Petrol., 81, 113–134.

Kotkov�a, J., Schaltegger, U. andLeichmann, J., 2003. 338–335 Ma oldintrusions in the E Bohemian massif—arelic of the orogen-wide durbachiticmagmatism in European Variscides. J.Czech Geol. Soc., 48, 80–81.

Kotkov�a, J., Schaltegger, U. andLeichmann, J., 2010. Two types ofultrapotassic plutonic rocks in theBohemian Massif — Coeval intrusionsat different crustal levels. Lithos, 115,163–176.

Kova�r�ıkov�a, P., Siebel, W., Jel�ınek, E.,�Stemprok, M., Kachl�ık, V., Holub, F.V. and Blecha, V., 2007. Petrology,geochemistry and zircon age forredwitzite at Abertamy, NW BohemianMassif (Czech Republic): tracingthe mantle component in LateVariscan intrusions. Chemie derErde – Geochemistry, 67, 151–174.

Kova�r�ıkov�a, P., Siebel, W., Jel�ınek, E.,�Stemprok, M., Kachl�ık, V., Holub,F.V. and Blecha, V., 2010. Dioriticintrusions of the Slavkovsk�y les(Kaiserwald), Western Bohemia: theirorigin and significance in late Variscangranitoid magmatism. Int. J. Earth Sci.,99, 545–565.

Krenn, E. and Finger, F., 2010.Unusually Y-rich monazite-(Ce) with 6-14 wt.% Y2O3 in a granulite from theBohemian Massif: implications forhigh-temperature monazite growthfrom the monazite-xenotime miscibilitygap thermometry. Min. Mag., 74(2),217–225.

Kusiak, M.A., Dunkley, D.J., Suzuki, K.,Kachl�ık, V., Kezdzior, A., Lekki, J. andOplu�stil, S., 2010. Chemical (non-isotopic) and isotopic dating ofPhanerozoic zircon—A case study ofdurbachite from the T�reb�ı�c Pluton,Bohemian Massif. Gondw. Res., 17,153–161.

Lacroix, A., 1917. La compositionchimique de la vaugnerite et la positionde cette roche dans la syst�ematique.Bull. Soc. Fr. Min., 40, 158–162.

Laporte, D., Fernandez, A. and Orsini,J.B., 1991. Le complexe d’Ile Rousse,Balagne, Corse du Nord-Ouest:p�etrologie et cadre de mise en place desgranito€ıdes magn�esiopotassiques. G�eol.France, 1991–4, 15–30.

Le Fort, P., 1973. G�eologie du Haut-Dauphin�e cristallin (Alpes franc�aises).Sciences de la Terre M�em., 25, 1–373.

Ledru, P., Courrioux, G., Dallain, C.,Lardeaux, J.-M., Montel, J.-M.,Vanderhaeghe, O. and Vitel, G., 2001.– The Velay dome (French MassifCentral): melt generation and graniteemplacement during orogenic evolution.–. Tectonophysics, 342, 207–237.

Leichmann, J. and Gaweda, A., 2001.Klodsko-Zloty Stok and Niemcza ZoneGranitoids - a shallow level intrusion ofDurbachites in the RhenohercynianZone. Mitt. €Osterr. Mineral. Ges. Wien,146, 169–170.

Lombardo, B., Rubatto, D., Colombo, F.and Compagnoni, R., 1997. Variscaneclogites and HP Granulites in theMalinvern-Argentera complex(Argentera massif, Western Alps): PTestimations and U/Pb zircon ages.Terra Nova 9. Abstract Suppl., 1, 18–19.

Lombardo, B., Compagnoni, R.,Ferrando, S., Radulesco, N. andRolland, Y., 2011. Variscan geology ofthe Argentera Massif, Western Alps andcomparison with the Maures-TanneronMassifs (France), pp. 139–163. Ann.Mus. Hist. nat. Nice, XXVI.

L�opez-Moro, F.-J. and L�opez-Plaza, M.,2004. Monzonitic series from theVariscan Tormes Dome (CentralIberian Zone): petrogenetic evolutionfrom monzogabbro to granite magmas.Lithos, 72, 19–44.

Matte, P., 1986. Tectonics and platetectonics model for the Variscan belt ofEurope. Tectonophysics, 126, 329–374.

Mazur, S., Aleksandrowski, P., Turniak,K. and Awdankiewicz, M., 2007.Geology, tectonic evolution and LatePalaeozoic magmatism of the Sudetes –an overview. In: Granitoids in Poland(A. Kozłowski and J. Wiszniewska,eds), AM Monograph, 1, 59–87, KNMPAN-WG UW, Warszawa

M�enot, R.P., Paquette, J.L. and Orsini,J.B., 1996. Le plutonisme carbonif�ere de

© 2013 John Wiley & Sons Ltd 93

Terra Nova, Vol 26, No. 2, 85–95 J. F. von Raumer et al. • Durbachites as geodynamic markers

............................................................................................................................................................

Page 10: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

Balagne (Corse); geochronology hauteprecision U-Pb sur zircons. 16�emeR�eunion Annuelle des Sciences de laTerre, p. 56. Soc. G�eol. France,Orl�eans.

Miller, C., Schuster, R., Kl€otzli, U.,Frank, W. and Purtscheller, F., 1999.Post-collisional potassic andultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopicconstraints for mantle sourcecharacteristics and petrogenesis.J. Petrol., 40, 1399–1424.

Montel, J.M., Marignac, C., Barbey,P. and Pichavant, M., 1992.Thermobarometry and granite genesis:the Hercynian low-P, high-T Velayanatectic dome (French MassifCentral). J. Met. Geol., 10, 1–15.

Moussavou, M., 1998. Contribution �al’histoire thermotectonique varisque dumassif des Maures par la typologie duzircon et la g�eochronologie U/Pb surmin�eraux accessoires. Ph.D. thesis,Univ. Montpellier 2, France, 187pp.

Nance, R.D., Guti�errez-Alonso, G.,Keppie, J.D., Linnemann, U., Murphy,J.B., Quesada, C., Strachan, R.A. andWoodcock, N.H., 2010. Evolution ofthe Rheic Ocean. Gondwana Res., 17,194–222.

Nasdala, L., Wenzel, T., Pidgeon, R.T.and Kronz, A., 1999. Internalstructures and dating of complexzircons from Meissen Massifmonzonites, Saxony. Chem Geology,156, 331–341.

O′Brien, P.J., 2000. The fundamentalVariscan Problem: high-temperaturemetamorphism at different depths andhigh-pressure metamorphism atdifferent temperatures. In: OrogenicPocesses: quantification and modellingin the Variscan Belt (W. Franke, V.Haak, O. Onken and D. Tanner, eds),Geol Soc London Spec Publ, 179,369–386.

O’Brien, P.J. and Carswell, D.A., 1993.Tectonostratigraphic evolution of theBohemian massif: evidence from highpressure metamorphic rocks. Geol.Rundsch., 82, 531–555.

Olsen, S.N., Johnson, C.M., Beard, B.L.and Baumgartner, L.P., 2000. New U-Pb zircon data and constraints on theage and mode of migmatization in theAar massif, Central Alps. Eur. J.Mineral., 12, 1245–1260.

Orsini, J.B., 1976. Les granito€ıdeshercyniens Corso-Sardes: mise en�evidence de deux associationsmagmatiques. Bull. Soc. Geol. France,18, 1203–1206.

Otto, J., 1974. Die Einschl€usse im Granitvon Oberkirch (Nord Schwarzwald).Ber. Naturf. Ges. Freiburg, 64, 83–174.

Parat, Fl, Holtz, F., Ren�e, M. andAlmeev, R., 2010. Experimental

constraints on ultrapotassic magmatismfrom the Bohemian Massif (durbachiteseries, Czech Republic). Contr. Min.Petrol., 159, 331–347.

Peng, P., Zhai, M., Guo, J., Zhang, H.and Zhang, Y., 2008. Petrogenesis ofTriassic post-collisional syenite plutonsin the Sino-Korean craton: an examplefrom North Korea. Geol. Mag., 145,637–647.

Rossi, Ph. and Cocherie, A., 1995. A beltof high-K plutonic rocks related tocrustal extension: evidence from theEuropean Variscan. In: The origin ofgranites and related rocks (M. Brownand P. M. Piccoli, eds) Third HuttonSymposium College Park, Maryland.Abstract-Volume pp. 128–129.

Rossi, Ph., Cocherie, A. and Johan, V.,1990. The geodynamic significance ofMg-K plutonism as constrained bymineralogical and geochemical datafrom Corsica (France) and theBohemian Massif (Czechoslovakia).In: IGCP Int Conference on Paleozoicorogens in Central Europe, G€ottingen-Giessen 1990, IGCP 233, G€ottingen,253–256.

Rossi, P., Oggiano, G. and Cocherie, A.,2009. A restored section of the‘‘southern Variscan realm’’ across theCorsica–Sardinia microcontinent. C. R.Acad. Sci. Geoscience, 341, 224–238.

Rossi, Ph, Cocherie, A. and Fanning,C.M., 2012. U-Pb-zircon precise datingof volcanic-plutonic formationsin theCorsica Batholith: evidence of athermal Upper-Stephanian to LowerPermian peak. G�eol France, 2012–1,181–182.

Sabatier, H., 1980. Vaugn�erites etgranites, une association particuli�ere deroches grenues acides et basiques. BullMin�eral, 103, 507–522.

Sabatier, H., 1991. Vaugn�erites: SpecialLamprophyre-derived mafic enclaves insome hercynian granites from Westernand Central Europe. In: Enclaves andgranite petrology (J. Didier and B.Barbarin, eds). Developments inPetrology, 13, 63–81.

Sauer, A., 1893. Der Granitit vonDurbach im n€ordlichen Schwarzwaldund seine Grenz-Facies vonGlimmersyenit (Durbachit). Mitt. Bad.Geol. Landesanst., 2, 231–276.

Schaltegger, U., 1994. Unravelling thepre-Mesozoic history of Aar andGotthard massifs (Central Alps) byisotopic dating - a review. Schweiz.Min. Petr. Mitt., 74, 41–51.

Schaltegger, U., 1997. Magma pulses inthe Central Variscan Belt: episodic meltgeneration and emplacement duringlithospheric thinning. Terra Nova, 9(5/6), 242–245.

Schaltegger, U., 2000. U-Pbgeochronology of the Southern Black

Forest batholith (Central Variscanbelt): timing of exhumation and graniteemplacement. Int. J. Earth Sci., 88,814–828.

Schaltegger, U. and Corfu, F., 1992. Theage and source of Late Hercynianmagmatism in the Central Alps:evidence from precise U-Pb ages andinitial Hf isotopes. Contr. Mineral.Petrol., 111, 329–344.

Schaltegger, U. and Corfu, F., 1995. LateVariscan “basin and range magmatismand tectonics in the Central Alps:evidence from U-Pb geochronology.Geodin. Acta, 8, 82–98.

Schaltegger, U., Schneider, J.L., Maurin,J.C. and Corfu, F., 1996. Precise U-PbChronometry of 345-340 Ma oldmagmatism related to syn-convergenceextension in the southern Vosges(Central Variscan Belt). Earth. Pl. Sci.L., 144, 403–419.

Schaltegger, U., Maurin, J.C.,Schulmann, K. and Fanning, M., 1997.U-Pb single grain and SHRIMP zircondating of granulites and migmatites ofthe Vosges mountains: multiple meltingduring rapid exhumation. Terra Nova,9 Abstract suppl. 1, 112

Schulmann, K., Schaltegger, U., Je�zek, J.,Thompson, A.B. and Edel, J.B., 2002.Rapid burial and exhumation duringorogeny: thickening and synconvergentexhumation of thermally weakened andthinned crust (Variscan orogen inwestern Europe). Am. J. Sci., 302, 856–879.

Schulmann, K., Konop�asek, J., Janou�sek,V., Lexa, O., Lardeaux, J.M., Edel,J.-B., �St�ıpsk�a, P. and Ulrich, S., 2009.An Andean type Palaeozoicconvergence in the Bohemian massif. C.R. Geosci. Paris, 341, 266–286.

Siebel, W., Chen, F. and Satir, M., 2003.Late-Variscan magmatism revisited:New implications from Pb-evaporationzircon ages on the emplacement ofredwitzites and granites in NE Bavaria.Int. J. Earth Sci., 92, 36–53.

Solgadi, F., Moyen, J.F., Vanderhaeghe,O., Sawyer, E. and Reisberg, L., 2007.The role of crustal anatexis and mantle-derived magmas in the genesis ofsynorogenic Hercynian granites of theLivradois area, French Massif Central.The Canadian Mineralogist, 45, 581–606.

Stampfli, G.M., 2012. The Geodynamicsof PANGEA formation. G�eol. France,2012–1, 206–209.

Stampfli, G.M., Hochard, C. and vonRaumer, J.F., 2006. Reconstructing thePalaeozoic Gondwana margin and itsredistribution: new aspects. GeophysicalResearch Abstracts 8, EGU06-A-02708.

Stampfli, G.M., von Raumer, J. andWilhem, C., 2011. The distribution ofGondwana derived terranes in the early

94 © 2013 John Wiley & Sons Ltd

Durbachites as geodynamic markers • J. F. von Raumer et al. Terra Nova, Vol 26, No. 2, 85–95

.............................................................................................................................................................

Page 11: Durbachites-Vaugnerites - a geodynamic marker in the central European Variscan orogen

Paleozoic. In: The Ordovician of theWorld (J.C. Guti�errez-Marco, I.R�abano, and D. Garc�ıa-Bellido, eds)Instituto Geol�ogico y Minero deEspa~na. Madrid, Cuadernos del MuseoGeominero, 14, 567–574.

Stampfli, G.M., Hochard, C., V�erard, C.,Wilhem, C. and von Raumer, J., 2013.The geodynamics of Pangea formation.Tectonophysics, 593, 1–19.

Troll, G., 1968. Gliederung derredwitzitischen Gesteine Bayerns nachStoff- und Gef€ugemerkmalen.Bayerische Akademie derWissenschaften, mathem.-naturw. Kl.Abh. N. F., 133, 1–86.

Vanderhaeghe, O. and Duchene, St, 2010.Crustal-scale mass transfer, geothermand topography at convergent plateboundaries. Terra Nova, 22(5), 315–323.

Verner, K., �Z�ak, J., Nahodilov�a, R. andHolub, F. V., 2008. Magmatic fabricsand emplacement of the cone-sheet-bearing Kn�ı�zec�ı Stolec durbachiticpluton (Moldanubian Unit, BohemianMassif): implications for mid-crustalreworking of granulitic lower crust inthe Central European Variscides. Int.J. Earth Sci. (Geol. Rundsch.), 97, 19–33.

Vesel�a, P., S€ollner, F., Finger, F. andGerdes, A., 2011. Magmato-sedimentary Carboniferous to Jurassicevolution of the western Tauernwindow, Eastern Alps (constraints fromU-Pb zircon dating and geochemistry).Int. J. Earth. Sci. (Geol. Rundsch.),100, 993–1027.

Vittoz, P., Costarella, R., Vivier, G. andOliver, R.A., 1987. Typologie des

granito€ıdes hercyniens du HautDauphin�e par l’�etude des terres rares etde la morphologie des cristaux dezircon: mise en �evidence d’une zonationmagmatique dans ce massif. G�eologieAlpine, 63, 119–136.

Von Raumer, J.F., 1998. The Palaeozoicevolution in the Alps: from Gondwanato Pangea. Geol. Rundsch., 87, 407–435.

Von Raumer, J.F. and Bussy, F., 2004.Mont-Blanc and Aiguilles-Rouges:Geology of their polymetamorphicbasement (External massifs, France-Switzerland). M�emoires de G�eologie(Lausanne), 42, 1–203.

Von Raumer, J.F., Janou�sek, V. andStampfli, G.M., 2012. Durbachites-Vaugnerites – a time-marker across theEuropean Variscan basement. G�eol.France, 2012–1, 178–180.

Von Raumer, J., Bussy, F., Schaltegger,U., Schulz, B. and Stampfli, G.M.,2013. Pre Mesozoic Alpine basements –their place in the European Paleozoicframework. GSA Bulletin, 125(1/2),89–108.

Wang, Kuo-Lung, Chung, Sun-Lin,O’Reilly, S.Y., Sun, Shen-Su, Shinjo,Ryuichi and Chen, Chang-Hwa, 2006.Geochemical Constraints for the Genesisof Post-collisional Magmatism and theGeodynamic Evolution of the NorthernTaiwan Region. J. Petrol., 45, 975–1011.

Wang, F., Lu, X.X., Lo, C.H., Wu, F.Y.,He, H.Y., Yang, L.K. and Zhu, R.X.,2007. Post-collisional, potassicmonzonite-minette complex (Shahewan)in the Qinling Mountains (centralChina): Ar-40/Ar-39 thermochronology,petrogenesis, and implications for the

dynamic setting of the Qinling orogen.J. Asian Earth Sci., 31, 153–166.

Wenzel, T., Mertz, D.F., Oberh€ansli, R.,Becker, T. and Renne, P.R., 1997. Age,geodynamic setting, and mantleenrichment processes of a K-richintrusion from the Meissen massif(northern Bohemian massif) andimplications for related occurrencesfrom the mid-European Hercynian.Geol. Rundsch., 86, 556–557.

Wenzel, T., Oberh€ansli, R. and Mezger,K., 2000. K-rich plutonic rocks andlamprophyres from the Meissen Massif(northern Bohemian Massif):geochemical evidence for variablyenriched lithospheric mantle sources. N.Jahrb. Mineral. Abhandl., 175, 249–293.

Willmann, K., 1920. Die Redwitzite, eineneue Gruppe von granitischenLamprophyren. Z. D. Geol. Ges., 72,1–33.

Wilson, M., Tankut, A. and Gulec, N.,1997. Tertiary volcanism of the Galatiaprovince, north-west central Anatolia,Turkey. Lithos, 42, 105–121.

Yang, J.H., Chung, S.L., Wilde, S.A.,Wu, F.Y., Chu, M.F., Lo, C.H. andFan, H.R., 2005. Petrogenesis of post-orogenic syenites in the Sulu OrogenicBelt, East China: geochronological,geochemical and Nd-Sr isotopicevidence Source. Chem. Geol., 214,99–125.

Zwart, H.J. and Dornsiepen, U.F., 1978.The tectonic framework of Central andWestern Europe. Geol. Mijnbouw, 57,627–654.

Received 26 March 2013; revised version

accepted 5 August 2013

© 2013 John Wiley & Sons Ltd 95

Terra Nova, Vol 26, No. 2, 85–95 J. F. von Raumer et al. • Durbachites as geodynamic markers

............................................................................................................................................................