Dupire Bruno

Embed Size (px)

Citation preview

  • 8/10/2019 Dupire Bruno

    1/72

    Skew Modeling

    Bruno DupireBloomberg LP

    [email protected]

    Columbia University, New YorkSeptember 12, 2005

    mailto:[email protected]:[email protected]
  • 8/10/2019 Dupire Bruno

    2/72

    I. Generalities

  • 8/10/2019 Dupire Bruno

    3/72

    Bruno Dupire 3

    Market Skews

    Dominating fact since 1987 crash: strong negative skew onEquity Markets

    Not a general phenomenon

    Gold: FX:

    We focus on Equity Markets

    K

    impl

    K

    impl

    K

    impl

  • 8/10/2019 Dupire Bruno

    4/72Bruno Dupire 4

    Skews

    Volatility Skew: slope of implied volatility as afunction of Strike

    Link with Skewness (asymmetry) of the RiskNeutral density function ?

    Moments Statistics Finance1 Expectation FWD price

    2 Variance Level of implied vol3 Skewness Slope of implied vol

    4 Kurtosis Convexity of implied vol

  • 8/10/2019 Dupire Bruno

    5/72Bruno Dupire 5

    Why Volatility Skews?

    Market prices governed by a) Anticipated dynamics (future behavior of volatility or jumps)

    b) Supply and Demand

    To arbitrage European options, estimate a) to capturerisk premium b)

    To arbitrage (or correctly price) exotics, find RiskNeutral dynamics calibrated to the market

    K

    impl Market Skew

    Th. Skew

    S u p p l y a n d D e m a n d

  • 8/10/2019 Dupire Bruno

    6/72Bruno Dupire 6

    Modeling Uncertainty

    Main ingredients for spot modeling Many small shocks: Brownian Motion

    (continuous prices)

    A few big shocks: Poisson process (jumps)

    t

    S

    t

    S

  • 8/10/2019 Dupire Bruno

    7/72Bruno Dupire 7

    2 mechanisms to produce Skews (1)

    To obtain downward sloping implied volatilities

    a) Negative link between prices and volatility Deterministic dependency (Local Volatility Model) Or negative correlation (Stochastic volatility Model)

    b) Downward jumps

    K

    imp

  • 8/10/2019 Dupire Bruno

    8/72Bruno Dupire 8

    2 mechanisms to produce Skews (2)

    a) Negative link between prices and volatility

    b) Downward jumps

    1S 2S

    1S 2S

  • 8/10/2019 Dupire Bruno

    9/72

    Leverage and Jumps

  • 8/10/2019 Dupire Bruno

    10/72

    Bruno Dupire 10

    Dissociating Jump & Leverage effects

    Variance :

    Skewness :

    t0 t1 t2

    x = S t1-S t0 y = S t2-S t1

    222 2)( y xy x y x ++=+Option prices

    Hedge

    FWD variance

    32233 33)( y xy y x x y x +++=+Option prices

    Hedge FWD skewness

    Leverage

  • 8/10/2019 Dupire Bruno

    11/72

    Bruno Dupire 11

    Dissociating Jump & Leverage effects

    Define a time window to calculate effects from jumps and

    Leverage. For example, take close prices for 3 months

    Jump:

    Leverage:

    ( )i t iS 3

    ( )( ) i

    t t t iiS S S 2

    1

  • 8/10/2019 Dupire Bruno

    12/72

    Bruno Dupire 12

    Dissociating Jump & Leverage effects

  • 8/10/2019 Dupire Bruno

    13/72

    Bruno Dupire 13

    Dissociating Jump & Leverage effects

  • 8/10/2019 Dupire Bruno

    14/72

    Break Even Volatilities

  • 8/10/2019 Dupire Bruno

    15/72

    Bruno Dupire 15

    Theoretical Skew from Prices

    Problem : How to compute option prices on an underlying without

    options?For instance : compute 3 month 5% OTM Call from price history only.

    1) Discounted average of the historical Intrinsic Values.

    Bad : depends on bull/bear, no call/put parity.

    2) Generate paths by sampling 1 day return recentered histogram.

    Problem : CLT => converges quickly to same volatility for allstrike/maturity; breaks autocorrelation and vol/spot dependency.

    ?

    =>

  • 8/10/2019 Dupire Bruno

    16/72

    h l k

  • 8/10/2019 Dupire Bruno

    17/72

    Bruno Dupire 17

    Theoretical Skew

    from historical prices (3)How to get a theoretical Skew just from spot pricehistory?

    Example:3 month daily data1 strike a) price and delta hedge for a given within Black-Scholes

    model b) compute the associated final Profit & Loss:

    c) solve for d) repeat a) b) c) for general time period and average e) repeat a) b) c) and d) to get the theoretical Skew

    1T S k K =

    ( ) PL

    ( ) ( )( ) 0/ =k PLk

    t

    S

    1T 2T

    K1T

    S

    Th i l Sk

  • 8/10/2019 Dupire Bruno

    18/72

    Bruno Dupire 18

    Theoretical Skew

    from historical prices (4)

    Th i l Sk

  • 8/10/2019 Dupire Bruno

    19/72

    Bruno Dupire 19

    Theoretical Skew

    from historical prices (4)

    Th i l Sk

  • 8/10/2019 Dupire Bruno

    20/72

    Bruno Dupire 20

    Theoretical Skew

    from historical prices (4)

    Th ti l Sk

  • 8/10/2019 Dupire Bruno

    21/72

    Bruno Dupire 21

    Theoretical Skew

    from historical prices (4)

  • 8/10/2019 Dupire Bruno

    22/72

    Barriers as FWD Skew trades

  • 8/10/2019 Dupire Bruno

    23/72

    Bruno Dupire 23

    Beyond initial vol surface fitting

    Need to have proper dynamics of implied volatility

    Future skews determine the price of Barriers and

    OTM Cliquets

    Moves of the ATM implied vol determine the ofEuropean options

    Calibrating to the current vol surface do not imposethese dynamics

  • 8/10/2019 Dupire Bruno

    24/72

    Bruno Dupire 24

    Barrier Static Hedging

    If ,unwind hedge, at 0cost

    If not touched, IVs are equal

    Down & Out Call Strike K, Barrier L, r=0 :

    With BS: K LK LK P LK C DOC 2, = LS t =

    With normal model

    dW dS =K LK LK PC DOC = 2,

    LK L2

    K

    L K12L-K

    L K LK K

    L2

  • 8/10/2019 Dupire Bruno

    25/72

    Bruno Dupire 25

    Static Hedging: Model Dominance

    An assumption as the skew at L corresponds toan affine model

    priced as in BS with shifted K and L givesnew hedging PF which is >0 when L is touched ifSkew assumption is conservative

    LK DOC ,

    LK DOC ,

    LK

    Back to

    ( )dW baS dS += (displaced LN)

  • 8/10/2019 Dupire Bruno

    26/72

    Bruno Dupire 26

    Skew Adjusted Barrier Hedges

    ( )dW baS dS +=

    ( )baK

    K LbaLK LK PbaLbaK

    C DOC +

    +++

    2, 2

    ( ) ( )baK

    K LbaL L LK LK C

    baLbaK

    C baL

    a DigK LC UOC

    +++

    +

    ++

    2, 22

  • 8/10/2019 Dupire Bruno

    27/72

    Local Volatility Model

  • 8/10/2019 Dupire Bruno

    28/72

    Bruno Dupire 28

    One Single Model

    We know that a model with dS = (S,t)dWwould generate smiles. Can we find (S,t) which fits market smiles? Are there several solutions?

    ANSWER: One and only one way to do it.

  • 8/10/2019 Dupire Bruno

    29/72

    Bruno Dupire 29

    The Risk-Neutral Solution

    But if drift imposed (by risk-neutrality), uniqueness of the solution

    sought diffusion(obtained by integrating twice

    Fokker-Planck equation)

    DiffusionsRisk

    NeutralProcesses

    Compatiblewith Smile

  • 8/10/2019 Dupire Bruno

    30/72

    Bruno Dupire 30

    Forward Equations (1)

    BWD Equation:price of one option for different

    FWD Equation:price of all options for current

    Advantage of FWD equation: If local volatilities known, fast computation of impliedvolatility surface,

    If current implied volatility surface known, extraction oflocal volatilities,

    Understanding of forward volatilities and how to lockthem.

    ( )t S ,

    ( )00 , t S ( )T K C ,

    ( )00 ,T K C

  • 8/10/2019 Dupire Bruno

    31/72

    Bruno Dupire 31

    Forward Equations (2)

    Several ways to obtain them: Fokker-Planck equation:

    Integrate twice Kolmogorov Forward Equation

    Tanaka formula:

    Expectation of local time Replication

    Replication portfolio gives a much more financialinsight

  • 8/10/2019 Dupire Bruno

    32/72

    Bruno Dupire 32

    Fokker-Planck

    If Fokker-Planck Equation:

    Where is the Risk Neutral density. As

    Integrating twice w.r.t. x:

    ( )dW t xbdx ,= ( )2

    22

    21

    x

    b

    t

    =

    2

    2

    K C

    =

    2

    2

    222

    2

    2

    2

    2

    21

    x

    K C

    b

    t

    K C

    xt C

    =

    =

    2

    22

    2 K

    C b

    t

    C

    =

  • 8/10/2019 Dupire Bruno

    33/72

    Bruno Dupire 33

    Volatility Expansion

    K,T fixed. C 0 price with LVM

    Real dynamics:

    Ito

    Taking expectation:

    Equality for all (K,T)

    t t t dW dS =

    t t t t dW t S dS t S ),(:),( 00 =

    dt t S S

    C dS

    S

    C S C K S t t

    T T

    T )),((2

    1)0,()( 20

    2

    020

    2

    0

    000

    +

    +=

    +

    [ ]( ) dSdt t S t S S S t S S C S C t t =+= ),(),(),(21)0,()0,(20

    20000

    ),(202 t S S S t t ==

  • 8/10/2019 Dupire Bruno

    34/72

    Bruno Dupire 34

    Summary of LVM Properties

    is the initial volatility surface

    compatible with local vol

    compatible with = (local vol)

    deterministic function of (S,t) (if no jumps)

    future smile = FWD smile from local vol

    ( )t S , = 0

    T k ,

    ( ) [ ]K S E T = 20

    0

  • 8/10/2019 Dupire Bruno

    35/72

    Stochastic Volatility Models

    H M d l

  • 8/10/2019 Dupire Bruno

    36/72

    Bruno Dupire 36

    Heston Model

    ( )

    =+=

    +=

    dt dZ dW dZ vdt vvdv

    dW vdt S

    dS

    ,2

    Solved by Fourier transform:

    ( ) ( ) ( )

    ,,,,,,

    ln

    01, v xPv xPev xC

    t T K

    FWD x

    xT K =

    =

    R l f

  • 8/10/2019 Dupire Bruno

    37/72

    Bruno Dupire 37

    Role of parameters

    Correlation gives the short term skew Mean reversion level determines the long term

    value of volatility Mean reversion strength

    Determine the term structure of volatility Dampens the skew for longer maturities

    Volvol gives convexity to implied vol Functional dependency on S has a similar effect

    to correlation

  • 8/10/2019 Dupire Bruno

    38/72

  • 8/10/2019 Dupire Bruno

    39/72

  • 8/10/2019 Dupire Bruno

    40/72

  • 8/10/2019 Dupire Bruno

    41/72

  • 8/10/2019 Dupire Bruno

    42/72

    Spot dependency

  • 8/10/2019 Dupire Bruno

    43/72

    Bruno Dupire 43

    Spot dependency

    2 ways to generate skew in a stochastic vol model

    -Mostly equivalent: similar (S t,t ) patterns, similar

    futureevolutions-1) more flexible (and arbitrary!) than 2)-For short horizons: stoch vol model local vol model+ independent noise on vol.

    ( ) ( )( ) 0,)2

    0,,,)1

    ==

    Z W

    Z W t S f xt t

    0S

    S T

    S T

    0S

    SABR model

  • 8/10/2019 Dupire Bruno

    44/72

    Bruno Dupire 44

    SABR model

    F: Forward price

    With correlation

    dZ d

    dW F dF t

    ==

  • 8/10/2019 Dupire Bruno

    45/72

  • 8/10/2019 Dupire Bruno

    46/72

  • 8/10/2019 Dupire Bruno

    47/72

  • 8/10/2019 Dupire Bruno

    48/72

  • 8/10/2019 Dupire Bruno

    49/72

  • 8/10/2019 Dupire Bruno

    50/72

    Smile Dynamics

    Smile dynamics: Local Vol Model (1)

  • 8/10/2019 Dupire Bruno

    51/72

    Bruno Dupire 51

    Smile dynamics: Local Vol Model (1)

    Consider, for one maturity, the smiles associatedto 3 initial spot values

    Skew case

    ATM short term implied follows the local vols Similar skews

    +S 0S S

    Local vols

    S Smile0Smile S

    +S Smile

    K

    Smile dynamics: Local Vol Model (2)

  • 8/10/2019 Dupire Bruno

    52/72

    Bruno Dupire 52

    Smile dynamics: Local Vol Model (2)

    Pure Smile case

    ATM short term implied follows the local vols Skew can change sign

    KS 0S +S

    Local vols

    S Smile

    0Smile S

    +S Smile

    Smile dynamics: Stoch Vol Model (1)

  • 8/10/2019 Dupire Bruno

    53/72

    Bruno Dupire 53

    y ( )

    Skew case (r

  • 8/10/2019 Dupire Bruno

    54/72

    Bruno Dupire 54

    y ( )

    Pure smile case (r=0)

    ATM short term implied follows the local vols Future skews quite flat, different from local vol

    model Again, do not forget conditioning of vol by S

    Local volsS Smile

    0Smile S

    +S Smile

    S 0S +S K

    Smile dynamics: Jump Model

  • 8/10/2019 Dupire Bruno

    55/72

    Bruno Dupire 55

    y p

    Skew case

    ATM short term implied constant (does not follows thelocal vols) Constant skew Sticky Delta model

    +S Smile

    S Smile

    0Smile S

    Local vols

    S 0S +S K

    Smile dynamics: Jump Model

  • 8/10/2019 Dupire Bruno

    56/72

    Bruno Dupire 56

    y p

    Pure smile case

    ATM short term implied constant (does not follows thelocal vols) Constant skew Sticky Delta model

    +S Smile

    S Smile

    Local vols

    0Smile S

    S 0S +S K

    Smile dynamics

  • 8/10/2019 Dupire Bruno

    57/72

    Bruno Dupire 57

    y

    23.5

    24

    24.5

    25

    25.5

    26

    S0 K

    t

    S1Weighting scheme imposessome dynamics of the smile for

    a move of the spot:For a given strike K,

    (we average lower volatilities)

    S K Smile today (Spot S t)

    StSt+dt

    Smile tomorrow (Spot S t+dt)in sticky strike model

    Smile tomorrow (Spot S t+dt)if ATM =constant

    Smile tomorrow (Spot S t+dt)in the smile model

    &

    Volatility Dynamics of different models

  • 8/10/2019 Dupire Bruno

    58/72

    Bruno Dupire 58

    Local Volatility Model gives future short termskews that are very flat and Call lesser thanBlack-Scholes.

    More realistic future Skews with: Jumps Stochastic volatility with correlation and mean-

    reversion

    To change the ATM vol sensitivity to Spot : Stochastic volatility does not help much Jumps are required

  • 8/10/2019 Dupire Bruno

    59/72

    ATM volatility behavior

    Forward Skews

  • 8/10/2019 Dupire Bruno

    60/72

    Bruno Dupire 60

    In the absence of jump :

    model fits marketThis constrains

    a) the sensitivity of the ATM short term volatility wrt S;

    b) the average level of the volatility conditioned to S T=K.

    a) tells that the sensitivity and the hedge ratio of vanillas depend on thecalibration to the vanilla, not on local volatility/ stochastic volatility.

    To change them, jumps are needed.

    But b) does not say anything on the conditional forward skews.

    ),(][,22

    T K K S E T K locT T ==

    Sensitivity of ATM volatility / S

  • 8/10/2019 Dupire Bruno

    61/72

    Bruno Dupire 61

    S t

    2

    At t, short term ATM implied volatility ~ t.

    As

    t is random, the sensitivity is defined only in average:

    S S

    t S t S t t S S S S S E loct loct loct t t t t t

    ++=+=+),(

    ),(),(][2

    2222

    2 ATM In average, follows .

    Optimal hedge of vanilla under calibrated stochastic volatility corresponds to

    perfect hedge ratio under LVM.

    2loc

    Market Model of Implied Volatility

  • 8/10/2019 Dupire Bruno

    62/72

    Bruno Dupire 62

    Implied volatilities are directly observable Can we model directly their dynamics?

    where is the implied volatility of a given Condition on dynamics?

    ( )0=r

    ++=

    =

    2211

    1

    dW udW udt d

    dW S

    dS

    T K C ,

    Drift Condition

  • 8/10/2019 Dupire Bruno

    63/72

    Bruno Dupire 63

    Apply Itos lemma to

    Cancel the drift term

    Rewrite derivatives of

    gives the condition that the drift of must satisfy.

    For short T, we get the Short Skew Condition (SSC):

    close to the money:

    Skew determines u 1

    ( )t S C ,,

    ( )t S C ,,

    d

    2

    2

    2

    12 )ln()ln(

    +

    +=

    S K

    uS K

    u

    )ln(~ 12

    S K

    u+

    ( ) t S C ,,

    T t

    Optimal hedge ratio H

  • 8/10/2019 Dupire Bruno

    64/72

    Bruno Dupire 64

    ),,( t S C

    22 )(.

    )(.

    dS dS d C C

    dS dS dC

    S H

    +==

    : BS Price at t of Call option withstrike K, maturity T, implied vol

    Ito: Optimal hedge minimizes P&L variance:

    0),,( d C dS C dt t S dC S ++=

    Implied Vol

    sensitivityBS VegaBS Delta

    Optimal hedge ratio H II

  • 8/10/2019 Dupire Bruno

    65/72

    Bruno Dupire 65

    With

    Skew determines u 1, which determines H

    2 )(.

    dS dS d

    C C S H

    +=

    ++=

    =

    2211

    1

    dW udW udt d

    dW S

    dS

    S u

    dW dW

    S S u

    dS dS d

    )()(

    )()(. 1

    21

    21

    21

    2 ==

  • 8/10/2019 Dupire Bruno

    66/72

    Smile Arbitrage

    Deterministic future smiles

  • 8/10/2019 Dupire Bruno

    67/72

    Bruno Dupire 67

    S0

    K

    T1 T2t0

    It is not possible to prescribe just any futuresmile

    If deterministic, one must have

    Not satisfied in general

    ( ) ( ) ( )dS T S C T S t S t S C T K T K 1,10000, ,,,,, 22 =

    Det. Fut. smiles & no jumps=> = FWD smile

  • 8/10/2019 Dupire Bruno

    68/72

    Bruno Dupire 68

    FWD smileIf

    stripped from Smile S.t

    Then, there exists a 2 step arbitrage:Define

    At t0 : Sell

    At t:

    gives a premium = PLt at t, no loss at T

    Conclusion: independent offrom initial smile

    ( ) ( ) ( ) ( )T T K K T K T K t S V T K t S impT K T K

    ++

    ,,,lim,,/,,, 2

    00

    2,

    ( ) ( )( ) ( )T K t S K

    C t S V T K PL T K t ,,,,, 2

    2

    ,2

    t S t S t Dig DigPL ,, +

    S

    t 0 t T

    S 0K

    [ ] ( ) T K t T K K S S S ,2

    TK,2 ,sell,CS2

    buy,if +

    ( ) ( ) ( )T K t S V t S T K ,,, 200, ==( )t S V T K ,,

    Consequence of det. future smiles

  • 8/10/2019 Dupire Bruno

    69/72

    Bruno Dupire 69

    Sticky Strike assumption: Each (K,T) has a fixed

    independent of (S,t) Sticky Delta assumption: depends only on

    moneyness and residual maturity

    In the absence of jumps, Sticky Strike is arbitrageable

    Sticky is (even more) arbitrageable

    ),( T K impl

    ),( T K impl

    Example of arbitrage with Sticky Strike

  • 8/10/2019 Dupire Bruno

    70/72

    Bruno Dupire 70

    21C 12C

    1t S

    t t S +

    Each CK,T lives in its Black-Scholes ( )world

    P&L of Delta hedge position over dt:

    If no jump

    21,2,1 assume2211 > T K T K C C C C

    !

    ( ) ( )

    ( ) ( )( )( ) ( )

    ( )

    >==

    =

    free,no

    02

    22

    21

    2211221

    22

    22

    212

    12

    12

    21

    1

    t S C C PL

    t S S C PL

    t S S C PL

    ),( T K impl

    Arbitrage with Sticky Delta

  • 8/10/2019 Dupire Bruno

    71/72

    Bruno Dupire 71

    1K

    2K

    t S

    In the absence of jumps, Sticky-K is arbitrageable and Sticky- even more so.

    However, it seems that quiet trending market (no jumps!) are Sticky- .

    In trending markets, buy Calls, sell Puts and -hedge.

    Example:

    12 K K PC PF

    21 , S

    Vega > Vega2K 1K

    PF

    21 ,

    Vega < Vega2K 1K

    S PF

    -hedged PF gainsfrom S inducedvolatility moves.

    Conclusion

  • 8/10/2019 Dupire Bruno

    72/72

    Bruno Dupire 72

    Both leverage and asymmetric jumps may generate skewbut they generate different dynamics

    The Break Even Vols are a good guideline to identify riskpremia

    The market skew contains a wealth of information and inthe absence of jumps, The spot correlated component of volatility The average behavior of the ATM implied when the spot moves The optimal hedge ratio of short dated vanilla The price of options on RV

    If market vol dynamics differ from what current skew

    implies, statistical arbitrage