27
_ - _ _ _ _ _ - - Attachment to * - "V '' NG-95-1?s2 IOWA ELECTRIC LIGHT AND POWER COMPANY DUANE ARNOLD ENERGY CENTER DESIGN CALCULATION COVERSHEET CALCULATION NO. : C AL-MU- og . CALCULATION TITLE: 1 pcitE AS E IM fp pus ro UN B A LAN'C eb VGGbu) AT E R f L ot*J REFERENCE DOCUMENTS EWR NO.: DDC NO.: DCP NO.: OTHER:W--80$ ' PREPARED BY: 4. DATE: T//2/f3 Responsible Design Engineer ' ' VERIFIED BY: J DATE: hND Design Verification Engineer REVIEWED BY: Mu .J DATE: [[I/6 " Group _eader M DATE: d'-8 #.f APPROVED BY: ** Supervising Engineer NG-007Z Rev 2 (1203.21) 950420o239 950412 DR ADOCK 0500 1 _ . _ .

DUANE ARNOLD ENERGY CENTER

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DUANE ARNOLD ENERGY CENTER

_ - _ _ _ _ _ - -

Attachment to*-

"V '' NG-95-1?s2

IOWA ELECTRIC LIGHT AND POWER COMPANY

DUANE ARNOLD ENERGY CENTER

DESIGN CALCULATION COVERSHEET

CALCULATION NO. : C AL-MU- og .

CALCULATION TITLE: 1 pcitE AS E IM fp pus ro UN B A LAN'C eb

VGGbu) AT E R f L ot*J

REFERENCE DOCUMENTS

EWR NO.:

DDC NO.:

DCP NO.:

OTHER:W--80$ '

PREPARED BY: 4. DATE: T//2/f3Responsible Design Engineer ' '

VERIFIED BY: J DATE: hNDDesign Verification Engineer

REVIEWED BY: Mu .J DATE: [[I/6"Group _eader

M DATE: d'-8 #.fAPPROVED BY: **

Supervising Engineer

NG-007Z Rev 2 (1203.21)

950420o239 950412DR ADOCK 0500 1

_ . _ .

Page 2: DUANE ARNOLD ENERGY CENTER

.-

.

'V ^

PURPOSE

The feedwater check valves (V14-1) and (V14-3) need to be testedto assure they can admit flow from HPCI and RCIC when required.This is presently accomplished by alternately disassembling themduring refueling such that each valve is evaluated every otheroutage. This evaluation is a visual inspection. It has beenproposed to substitute a calculation method to support a testthat would replace the disassembly process. By looking at thesimplified drawing given by Figure 1, feed flow is split into twofeed headers which are connected by a cross-connect line. Thetwo feed headers are in turn split into two smaller lines thatconnect directly to the Reactor Vessel. If one of the feed checkvales were to become partially clogged or to go shut or partiallyshut, more water from one feed line would be redirected throughthe cross-connect line (given that total feed flow and power staythe same). This would in theory, cause the pressure instrument"P1", to read higher because of the increased DP needed to drivethe increase flow down the line.

The purpose of this calculation is to demonstrate the feasibilityto use the increased DP to supply " alert / action" levels to serveas the basis of a test procedure to replace the valve disassemblytest.

ASSUMPTIONS AND GENERAL APPROACH

Utilizing Bernoulli's Equation an expression for flow down one ofthe feed paths is generated. The flow path taken will be that ofthe opposite of the line that contains HPCI. By selecting thisflow path, a flow split can be set equal to the flow needed byHPCI in one feed line with all other feed flow going to the otherfeed line. Using plant data obtained during normal operationwhen flow is assumed to be split equally between the feed flowlines the equation can be set equal to the recorded DP and theremaining unknown parameters can be explicitly solved for as alumped sum. this is substituted into the equations forunbalanced flow and the DP is calculated. Once a constant hasbeen selved for that represents the unknown parameters a set ofbalancea and unbalanced solutions can be generated correspondingto specific power levels. By applying appropriate instrumenterror adjustments to the calculated DP, appropriate" alert / action" levels can be set that will detect a conditionwhen either one line or the other is restricted. The advantagesof this test is that it reduces maintenance effort and Man-Remand supplies a better evaluation of true check valve operabilitythan a visual exam of a disassembled valve.

Iowa Electnc Light and Power CompanyCedar Rapids. Iowa

ET &;sLhr hired shh? i 1]hh? Yll2(4 % # #

Rev- Prepared!Date Venhed/Date Sheet # Contmued On f 0 F 2d

_ _ _

Page 3: DUANE ARNOLD ENERGY CENTER

; .; |.

.

'

The assumption that under normal operations there is balanced,

! flow is based on the knowledge that the system is designed to ',

give essentially balanced flow. Pressure reading from P1, (seeFigure 1) have been consistent over operating history and can be

,

correlated to conditions when recent visual inspections haveshown that valves were clear and working properly. The cross-

'

connect line serves to insure reasonably balanced flow.

Using the HPCI flow requirements as a means to set the actionlevel, envelopes RCIC due to the more demanding HPCI flow;

requirements.

Additional assumptions are stated throughout the calculation asthey come into play for use in the calculation at that point.

Iowa Electric Light and Power CompanyCedar Rapids, Iowa

B* kdkTibh r/a M3 0, V B00L UlW 9 % Doc # C A L - M 9 3 % I 7- peyg

Rev Prepared'Date Venfied/Date Sheet # . Continued On 2 oFM |

i

Page 4: DUANE ARNOLD ENERGY CENTER

. _ - _ _. ___

i,,- ,,

REFERENCES[1] NEDC-30603 Duane Arnold Energy Center Power Uprate[2] ASME Steam Tables 1967[3] CRANE TP410 Flow of Fluids through Valves, Fittings, and Pipe[4] Technical Specification and Operating License for the Duane Arnold Energy Center[5] FSK-8017[6] ISO-DLA-2-3[7] ISO-DLA-2-4[8] BECH-M190[9] I.PT-G080-001[10] APED-C31-013[11] M&TE Database[12] DGC-Elli[13] Irvine & Liley, Steam and Gas Tables with Computer Equations, Academic Press

Orlando, FL

[14] APED-B11-008

Ds] Arrewart t, Pcm Dm

:

|

!

lowa Electric Light and Power CompanyCedar Rapids, Iowa j

g pwgQ , ya, (s &ffg yjtyg5 Doc # CAL-M 9% -Ot 2- Rev#_

Rev Prepared /Date Venfied/Date Sheet # Continued On S oeJD

Page 5: DUANE ARNOLD ENERGY CENTER

''- L..u .

.

HPCI

FW 'B' LiN8 RPVn

1 2

Pr Li 'y 2"FW 'A' 1 >i,

i

|n = = =

|

L1 L2 !16 in, lines 10 in. lines

Flow path analyzed

Figure 1. Portion of FW Flow Path Analyzed

Constants:

8g = 32.17- g e = 32.17: 9 A =144- Mlb = 10 Ib2sec lbf sec ft

General equation: Ref. [3), page 1-5, equation 1-3

29AP 1 V 9AP 2 V

3 2Egn.1 Z i+ + = Z2+ + +h L;

p ,_9_, 2g p. g 2g'

9c 9c

| APs are relatively small and fluid is incompressible. Therefore: p = constant.|| ;

2i GAP 3 GAP 2 V V2 1

( Eqn.2 z 3+ z2 += + - +h tj p p _9_ 2g 2g9

Oc Oc

V V l! 9A 2 1

Eqn.3 -(P 3-P)" -

+(22-2)+h|

2 1 LP= g

g g9c

lowa Electric Light and Power Company jCedar Rapids. Iowa |

4

i Doc # Chl-M41 %I 2- Rev#| M [W.d!5 w .%hs l .Y Dbhh HIL/9 6| Rev Prepared /Date Venfied/Date Sheet # Continued On or*,ld

Page 6: DUANE ARNOLD ENERGY CENTER

. -_

i -

H (. v. p 9_, ,

Eqn.4 (Pj-P) " -

+(22-2)+h'

2 1 t-

,

Ref. [3], pages 3-4, equations 3-5 & 3-14:

| 2 2L V y L V3 3 1 2 2 V 2Eqn.5 h l = h t3 + h L2 * I +K- +f= +K-

1D 2g 2g D 2 2g 2' 2 g3 23

' [V 2h P2Eqn.6 P 3-P 2 2 V ge= 3

2-2 1- + -

(2 g 2 g/ gA2

3,VL V L V V3 3 +f2 2 2+f- +K 2 +K

D 2g 3=2g3=

3 2 2g 2' 2 gD

|:

From P& ids M-107, M-114 and 7884-M-190, the 16" pipe consists of:

DLA which is schedule 80: ID := 14.312 in A := E ID2 2A = 1.12 ft4

DBD which is schedule 120: 10 := 13.562 in A := E ID2 2A = 1 ftj 4

The 10" pipe consists of:;

DLA which is schedule 80: ID := 9.562 in A .= E ID2 2

4. A = 0.5 ft |

22 A = 1 ftConsider two cases:

case a: Feed flow is split equally between upper and lower headers.

case b: Feed flow in upper header is reduced to that of needed HPCI flow. Then,total feed flow minus HPCI flow goes through the lower header.

:

Case "a" represents the nonnal and expected flow pattern. Pressure instuments read P1

and P . Suppose the check valve in the feedline where HPCI injects were to go closed2

to the point where feed flow in that line is reduced to HPCI Tech Spec requirements(3000 gpm). Then the remaining flow goes through the lower header. By reading the AP, this condition can be detected. By calculating this flow (case "b") based on data

!

obtained from normal operation (case "a"), a predicted AP for case "b" can be obtained.In doing this calculation, ignoring things which would tend to make the AP higher isconservative.

Iowa Electric Light and Power CompanyCedar Rapids, Iowa 1

B W.AUG W9hk 01 U0bm *|tzl&& Doc # OL-MA % <!L nevn'Rev Prepared /Date Ventied/Date Sheet # Continued On CoFlo4

- - - - - - _ _ - - - - --

Page 7: DUANE ARNOLD ENERGY CENTER

|'

-.

For the L Itngth of 16" line, assuma all is DLA. This creates a larger ID and lowerPt. P, i

velocity and, therefore, lower pressure drops. It is therefore cons rvative. Then:*

D 3 := 14.312 in D 2 := 9.562 in2

A 3 := D A 2 := 2- D 23

|2 2

A 3 = 1.12 ft A 2 = 1 ft

N.B. The area A represents tne area of two 10" pipes into which the flow is split2

from the 16" pipe.

For the path taken in the lower header, use the shorter length path for the 10" line. Thisgives a lower & and is, therfore, conservative. However, as will be shown later, thepipe lengths do not enter into the calculation since thay are part of an constant term "C"which is evaluated from plant data.

RWCU injects into the lower feed header ordinarily. Ignoring its added flow to the feedflow decreases the calculated & and is, therefore, conservative.

The head loss coefficients due to bends, contractions, etc. (K) which are included in the

| calculation are lumped together and solved for the condition for which data has been

i obtained (i.e. case "a"). They are considered constant since they depent on pipinggeometry. However, the check valves in question open with increased flow thus loweringi

their K value and consequent & contribution. The check valves ponion of the total K issmall and the relatively small non-conservatism of using a constant K is balanced by theother conservatisms.

|| The friction factors (f) are weakly dependent on flow through Reynold's Number (Re).

For the flow regime we re considering, Re is high enough that the friction factor isconstant. i

The flow path that is analyzed for cases "a" and "b" is circled in the diagram. jLength of 16" DBD pipe = 29' 3" from ISO DBD-4-2 & -4-5.

Length of 16" DBA pipe = 37' 6" from ISO DBD-2-1 & -2-4.

Length of 16" DBD pipe = 60' from ISO DBD-2-4.,

!

It turns out that the factors L and D for the pipe, which are constsnt, are lumped into andoverall constant for head loss. This means that detailed knowledge of pipe lengths is not

| required to solve the problem at hand. |

Elevation heads are:

2 762tt from ISO DBD-4-23

Z 2 810 ft + 10.5 in from ISO DLA-2-4-

!|

|lowa Electric Light and Power Company

Cedar Rapids, Iowa

Doc # CAL-u9 b -ot 2 nevaef %DRWJ MJe 0 bk))00C' bih14 bRev Preparec Date Venhea'Date Sheet # Continued Cr 6 >F M

Page 8: DUANE ARNOLD ENERGY CENTER

.- -

CASE"an .

,- s,

Temocrature of FW: T m := 424 deg F from Ref. [1]

Density of FW:.

,

Specific Volume of Saturated WateFrom Ref. [13], pages 21 - 24

DEGK(X) := 5 (X + 459.67) TKCR := 647.3-

03

AVF := 1 BVF := -1.9153882 VFCR := 3.15510 1kg

CVF := 1.201518610 DVF := -7.8464025 3VFCR = 0.05 g

Ib

- 3.888614 x

2.0582238 2x

- 10829991 3TC(TK) := TKCR - TKx

EVF.= 8.2180004 10-' #TVECTOR( x ) := x

4.7549742 10-' s Iy

O*g

0

x

1 5 7

YVF(TK) := AVF + BVF TC(TK)3 + CVF TC(TK)s + DVF TC(TK)e ,,

+ EVF TVECTOR(TC(TK)) !

YVF(300) = 0.32 i

3

VF(TK) := VFCR YVF(TK) VF(DEGK(T pw = 0.02 -

RHOF(TK) := RHOFfDEGK[Tpwh = 52.66 bVF(TK) N A N 3

ft

Then:

p w := RHOF(DEGK(T gwp

lp w - 52.66 b and: p 3 := p w, p 2 " P FWp pft

Iowa Electric Light and Power CompanyCedar Rapids. Iowa

6 t'KJh%s Hah 8 0. Ask01ih_ Wn/91, Doc # Ch l* fM 3 'C' i- Revn

Rev Prepared /Date Venfied/Date Sheet # Continued On 7 d t'.20

. . . _

Page 9: DUANE ARNOLD ENERGY CENTER

;- -

t ,. I',

'

Viscosity of FW:

p 0 = 1 10-7 lbf * Avisc := 1.005885 Bvisc := 2813.416 |

ft !

se '

c16 = - 1.06607 c17 = 9.798022 centipoise =100

Svisc

9(TF) := 0 Avisc .e# * *

g(Tpw)Then: pw :=

pw = 2.43 10 Ibf *4g w = 0.12 centipoisep

ft

Mass Flow of FW:

|

FW.100 := 7.1710 S at 100% power.8mdothr

mdot FW.100mdotFWB" * P 1 *^ 1 *V 1 P 2A 2V2*

2

where: A1 = flow area of 16" pipe andA2 = flow area of two 10" pipes.

When flow splits from one 16" line into two 10" lines:

mdot FWBmdotFWB1 := and mdotFWB2 := mdotFWB12

Then: mdotFWB3 - 16.93 ftV 3 := V

p1 A 3 Sec

A3

2 = 18.96 gV V V2 := A 3

2 sec

lowa Electric Light and Power CompanyCedar Rapids, Iowa

e' 9$A!Y7Lwmd Plaki 0 JJ hhw */I2/9% Doc # Ckc 9 M t2. nevaRev Precared/Date Venfied/Date Sheet # __ . _ Continued On S oPJr,

i__

Page 10: DUANE ARNOLD ENERGY CENTER

,.' . Reynolds Number of'FW Flow:'

,,,

.

p w'V D 1p 1

Re 3 := 7Re 1 - 1.36 104FW

1

4 mdotFWBor: Re 3 := Re 3 - 1.36 107

x- pw D 3|I

P FW'V D 2 i2Re2:= Re 2 - 1.02 10

7

4FW

4 mdotFWB1or: Re 2 := Re 2 - 1.02 107

pw D 2 |x-'

Moodv Friction Factor:

e := .00015 in

f( c , D , Re) := f[ c.25

)21

95.742 log,3.7 D

+

Re''

3 := f(c, D $ , Re 3)Then: ff 3 - 0.0139

f2 := f c D 2Re2) I2 = 0.0147

Evaluation of AP:

i

*f 2 2h pAEqn.6 P 3-P 2 _2 3V V"

ge,

(2 g 2 g/_

_ ,

L V 2 gA+f

3 3 V L2 V3 2 V 23 +K +f- +K'D 2g 32g D2 23 2 2g 2g

Iowa Electric Light and Power CompanyCedar Rapids, Iowa '

^

y ggm ggg QQ,9fQp gjt2,14g Doc # Chl~il42, ~Of 2- Rev#Rev Prepared >Date Venfied/Date Sheet # Continued On 9 oP2O ;

'

- .- -- . .

Page 11: DUANE ARNOLD ENERGY CENTER

-.

''.. i '.

". A'

3Since: V2"y'V 1

then:

Eqn.7

[A 23

-V g

1)2

(A 2 V PFW g cAP =

3

+ Z2-2 1-'

2g' 2g-

gA[A [A

2 23 3

L V 2 - -' V2 l -V

3 +K- +f2 1) + K ' (' 2 /3

+f1 3 V

L -(A 23 A-

3 2D 3 2g 2g D 2g' 2'

2 2g',

Collecting terms:

Eqn.8

AP =

2 ' [A 02 [g ) f N{V 2 PL L-1+f 3 2 A3 $ 3

3 + K ''1

+(22-Z)2g A 3 +f= - +K-

2 3p D D-

2 (A 2/ (A 2/ QAj

Collect constant terms into a single constant:

[A 2 2 2L L 2 A A3

-1+f j + f-Eqn.9 C = 1 - 3 3+K'g+K3- -

2(A2 D D

2(A) (A 2/3 2

Then:

02 P FW -Eqn.10 AP = V

3

2 g (C) + (Z2-2) '

1

gA

From data : AP g.gg := 67 psi at 100% power. ( ATT Ac r* MEMT l)

The actual driving head for the flow is found by subtracting the head due tothe submergence of the FW sparger:

AP a = AP ued - 2 psi (head coITection due to submerged-

FW sparger; from Appendix 2)

lowa Electric Light and Power CompanyCedar Rapids, Iowa

ft 2 90 M a /4 h{ 100n,gsimqz Doc # CAL 40'4 -oI 2- Rev#B tRev Prepared /Date Verified /Date Sheet # Continued On 10 oeld

_ ______-__-__ __-

Page 12: DUANE ARNOLD ENERGY CENTER

_ .

.-

.

. , . " ,

,

The total AP for arbitrary power levels can be calculated by correcting the AP due to flowonly:

Power := 100

lpw9 opw 9p,

67 psi - (Z2-2 f gAPa. read := 2 - 2 )*1 - 2 psi +2 1 -

100 g+ 2 psi

. (head correction due to submerged3p a = AP a. read - 2 psiFW sparger; from Appendix 2)

AP a. read = 67 psi

Then:

AP a'9 A

-(2 2-2)1pwgpEqn.11

C :=2V 2

3 Power

2g 100

Which yields: C = 28.94

which depends only on geometry and is independent of flow.

Then:

f 9\Eqn.12 y 2 PN

AP(V ) := +(Z2-2)3 C- *12g ( gA /

lowa Electric Light and Power CompanyCedar Rapids Iowa

Af ?L d/G K w m tM d6' 0JY00tirt. TfrzfG4 Doc # Chl W % MI 2- Rev#Rev Prepared /Date Verified /Date Sheet # Continued On il oe.2.4

l

Page 13: DUANE ARNOLD ENERGY CENTER

__

..

''\' '':.

.

To calculate AP as a function of mass flow:

m tv 3 ( mdot) :=

p3A 3

/ AP

V 3 ( mdot)2 M{+ (Z 2-Z)

Eqn.12.a AP( mdot) := C- -3 (gA /2g

*and: Re( mdot) :=pw D 3x-

| CASE "b"1 -

For the case in which all FW flow (adjusted for power level) less rated HPCI flow! (1.498 Mlb/hr or about 3000 gpm) is going through one FW line:

FW.100 = 7.17. M!bmdothr

l

mdot HPCI := 1.498-hr

Power |

mdatFWB = mdotFW.100 100 - mdo:HPCI

Then, for Power = 100 %:

Calculate AP :b

D = AP(mdot ws)AP F AP b = 135.84 psi

b. read := AP(mdotpwg) + 2 psi(head correction due to submerged |but: APFW sparger; from Appendix 2)

Then: AP b. read = 137.84. psi

Iowa Electric Light and Power CompanyCedar Rapids. Iowa

B frOff hbd dhbs 0 20014 '0OZ/4 4 Doc # Cil-M98 t\ l RevnRev Prepared /Date Venfied!Date Sheet # Continued On il or ,2.d

,

i i

I , . ~

Page 14: DUANE ARNOLD ENERGY CENTER

.

''t .. n,,

.

For Power = 100 %:i

1 Maximum AP for " Alert Level"

: If we measure a AP such that!'

AP . read < AP < APAlert 'a

then we can be 95% confident that HPCI flow will meet Tech Spec requirements.

The instmment uncertainty from Appendix 3 is:.

1

AP Uncert = 40.3168 psi,

!

.

The maximum " Alert Level" AP is:AP Alert := AP b. read - AP Uncert

.

Then:

! AP .lert = 97.53 psi!

1

!

Maximum AP for " Action Level"1

l

i If we measure a AP such that:

AP > APAlert +:

j then we can be 95% confident that the high AP is not due to instrument error.;

The instrument uncertainty from Appendix 3 is:4

AP Uncert = 40.3168 psi,

t

The maximum " Action Level" AP is:AP Action := AP a. read + AP Uncert

Then:1

APAction = 107.32 psi

|

Iowa Electric Light and Power CompanyCedar Rapids, Iowa

.6 ?n./d!41 b1mnl Binon JJ0 nrL Wh49 % 00C# - ~$A 5 l? Rev#Rev Prepared /Date Venfied/Date Sheet # Continued On _I3 #20

Page 15: DUANE ARNOLD ENERGY CENTER

. .

'"For a range of power levels:-

Power := 81,82.100

mdotpw( Power) := mdot FW.100 * - mdot HPCI00

AP (Power) := AP(mdatpw(Power))b

AP Alert ( Power) := AP b(Power) + 2 psi - AP Uncert

pw9p2

AP a. read ( Power) := 67 psi - (Z 2-2)-1- 2 psi 2 psi-

.

g 00

pw1p

+(Z2-Z)3 9A,

APAction( Power) := AP a. read ( Power) + AP Uncert

mdot pw(Power)

Mib AP a. read ( Power) AP Alert ( Power)Power hr psi psi81 4.31 50.79 47.6682 4.38 51.56 49.9583 4.45 52.34 52.2784 4.52 53.13 54.6385 4.6 53.92 57.0386 4.67 54.73 59.4787 4.74 55.54 61.9488 4.81 56.37 64.4589 4.88 57.2 6790 4.95 58.05 69.5991 5.03 58.9 72.2192 5.1 59.76 74.8793 5.17 60.63 77.5794 5.24 61.51 80.3195 5.31 62.4 83.0896 5.39 63.31 85.997 5.46 64.21 88.7598 5.53 65.13 91.6499 5.6 66.06 94.56100 5.67 67 97.53

lowa Electric Light and Power CompanyCedar Rapids. Iowa

M- t'.LJcr k ink 0.) 110 D nk. Y o W 4 Doc # ChL-M4%-D\L nevnRev Prepared /Date Verified /Date Sheet # Continued On Id oNd

. -

Page 16: DUANE ARNOLD ENERGY CENTER

__

. . .

,

s,- n-

.

and AP . read as a function of power:Graphing APAlert a

100

95

90 _ _..,

/85 4

^

7

80 ,,

/AP gg( Power) 75

-

70

AP a.rW( Power ) // *

..

P88 65

/j..... ,,

*-

/ . * * 1. .g/ .-

/ * *-

....= - ..

.;/" '

. . . ." /45

4080 82 84 86 88 90 92 94 96 98 100

Power (CTO)

From the graph, this technique is impossible to apply below 83% power anddifficult to apply below about 90% power.

I

i

l

l

lowa Electric Ught and Power Compan)Cedar Rapids. Iowa |

g g ,b % g, Qj Q'()g 6//242, Doc # OL-M 3M L. Rev#_

Rev Prepared /Date Venfied/Date Sheet # Continued On /S oc_ _ _ _

Page 17: DUANE ARNOLD ENERGY CENTER

i -

.

) ,,:' r

i

CONCLUSIONS

This calculation demonstrates the feasibility of predicting a DPthat would be representative of a situation where one of the feed,

lines is restricted to the point where HPCI flow might be reduced.

! to below Tech. Spec. limits. It can be used as a basis forsetting alert / action levels when a specified DP limit has been

} reached or exceeded as long as the conditions for which thecalculation are valid are adhered to. The DP with instrument,

j error included as developed by this calculation represents thei maximum DP for alert / action levels that should be used. The

" read DPs" must be taken at corresponding power levels as given;'

by this calculation for the calculation to be valid. Given thestated instrument errors this methodology becomes impractical,

'

below 90% power.

:

i

:

.

..

Iowa Electric Light and Power CompanyCedar Rapids, Iowa

B A M M F%4 0 llY1bL S||2 /93 Doc # Q)/ "U9 3 'Of 2- Rev#

Rev Prepared /Date ' Venfied/Date Sheet # Continued On Ib er-34'

P531750 NEW 9 89

. - - - .-

Page 18: DUANE ARNOLD ENERGY CENTER

_ _ . __ _ _ ._- . . . _ _

,

i

"i.-

,

a

Appendix 1: Calculation of Moody friction factor over range of FW flows

FWB := 1 Mlbhr ,1.5 Mlb . 8 Mlbmdothr hr

Re(mdotFWB) f(c,D 3 , Re(mdotFWB3.705 10_ 0.016

65.558 13 0.0151

6 0.0157.411 106 0.014

9.263 100.014

71.112 10 0.014

71.297 10 0.0147 0.0141.482 10

0.01471.667 100.014

71.853 10 0.01472.038 10 0.013

72.223 10 -

72.408 10 0.01372.594 1072.779 1072.964 10

o.1

--

hD 1, Re(mdotf FWB

~~~~ ~.

..---~~. _ _ . .

0' 6 7 E3 3o 31o 1. t o'

Re(mdotFWB)

Iowa Electric Light and Power CompanyCedar Rapids, Iowa

& W, O.L lhd < $ ul 0Yr 5|IMQ ^t, Doc # CAL-fl9 h 'O L Rev#tRev

'

Prepared /Date Verified /Date Sheet # Continued On I7 ce,20

P531750 NEW 9 89,

__ .-,y - * *'

Page 19: DUANE ARNOLD ENERGY CENTER

1 |,.

, , " r:,

-

Aopendix 2: Pressure correction due to submergence of FW sparger ;

p RPV := 1020 psi at rated power.

|l

Tsat given Psat

s 3Units: MPa 10 Pa p 0 := 1 MPa kj e 10 joulel

p0 = 145.038 psi ||

2A := .42677610 8 := .3892710' C := .94865410|

!

8TK( p) := A + ' '

TF(p) := (TK(p) - 273.16) S + 32 |l

in +C 5-

(PO )!;

RPV := TF(p RPV)TT RPV = 546.92

!!

Then:1

RPV := RHOF(DEGK(TP RPV P RPV = 46.174-

Pressure correction:!'

i

Normal reactor water level (RWL) elevation: Z RWL := 537.5 in (APED-B11-008) |

FW sparger elevation: 2 pws := 461 in (APED-B11-008)

gwg := (Z RWL-2 FWS)'PAPRPV

Then:

AP pwg = 2.044 psi

Iowa Electric Light and Power CompanyCedar Rapids, Iowa

B PX4 A $2, rhtk 0 11hhhrt 5W43 Doc # Chl'N0 **Cl 2- Rev#Rev Prepare 6/Date Ventied/Date Sheet # Continued On /f oe M

'

_ __. _ _.

Page 20: DUANE ARNOLD ENERGY CENTER

( ,. o " Aooendix 3: Instrument Uncenaintiesq.

The use of PT1637 and FT 4563, PT4564 to determine a differential pressure is atrending activity performed under normal environmental conditions and powersupply conditions. These conditions will also be consistent with the conditionsduring instrument calibration. Therefore, the following potential causes forinstniment error are assumed to be negligible: Accuracy Temperature Effect,Overpressure Effect, Static Pressure Effect, Seismic Effect, Radiation Effect,Humidity Effect, Power Supply Effect, and effects due to RFUEMI.[12]

Instrument Accuracy

Range := 2000 psi! VA_PT1637 := 0.005 Range 0.5% Accuracy [9] 2-sigmaj Range := 1200 psi.

VA_PT4563 := 0.005 Range 0.5% Accuracy [10] 2-sigma1

j Drift

VD_PT1637_6mo := VA_PT1637 Assumption 2-sigma

VD_PT4563_. no := VA_PT4563 Assumption 2-sigma

I Cal _Intvl_PT1637 := 2 yr 12 Eyr

Cal _Intvl_PT4563 := 1 yr 12 -yr

' Cal _Intvl FT1637'

D_PT1637 :=-

VD_PT1637_6mo,

6 mo3

"'D_PT4563 :=

-

VD_PT4563_6mo-

6 mo34

4

Calibration |.

H_PT1637 := 2 psi Heise Guage 0-2000 psig Accuracy (11].

F_PT1637 := 0.005 000 50 psi Fluke Voltmeter Accuracy (11]; 50j Range = 1500 psi

H_PT4563 := 0.001 Range Heise Guage 0-1500 psig Accuracy [11]I

F_PT4563 := 0.001 = 1 00 50 psi Fluke Voltmeter Accuracy [11]50

lowa Electric Light and Power CompanyCedar Rapids. Iowa

6 /X#//# r/n/tr bJ $11 hum N(2/04 Doc # fAL-4/M di 2_ Rev#I

Rev' Prepared!Date Verified /Date Sheet # Continued On I4 4 e,Lt

_ _

Page 21: DUANE ARNOLD ENERGY CENTER

.

i,- '; Cstd_H_PT1637 := H PT1637" -

Calibration Standard Accuracies assumed to be at.

4least

Csid_F_PT1637 := F_PT1637 4 times better than the instrument under calibration.4

Cstd_H_PT4563 := H_4 634

Cstd_F_PT4563 := - -

4 .

j1

2 2 2 2C_PT1637 := H_PT1637 + Cstd_H_PT1637 + F_PT1637 + Cstd_F_PT1637|

C_PT4563 := )H_PT4563 - Cstd_H_PT45632 2 2 2+ F_PT4563 + Cstd_F_PT4563 |

U := f.dVA_PT16372 2 2 2 2 2+ VA_PT45G3 + C_PT1637 + C_PT4563 + D_PT1637 + D_PT4563

U = 40.317 psi 3-sigma (95% Confidence Interval for Instmment Enor)

Derived Units:

3gpm = 0.1337 ft degF = 10 psia = psi psig = psia - 14.7 lbf

min in

mv = vott 10-3 *O'

i

|

l,

Iowa Electric Light and Power CompanyCedar Rapids. Iowa

B (TA%E 7//L/9 3 RikC 51/2K/ % Doc # Ck~M Ab SI2- Rev#,

Rev Prepared /Date Venfred/Date Sheet # Conttr:ued On 2Cloc)4 ;

Page 22: DUANE ARNOLD ENERGY CENTER

o9 i. i ge n uva pq 0 - v em wrsv

-.

't,- ' . '

-', ,, , , , . , , ,

' !"tu C1 c) e[N N

- . . . .( . . g ;. - t2 N 0

d.N Ce

2 '

CN c

-I @ 2|<

1 N 9 !I $ 9 e

~r a% A. | - .

4 5. .

< O -. C

E> .

f u'

,

CI $ G $6 m

.q' @ i

a Cu ;mb @? No c

N rs e :u

Qf. . .

$N O-1 . . , <I g

y {zN I g\

> 1 f3 |3 "

N t.L) ) N e U

w w OG,,

<l m DHwn

i t mE ,

-

eE--

orwg yN I1 mw

.$ l $. . (,

f m c-. m

=> J s 6 . , ' s c,,

cr ~e a m =4 ,::-

\

dc hSE hl 2

- T 5<lC E $'

%$ mf a X' s g A iNT C 3Q f.n ts' d) * -

I' - .i D- -

mt-- 89 gh * E t.

mWz n

$c h Y h 3 $f EO #

SJ e i o A -s d~ --

\ 6 E1 -m -

r m- a a

Ny 3 =*M e aw e. .

Q YC Q . af C Eg. .T N . g . ; ca r .

O

( | 4 i

" *

~

<3 +5'I <lmw

QN

. . . . . . m0 c

3z =- - -

id.w 5a t 1 t ow w i w c.s g2 2 h 2 %*

-~

W i w bm v- d a e,

m. . m. .u,-) .

. a . . cnie O O g bU CD CD Q.4 g

- .

-t |-a *

0 0 iA".oQ ?o . "

. . . . {. . p o

E 0O'96 0*b6 0'96h O"2L h S'E 2'E 0'99 0'29

(dMd1Dd) idD30) IH91W1 i i

e ---- - - - - - - - - - - - - - - - _ _ _ - - - _

Page 23: DUANE ARNOLD ENERGY CENTER

$WC W (.MT {'_ ~ f kW S dP O. o

, , . ' . ' t-

*

, , , ,

i

iNiN!

!! |..

3 M N @" r N e;: 4 $ m

'

8N *G R d e

. . . m . . - .36 5 *

eN h d.m , -

S 2 OS.& =s 52 :g4 e7 9a-, <,

j i 36 N" E4s <

o>a g <> _~ -

m. e- 4 1

D ( my C, EI .- i

$p q o* ae,e '

Nw .)Q

. . . 9- . .aw e..>g,

*68 ,

m --

, > oo

N- G

E W EES 'bm2-

3* *4e a 7 w@mp-e ee q cn ,gy . . . . . . . . 858a s?rpG **L

E ze - aU+ o y am

2 lw -

D o-

E&m ' k 3\

(p o- m e s

CD CD *D N D Qc

. .. ', g i ca

= g . s . . . g< # < s

sn* nW e

@A E 'm cn seh n ,

fA i I-

C 26 2 4 E co e o :s e g

--

a m ' " m to ca eU U. 3 C . 2. m. ~. 6m

Sh E5 % 9w w w8,2 tn ? o 8m - em m e me s oe CD CD Cr eo o CD Q. :

C *:

| g2 & ::= , *

i oeO ! O c5 i '

~,.

om ;co m 16- n, , , , ,

5O2'S9 9'60 0'90b 0*beh 0*C 59'2 0'45 0'55 6?*tdMd13d) (d930) (H97W) < >

Page 24: DUANE ARNOLD ENERGY CENTER

-

.

Detsult Runs 2 BBN/PRmi-Sample int: Every Point _ .;

Rele a se 2.2

C133T (Userl9 . .

g -.

.- - ~- m_. - - - -

d_

y

s- C133Ti 84.8519 C133T 99.9950

Tme 25-Nay-92-10:36 35.111836O Tne 23-Mey-92-00 03:15.008229 - \ C133T 98.0447e; q Tir e. 22-Mey-92-2312.ii.e i1263oo . . .

.

q [] = B031T (Useri A - 8033T tuser) f;@ :. '_" '

'_ _ g#,, n - _ - ' -,,

a" a ~ _ ~ a a ~ - a - 1- a " c_., ,,_ .,-a - - a 3 - . -"-

--- _

- " -11. n -- , .

o -_. - - .

tuo, 8031T 405.4297 7

- cp

d Tme 23-Mey-92-00:00i'18.180626E ~

h. . ..

B015T tuserl 6 - 8016T (Usert iE) -

. . .. -

'

i =%%-ewmv ..

in m _ __

7_ 7_ __ y , _&wWes. 1= -

_ yyd 80151, 3.0 119_ _ g- Trnei 23-tiey-92-00:00:09.292165

q.L Ie .

.

m (MPR_DIF (Func) n. .. .

3.

oGN_" i% 6 WMN V

-

PR _ DiF: 59.6387Ime. 22-May-92-23:58 23.768092 N_

9a . . .

OE00:00 00:00:00 00:00:00 00.00 00 GO.00.00'

21-May-92 22-tiay-92 23 May-92 24-tiay -92 25-May-92. Datetsme (Day-Mon-Yr Hr Min Sec)|

Qin, e .A en. in . As tr'.-Q 1 1R,1%,aa n a-~~--- - - - -

_ _ _ _ _ _ _ _ _ _ . _ _ _ . . . _ . _ _ . . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Page 25: DUANE ARNOLD ENERGY CENTER

. . _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ - _ _ _ _ _ _ _ . . . - -___ .____ - _ _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ - - - _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ - - _ _ _ _

:

BBN/PRead-Dsteult Runs 2Sampla int: Every Point a?

Rele a se 2.2

C133T (User)9 . . . . .

e 29-Me 92-16:44 59.951212 h_

- C133T 99.9950 -

y, Tunes 25-May-92-10.36 35.111836~g ,

-

. . . . ,

O 8031T (Userl 6 - B033T iuser) MQ ' ' ' . "

.

'8031Ti 8416.9 141~

{_

Tiriesg_

2't May-92-16:40iSS.108873._ n

j _- _c %a2q a C .- s 8031T 418.5156

g-

Tenei 25-Mey-92-10:32 29.930768 -

g.q__

[-] - B015T (Userl A - B016T (Userl i

E' '

ine 29- la 92-16 99 30.2; -~s"*

. gem Wu~aF%tu -

h ~ 0015T. 3.6353Times 25 May-92-10:41.05.278709 -

'.. ..

PR_DIF (FunciO. . . . .

_ g9-Noy 92-16:40 09.396625 )

PR_OF. 71.2402Trnes 25-Noy-92-10:31 *19.285158

9 3x

0$00.00 08 00:00 16 00:00 00:00 00 08:00:00 16:00:00

.

24-May-92 25-May-92Datetune (Day-Mon-Yr Hr: Min Sec)

Plotted oni 11-RUG-93 07:31 39 s.**ei . poco enean sonnonnor.,e, ~- .

Page 26: DUANE ARNOLD ENERGY CENTER

_ _ . . __ . _

<: --

Detau|t Rvns 2 BBN/PRC6E: 'Sarnple !nts Every Point -

Rese..e 2.24

C133T (Users'

g % h39Q. * C1331 100.0002[ _ Tsnes 27-Mar-93-08:0712.6245teQ -

.

9. . .

iho 8031r tuser A B033T tuser)'u -2 "

-

u_ 7

f nn_ - _ :: -A-g_ _ ~-n- s_ _ ~~ t

9 - = M :cf A __ _ %o B031T 418.4375 8033Ti 416.5625 kp Tmei 27-Nor-93-06:02:57.600716 Time. 27-Nor-93-08:02 57.600716 9',

A f. . .

.

c) - B015T tuserl A - 8016T tuserl i' ' '

I^=.

_

I u)I3N b^ gE 8015T. 3.5819

B016T. 3.4603 'Times 27-Net-93-08:11:38.0981<1to p

Time 27-Mar -93-08 11:38.098144 { 49 . .

I In . ..

'

PR_,DIF (Func)h.. . .

. . oT

]h -

h

PR.DIF. 65.8691Times 27-Mer-93-08 02:18.656865g . . . .

0$00:00 08:00:00 16:00:00 00:00:00 08:00:00 16 00:0026-Mar -93 27-Mar 93

Datetune IDay-Mon-Yr Hr Min Sec)Plotted on 11- AUG-93 07 92206 ' ---* aa"a-~-~--"-------- --

- _ - _ _ _ . . _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ ___ _- _ -_ ___-_________________ -

Page 27: DUANE ARNOLD ENERGY CENTER

|4 T rtc A ouE=wr' I '- Porec=' l?" b_

,

,- ,.

I ,,.

,'g, , . .,

,

5:,N O Ctu |

r| I* 8

vtn.y

Ge t m.il c" () N

C9 @ $% d 5

'1<

a # cN N ,m m @ c. . . g . . g . g 5

- e<3 A s

a g &m

4 h $mhi $ $- u

=?.r< WA "A .e

xN mN -

go II |_ Ek

i. M-x n2 -Eg 8,: 84 gNW -.

- -- g

5m -

oeM

E Es2, f5 -

.2 e ~ IeEe-

eSm . $,' *O' M -

|. .

. . 1 . ..

mEC-

r<- 6hc

~ ____

{ I 5 Z<

1 e '-w a >-

<(-

e eun

, ,b o2 11 D

-

~ eh& Ep k k Dm

m m' -e- - o

O 4 Q h .,\

O I W *4 O

t$ mC *. m . =.. e . mO ;: en N5 d Q m

Y @ d O W' idI

a > mm s = g

b .CD cr i5 - <' i m :5* 6 im S 1 m-

A U ar i eN < mi 0 [40) \ mNm t i m M c:- m N -e -u G rc

5 7 h t-

6al M O C C$r |ii rm?e '

a TG d .I g g;wD - - Dg;g -gg mE D oC--- v> n

- Ee. r c '----

n n it s n 1 o <vm * \ -

n - m" en tn O 5,'

i e mM- cD i e-

/ o a:e- g moo gg o o- 6pg m\ a ,g gu- gs, ,, , a. w

E "eg t.

pDd Ooi['

3i,

1 TE<,

n gc2

,n

,m ? s,

5g a. e0~96 0'h6 0'95h O*2L h S'E 2*C O'99 0*29 $ I(d M d.l.3 d) Ianani n u n, ., mS