9
DUAL FULL-BRIDGE DRIVER Multiwatt15 ORDERING NUMBERS : L298N (Multiwatt Vert.) L298HN (Multiwatt Horiz.) L298P (PowerSO20) BLOCK DIAGRAM . OPERATING SUPPLY VOLTAGE UP TO 46 V . TOTAL DC CURRENT UP TO 4 A . LOW SATURATION VOLTAGE . OVERTEMPERATURE PROTECTION . LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY) DESCRIPTION The L298 is an integrated monolithic circuit in a 15- lead Multiwatt and PowerSO20 packages. It is a high voltage, high current dual full-bridge driver de- signedto accept standardTTL logic levels and drive inductive loads such as relays, solenoids, DC and steppingmotors. Two enableinputs are provided to enableor disable the deviceindependentlyof the in- put signals. The emitters of the lower transistors of each bridge are connected togetherand the corre- spondingexternal terminal can be used for the con- nectionof an externalsensing resistor. Anadditional supplyinput is provided so that the logic works at a lower voltage. PowerSO20 L298 1 http://www.hgsemi.com.cn 2018 AUG

DUALFULL-BRIDGE DRIVER - datasheet.lcsc.com

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DUALFULL-BRIDGE DRIVER - datasheet.lcsc.com

DUAL FULL-BRIDGE DRIVER

Multiwatt15

ORDERING NUMBERS : L298N (Mult iwatt Vert. )L298HN (Mult iwatt Horiz.)L298P (PowerSO20)

BLOCK DIAGRAM

.OPERATING SUPPLY VOLTAGE UP TO 46 V. TOTAL DC CURRENT UP TO 4 A. LOW SATURATION VOLTAGE.OVERTEMPERATURE PROTECTION. LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 V(HIGH NOISE IMMUNITY)

DESCRIPTION

The L298 is an integrated monolithic circuit in a 15-lead Multiwatt and PowerSO20 packages. It is ahigh voltage, high current dual full-bridge driver de-signedto acceptstandardTTL logic levels anddriveinductive loads such as relays, solenoids, DC andsteppingmotors. Two enableinputs are provided toenableor disable the deviceindependentlyof thein-put signals. The emitters of the lower transistors ofeach bridge are connected togetherand the corre-spondingexternal terminal can be used for the con-

nectionofanexternalsensingresistor.Anadditionalsupply input is provided so that the logic works at alower voltage.

PowerSO20

L298

1 http://www.hgsemi.com.cn 2018 AUG

Page 2: DUALFULL-BRIDGE DRIVER - datasheet.lcsc.com

PIN CONNECTIONS (top view)

GND

Input 2 VSS

N.C.

Out 1

VS

Out 2

Input 1

Enable A

Sense A

GND 10

8

9

7

6

5

4

3

2

13

14

15

16

17

19

18

20

12

1

11 GND

D95IN239

Input 3

Enable B

Out 3

Input 4

Out 4

N.C.

Sense B

GND

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit

VS Power Supply 50 V

VSS Logic Supply Voltage 7 V

VI,Ven Input and Enable Voltage –0.3 to 7 V

IO Peak Output Current (each Channel)– Non Repetitive (t = 100µs)–Repetitive (80% on –20% off; ton = 10ms)–DC Operation

32.52

AAA

Vsens Sensing Voltage –1 to 2.3 V

Ptot Total Power Dissipation (Tcase = 75°C) 25 W

Top Junction Operating Temperature –25 to 130 °CTstg, Tj Storage and Junction Temperature –40 to 150 °C

THERMAL DATA

Symbol Parameter PowerSO20 Multiwatt15 Unit

Rth j-case Thermal Resistance Junction-case Max. – 3 °C/W

Rth j-amb Thermal Resistance Junction-ambient Max. 13 (*) 35 °C/W

(*) Mounted on aluminum substrate

1

2

3

4

5

6

7

9

10

11

8

ENABLE B

INPUT 3

LOGIC SUPPLY VOLTAGE VSS

GND

INPUT 2

ENABLE A

INPUT 1

SUPPLY VOLTAGE VS

OUTPUT 2

OUTPUT 1

CURRENT SENSING A

TAB CONNECTED TO PIN 8

13

14

15

12

CURRENT SENSING B

OUTPUT 4

OUTPUT 3

INPUT 4

D95IN240A

Multiwatt15

PowerSO20

L298

2 http://www.hgsemi.com.cn 2018 AUG

Page 3: DUALFULL-BRIDGE DRIVER - datasheet.lcsc.com

PIN FUNCTIONS (refer to the block diagram)

MW.15 PowerSO Name Function

1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistor tocontrol the current of the load.

2;3 4;5 Out 1; Out 2 Outputs of the Bridge A; the current that flows through the loadconnected between these two pins is monitored at pin 1.

4 6 VS Supply Voltage for the Power Output Stages.A non-inductive 100nF capacitor must be connected between thispin and ground.

5;7 7;9 Input 1; Input 2 TTL Compatible Inputs of the Bridge A.

6;11 8;14 Enable A; Enable B TTL Compatible Enable Input: the L state disables the bridge A(enable A) and/or the bridge B (enable B).

8 1,10,11,20 GND Ground.

9 12 VSS Supply Voltage for the Logic Blocks. A100nF capacitor must beconnected between this pin and ground.

10; 12 13;15 Input 3; Input 4 TTL Compatible Inputs of the Bridge B.

13; 14 16;17 Out 3; Out 4 Outputs of the Bridge B. The current that flows through the loadconnected between these two pins is monitored at pin 15.

– 3;18 N.C. Not Connected

ELECTRICAL CHARACTERISTICS (VS = 42V; VSS = 5V, Tj = 25°C; unless otherwise specified)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VS Supply Voltage (pin 4) Operative Condition VIH +2.5 46 V

VSS Logic Supply Voltage (pin 9) 4.5 5 7 V

IS Quiescent Supply Current (pin 4) Ven = H; IL = 0 Vi = LVi = H

1350

2270

mAmA

Ven = L Vi = X 4 mA

ISS Quiescent Current from VSS (pin 9) Ven = H; IL = 0 Vi = LVi = H

247

3612

mAmA

Ven = L Vi = X 6 mA

ViL Input Low Voltage(pins 5, 7, 10, 12)

–0.3 1.5 V

ViH Input High Voltage(pins 5, 7, 10, 12)

2.3 VSS V

IiL Low Voltage Input Current(pins 5, 7, 10, 12)

Vi = L –10 µA

IiH High Voltage Input Current(pins 5, 7, 10, 12)

Vi = H ≤ VSS –0.6V 30 100 µA

Ven = L Enable Low Voltage (pins 6, 11) –0.3 1.5 V

Ven = H Enable High Voltage (pins 6, 11) 2.3 VSS V

Ien = L Low Voltage Enable Current(pins 6, 11)

Ven = L –10 µA

Ien = H High Voltage Enable Current(pins 6, 11)

Ven = H ≤ VSS –0.6V 30 100 µA

VCEsat (H) Source Saturation Voltage IL = 1AIL = 2A

0.95 1.352

1.72.7

VV

VCEsat (L) Sink Saturation Voltage IL = 1A (5)IL = 2A (5)

0.85 1.21.7

1.62.3

VV

VCEsat Total Drop IL = 1A (5)IL = 2A (5)

1.80 3.24.9

VV

Vsens Sensing Voltage (pins 1, 15) –1 (1) 2 V

L298

3 http://www.hgsemi.com.cn 2018 AUG

Page 4: DUALFULL-BRIDGE DRIVER - datasheet.lcsc.com

Figure 1 : Typical SaturationVoltagevs. OutputCurrent.

Figure 2 : Switching Times Test Circuits.

Note : For INPUT Switching, set EN = HFor ENABLESwitching, set IN = H

1) 1)Sensing voltage can be –1 V for t ≤ 50 µsec; in steady state Vsens min ≥ –0.5 V.2) See fig. 2.3) See fig. 4.4) The load must be a pure resistor.

ELECTRICAL CHARACTERISTICS (continued)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

T1 (Vi) Source Current Turn-off Delay 0.5 Vi to 0.9 IL (2); (4) 1.5 µs

T2 (Vi) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 0.2 µs

T3 (Vi) Source Current Turn-on Delay 0.5 Vi to 0.1 IL (2); (4) 2 µs

T4 (Vi) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.7 µs

T5 (Vi) Sink Current Turn-off Delay 0.5 Vi to 0.9 IL (3); (4) 0.7 µs

T6 (Vi) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.25 µs

T7 (Vi) Sink Current Turn-on Delay 0.5 Vi to 0.9 IL (3); (4) 1.6 µs

T8 (Vi) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.2 µs

fc (Vi) Commutation Frequency IL = 2A 25 40 KHz

T1 (Ven) Source Current Turn-off Delay 0.5 Ven to 0.9 IL (2); (4) 3 µs

T2 (Ven) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 1 µs

T3 (Ven) Source Current Turn-on Delay 0.5 Ven to 0.1 IL (2); (4) 0.3 µs

T4 (Ven) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.4 µs

T5 (Ven) Sink Current Turn-off Delay 0.5 Ven to 0.9 IL (3); (4) 2.2 µs

T6 (Ven) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.35 µs

T7 (Ven) Sink Current Turn-on Delay 0.5 Ven to 0.9 IL (3); (4) 0.25 µs

T8 (Ven) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.1 µs

L298

4 http://www.hgsemi.com.cn 2018 AUG

Page 5: DUALFULL-BRIDGE DRIVER - datasheet.lcsc.com

Figure 3 : Source Current Delay Times vs. Input or Enable Switching.

Figure 4 : Switching Times Test Circuits.

Note : For INPUT Switching, set EN = HFor ENABLE Switching, set IN = L

L298

5 http://www.hgsemi.com.cn 2018 AUG

Page 6: DUALFULL-BRIDGE DRIVER - datasheet.lcsc.com

Figure 5 : Sink Current Delay Times vs. Input 0 V Enable Switching.

Figure 6 : Bidirectional DC Motor Control.

L = Low H = High X = Don’t care

Inputs Function

Ven = H C = H ; D = L Forward

C = L ; D = H Reverse

C = D Fast Motor Stop

Ven = L C = X ; D = X Free RunningMotor Stop

L298

6 http://www.hgsemi.com.cn 2018 AUG

Page 7: DUALFULL-BRIDGE DRIVER - datasheet.lcsc.com

Figure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel4and channel2 with channel3.

APPLICATION INFORMATION (Refer to the block diagram)1.1. POWER OUTPUT STAGE

TheL298integratestwopoweroutputstages(A; B).The power output stage is a bridge configurationand its outputs can drive an inductive load in com-monor differenzialmode, dependingon thestate ofthe inputs. The current that flows through the loadcomes out from the bridge at the sense output : anexternal resistor (RSA ; RSB.) allows todetect the in-tensity of this current.

1.2. INPUT STAGE

Eachbridge is driven by meansof fourgatesthe in-put of which are In1 ; In2 ; EnA and In3 ; In4 ; EnB.The In inputsset thebridgestate whenThe En inputishigh; a lowstateof theEn inputinhibitsthe bridge.All the inputs are TTL compatible.

2. SUGGESTIONS

A non inductive capacitor, usually of 100 nF, mustbe foreseen between both Vs and Vss, to ground,as near as possible to GND pin. When the large ca-pacitor of the power supply is too far from the IC, asecond smaller one must be foreseen near theL298.

The sense resistor, not of a wire wound type, mustbe groundednear the negativepole of Vs that mustbe near the GND pin of the I.C.

Each input must be connected to the source of thedriving signals by means of a very short path.

Turn-On and Turn-Off : Before to Turn-ONthe Sup-plyVoltageand beforeto Turnit OFF, the Enablein-put must be driven to the Low state.

3. APPLICATIONS

Fig 6 showsa bidirectional DC motor controlSche-maticDiagram for which only one bridge is needed.The external bridge of diodes D1 to D4 is made byfour fast recovery elements (trr ≤ 200 nsec) thatmust be chosen of a VF as low as possible at theworst case of the load current.

The senseoutputvoltagecanbeused to control thecurrent amplitude by chopping the inputs,or to pro-vide overcurrent protectionby switching low theen-able input.

The brake function (Fast motor stop) requires thatthe Absolute Maximum Rating of 2 Amps mustnever be overcome.

When the repetitive peak current needed from theload is higher than 2 Amps, a paralleled configura-tion can be chosen (See Fig.7).

An external bridge of diodes are required when in-ductive loads are driven and when the inputsof theICare chopped; Shottkydiodeswouldbepreferred.

L298

7 http://www.hgsemi.com.cn 2018 AUG

Page 8: DUALFULL-BRIDGE DRIVER - datasheet.lcsc.com

This solution candrive until 3 AmpsIn DC operationand until 3.5 Amps of a repetitive peak current.

OnFig 8 it is shownthedriving ofa twophasebipolarstepper motor ; the needed signals to drive the in-puts of the L298 are generated, in this example,from the IC L297.

Fig 9 shows an example of P.C.B. designedfor theapplication of Fig 8.

Fig 10 shows a second two phase bipolar steppermotor control circuit where the current is controlledby the I.C. L6506.

Figure 8 : Two Phase Bipolar Stepper Motor Circuit.

This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.

RS1 = RS2 = 0.5 Ω

D1 to D8 = 2 A Fast diodes VF ≤ 1.2 V @ I = 2 Atrr ≤ 200 ns

L298

8 http://www.hgsemi.com.cn 2018 AUG

Page 9: DUALFULL-BRIDGE DRIVER - datasheet.lcsc.com

Figure 9 : SuggestedPrinted Circuit Board Layout for the Circuit of fig. 8 (1:1 scale).

Figure 10 : Two Phase Bipolar Stepper Motor Control Circuit by Using the Current ControllerL6506.

RR and Rsense depend from the load current

L298

9 http://www.hgsemi.com.cn 2018 AUG