19
May 4, 2004 DTFM Modeling and Sensitivity Analysis for Long Masts

DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

  • Upload
    lamhanh

  • View
    236

  • Download
    9

Embed Size (px)

Citation preview

Page 1: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

DTFM Modeling and Sensitivity Analysis for Long Masts

Page 2: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

Current Status

• Completed formulations for DTFM modeling of long masts

• Initiated MATLAB programming for a multiple-bay mast dynamic analysis

Bending Frequency of Solar Sail Mast (SN002)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

Time (sec)

Tip

Dis

plac

emen

t (in

)

Page 3: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

Distributed Transfer Function Method

--DTFM decomposes the structure only at those points where multiple structural components are connected minimum number of nodes, small matrices, & high computational efficiency.

--Closed form analytical solutions reliable results.--Able to model local material and geometrical imperfections.--Convenient in handling structural systems with passive and active

damping, gyroscopic effects, embedded smart material layers as sensing and actuating devices, and feedback controllers.

Why DTFM is unique?--In the Laplace domain.--Using Distributed Transfer Function instead of Shape Function.

Why DTFM is distinctively suitable for solar sails?

Page 4: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

Mast Analysis Using the DTFM

1. Decomposition of a mast into components.2. Generation of state space form for each component.3. Generation of distributed transfer function for each component.4. Generation of dynamic stiffness matrix for each component and

assembly of components.5. Static and dynamic solutions:

• Natural Frequencies and mode shapes.• Buckling analyses.• Frequency Responses.• Static and Dynamic Stress Analyses.• Time Domain Responses.

Page 5: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

DTFM Mast Analysis: Step 1--DecompositionD

ecompositionA

ssem

bly

Page 6: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

DTFM Mast Analysis: Step 2--State Space Form

A set of governing equations for each individual component:

a bt

ct

u x tx

f x tijk ijk ijk

kj

kk

N

j

n

i

j

+ +FHG

IKJ =

==ÂÂ ∂

∂∂∂

∂∂

2

201

,,

a f a f

x L t i nŒ ≥ =0 0 1, , , , ,a f L

Example: a beam component

EI vx

A vt

p∂∂

r ∂∂

4

4

2

2+ =

Page 7: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

DTFM Mast Analysis: Step 2--State Space Form

ddx

x s F s x s q x sh h( , ) ( ) ( , ) ( , )= +State space form:

Example: a beam component

h( , )

( , )( , )( , )( , )

x s

v x sv x sv x sv x s

=¢¢¢¢¢¢

RS||

T||

UV||

W||

F sAs

EI

( ) =-

L

N

MMMMM

O

Q

PPPPP

0 1 0 00 0 1 00 0 0 1

0 0 02r

q x s

p x s EI

( , )

( , )

=

RS||

T||

UV||

W||

000

Page 8: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

DTFM Mast Analysis: Step 3--DTF

A boundary value problem:ddx

x s F s x s q x sh h( , ) ( ) ( , ) ( , )= + x LŒ( , )0

M s N L s r sh h( , ) ( , ) ( )0 + =

The solution is expressed as transfer functions:

h z z z( , ) ( , , ) ( , ) ( , ) ( )x s G x s q s d H x s r sL

= +z0 x LŒ( , )0

G x s e M Ne Me xe M Ne Ne x

F s x F s L F s

F s x F s L F s L( , , ) ( )

( )

( ) ( )

( ) ( ) ( )( )z z

z

z

z= + £

- + ≥RST

- -

- -

1

1

a f

H x s e M NeF s x F s L( , ) ( )( ) ( )= + -1

Page 9: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

DTFM Mast Analysis : Step 3--DTF

η α εx s x s x sT T T, , ,a f a f a f=State space vector:

a a a ax s x s x s x sT Tn

T T, , , ,a f a f a f a f= 1 2 L

e e e ex s x s x s x sT Tn

T T, , , ,a f a f a f a f= 1 2 L

Displacement vector:

Strain vector:

s ex s E x s, ,a f a f=Force vector:

Example: a beam component

a( , )( , )( , )

x sv x sv x s

=¢RST

UVWe( , )

( , )( , )

x sv x sv x s

=¢¢¢¢¢RST

UVWs e( , )

( , )( , )

( , )( , )( , )

x sQ x s

M x sE x s

EIEI

v x sv x sf

= RSTUVW = = LNM

OQP

¢¢¢¢¢RST

UVW0

0

Page 10: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

DTFM Mast Analysis : Step 4--Dynamic Stiffness Matrix

ss

aa

s s

s s

0 0 0 0 00

0

,,

, ,, ,

,,

( , )( , )

sL s

EH s EH sEH L s EH L s

sL s

p sp L s

L

L

a fa f

a f a fa f a f

a fa f

LNMOQP =LNM

OQPLNMOQP +LNMOQP

Force vectors at two ends of the component:

Transformed from distributed external forcesDynamic stiffness matrix

Systematically assembles dynamic stiffness matrices of each component

Dynamic stiffness matrix of the whole system

K U Ps s sa f a f a f× =

Page 11: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

DTFM Mast Analysis: Step 5--Static and Dynamic Solutions

Resonant frequencies of the structure:

det K sia f = 0 si i= - ¥1 w

Mode shapes--nontrivial solutions:

K Us si ia f a f¥ = 0

Frequency responses:

U K Ps s sa f a f a f= - ¥1

Static analysis:K U P0 0 0a f a f a f¥ =

Time domain responses:

Inverse Laplace transform

Page 12: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

Examples of DTFM Analyses

(1) Two elastically coupled beams

(2) Sensitivity Analysis of a Light-Weight Gossamer Boom

Page 13: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

Example (1)--Two elastically Coupled Beams

1 2 3

4 5 6

(1) (2)

(3) (4)

EI=40 ρA=0.5

EI=50 ρA=0.5

k=200 k=400

K( ) *

( )( )( )( )( )( )

~ ( )~ ( )~ ( )~ ( )~ ( )~ ( )

s

v sv sv sv sv sv s

Q sM sQ sQ sQ sM s

f

f

2

2

3

4

5

5

2

2

3

4

5

5

¢

¢

R

S

|||

T

|||

U

V

|||

W

|||

=

R

S

|||

T

|||

U

V

|||

W

|||

Page 14: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

Example (1)--Two Elastically Coupled Beams

Mode

number

DTFM

6*6 matrix

FEM

18 Elements

FEM

34 Elements

FEM

66 Elements

1 16.3 16.3 16.3 16.3

2 41.0 41.1 41.0 41.0

3 54.6 53.1 54.2 54.5

4 79.2 77.8 78.9 79.1

5 144.7 138.3 143.1 144.3

6 157.0 150.5 155.4 156.6

7 273.9 258.1 269.9 272.9

8 305.2 288.2 289.9 304.1

9 448.7 415.4 440.4 446.6

10 500.5 463.9 491.2 498.1

11 669.1 601.7 653.7 665.3

12 747.5 672.7 730.5 743.3

Page 15: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

Example ( 2)--Sensitivity Analysis of a Light-Weight Gossamer Boom

Buckling analysis of a boom:2 2 2

2 2 2

d d dEI w(x) P w(x) 0dx dx dx

⎛ ⎞+ =⎜ ⎟

⎝ ⎠EI is not a constant along the boom: Divided the boom into a number of sections and each sections is considered to be uniform—Stepwise uniform

Transfer functions are expressed as :1

1

H(x)M ( ), xG(x, )

H(x)N (L) ( ), x

⎧ Φ ξ ξ <ξ = ⎨

− Φ Φ ξ ξ >⎩

1H(x) (x)(M N (L))−= Φ + Φ

x x xk k∈ +( , )1Φ Φ( , ) $ ( , ) ( ) ... ( ) ( )( ) ( ) ( ) ( )x s x s e T s e T s e T s eF x xk

F x x F x x F xk k k k k≈ = + −− − −1 1 2 2 1 1 12 1

n nk 1

k 1 k

I 0T C

0 E E×

−+

⎡ ⎤= ∈⎢ ⎥⎣ ⎦

Page 16: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

Example (2)--Sensitivity Analysis of a Light-Weight Gossamer Boom

Length of the inflatable boom: 197 inches Bending stiffness : 656673 lb in* ^2EI0

0xEI EI (1 sin( ))Lπ

= + ε×

ε 0% ± 2% ± 4% ± 6% ± 8% ± 10%Pcr (+ %) 167.0 169.7 172.7 175.4 178.2 181.1 Pcr (- %) 167.0 164.2 161.2 158.5 155.6 152.8

ε 0% ± 2% ± 4% ± 6% ± 8% ± 10%Pcr/Pcr0 1.0000 1.017 1.034 1.051 1.067 1.085 Pcr/Pcr0 1.0000 0.983 0.966 0.949 0.932 0.915

Buckling force as the function of bending stiffness deviation ε

Ration of buckling force changing as the function of ε

Page 17: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

DTFM Synthesis for Solar Sails

Page 18: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

Decomposition of a Solar Sail

Membrane

Spacecraft

Mast

Decomposition

Assembly

Page 19: DTFM Modeling and Sensitivity Analysis for Long Masts · DTFM Modeling and Sensitivity Analysis for Long Masts. May 4, 2004 Current Status • Completed formulations for DTFM

May 4, 2004

Dynamic Stiffness Matrix Synthesis

Dynamic stiffness matrices of masts—ready.Dynamic stiffness matrix of the spacecraft—lumped mass, ready.

Steps needed to get dynamic stiffness matrices of membranes:1) PVP membrane analysis2) Laplace transform

Mx Kx f&& + =Ms K x f2 + =d i $ $

Solar sail synthesis:1) Displacement compatibility2) Force balance