14
S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible metal- organic frameworks using mechanical amorphization Claudia Orellana-Tavra, a Ross J. Marshall, b Emma F. Baxter, c Isabel Abanades Lazaro, b Andi Tao, a Anthony K. Cheetham, c Ross S. Forgan b,* and David Fairen-Jimenez a,* a Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK. Email: [email protected]; website: http://people.ds.cam.ac.uk/df334 b WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK. Email: [email protected]; website: http://www.forganlab.com c Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS Cambridge, UK Contents S1. Powder X-Ray Diffraction (PXRD) ...........................................................................................................................................2 S2. Scanning electron microscopy (SEM) ....................................................................................................................................3 S3. Nitrogen adsorption isotherms: experimental and simulated .....................................................................................3 S4. Pore size distribution analysis (PSD) .....................................................................................................................................4 S5. Stability analysis ............................................................................................................................................................................5 S6. XRD analysis after PBS exposure .............................................................................................................................................6 S7. FTIR ....................................................................................................................................................................................................7 S8. Cytotoxicity analysis .....................................................................................................................................................................7 S9. Thermogravimetric analysis (TGA) ........................................................................................................................................9 S10. Delivery profiles from crystalline and amorphous Zr-based family ..................................................................... 10 S11. SEM nano-sized particles ...................................................................................................................................................... 12 S12. Cytotoxicity analysis of nano-sized particles ................................................................................................................. 13 S13. Cytotoxicity analysis of -CHC loaded nano-sized particles .................................................................................... 13 S14. Calibration curves of calcein and α-CHC in PBS ........................................................................................................... 14 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2016

Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S1

Electronic Supporting Information for:

Drug delivery and controlled release on biocompatible metal-

organic frameworks using mechanical amorphization

Claudia Orellana-Tavra,a Ross J. Marshall,

b Emma F. Baxter,

c Isabel Abanades Lazaro,

b Andi Tao,

a

Anthony K. Cheetham,c Ross S. Forgan

b,* and David Fairen-Jimenez

a,*

aAdsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering &

Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK. Email:

[email protected]; website: http://people.ds.cam.ac.uk/df334

bWestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue,

Glasgow, G12 8QQ, UK. Email: [email protected]; website: http://www.forganlab.com

cDepartment of Materials Science and Metallurgy, University of Cambridge, CB3 0FS Cambridge, UK

Contents

S1. Powder X-Ray Diffraction (PXRD) ........................................................................................................................................... 2

S2. Scanning electron microscopy (SEM) .................................................................................................................................... 3

S3. Nitrogen adsorption isotherms: experimental and simulated ..................................................................................... 3

S4. Pore size distribution analysis (PSD) ..................................................................................................................................... 4

S5. Stability analysis ............................................................................................................................................................................ 5

S6. XRD analysis after PBS exposure ............................................................................................................................................. 6

S7. FTIR .................................................................................................................................................................................................... 7

S8. Cytotoxicity analysis ..................................................................................................................................................................... 7

S9. Thermogravimetric analysis (TGA) ........................................................................................................................................ 9

S10. Delivery profiles from crystalline and amorphous Zr-based family ..................................................................... 10

S11. SEM nano-sized particles ...................................................................................................................................................... 12

S12. Cytotoxicity analysis of nano-sized particles ................................................................................................................. 13

S13. Cytotoxicity analysis of -CHC loaded nano-sized particles .................................................................................... 13

S14. Calibration curves of calcein and α-CHC in PBS ........................................................................................................... 14

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B.This journal is © The Royal Society of Chemistry 2016

Page 2: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S2

S1. Powder X-Ray Diffraction (PXRD)

Figure S1. Powder X-ray diffraction (PXRD) patterns of synthesized Zr-based MOFs compared with the calculated pattern for each. Colour code of patterns: black, calculated; blue, synthesized; red, loaded; and, yellow,

amorphisized. a) calcein loaded materials and, b) -CHC loaded materials.

2 10 18 26 34 42 50

Inte

ns

ity (

a.u

.)

2 q (º)

a)

5 15 25 35 45

Inte

ns

ity (

a.u

.)

2 q (º)

5 15 25 35 45

2 q (º)

2 10 18 26 34 42 50

2 q (º)

5 15 25 35 45

Inte

ns

ity (

a.u

.)

2 q (º)

Zr-L2

5 15 25 35 45

2 q (º)

5 15 25 35 45

2 q (º)

Zr-L3 Zr-L4

Zr-L7Zr-L6Zr-L5

Zr-L8

5 15 25 35 45

Inte

nsit

y (

a.u

.)

2 q (º)

5 15 25 35 45

2 q (º)

5 15 25 35 45

2 q (º)

5 15 25 35 45

Inte

ns

ity (

a.u

.)

2 q (º)

Zr-L1

5 15 25 35 45

2 q (º)

5 15 25 35 45

2 q (º)

b)

Zr-L2 Zr-L3

Zr-L6Zr-L5Zr-L4

Page 3: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S3

S2. Scanning electron microscopy (SEM)

Figure S2. SEM images for Zr-based MOFs, Zr-L1 to Zr-L8.

S3. Nitrogen adsorption isotherms: experimental and simulated

2 m

Zr-L1

5 m5 m 5 m

5 m 5 m5 m

5 m5 m

Zr-L2 Zr-L3 Zr-L4

Zr-L8Zr-L7Zr-L6Zr-L5

0

100

200

300

400

0 0.25 0.5 0.75 1

Ga

s u

pta

ke (

cm

3/g

)

P/P0

0

100

200

300

400

0 0.25 0.5 0.75 1

Ga

s u

pta

ke (

cm

3/g

)

P/P0

0

100

200

300

400

0 0.25 0.5 0.75 1

Ga

s u

pta

ke (

cm

3/g

)

P/P0

0

100

200

300

400

0 0.25 0.5 0.75 1

Ga

s u

pta

ke (

cm

3g

-1)

P/P0

0

200

400

600

800

1000

0 0.25 0.5 0.75 1

Ga

s u

pta

ke (

cm

3/g

)

P/P0

0

200

400

600

800

1000

0 0.25 0.5 0.75 1

Ga

s u

pta

ke (

cm

3g

-1)

P/P0

0

200

400

600

800

0 0.25 0.5 0.75 1

Ga

s u

pta

ke (

cm

3/g

)

P/P0

0

100

200

300

400

500

0 0.25 0.5 0.75 1

Gas u

pta

ke (

cm

3g

-1)

P/P0

Zr-L1 Zr-L2 Zr-L3 Zr-L4

Zr-L5 Zr-L6 Zr-L7 Zr-L8

a)

Page 4: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S4

Figure S3. N2 adsorption isotherms for Zr-based family, experimental (black closed dots) and simulated (red opened dots). a) linear scale; b) semi-log scale.

S4. Pore size distribution analysis (PSD)

Figure S4. PSD analysis for Zr-based family, experimental (black continued line) and simulated (red continued

line).

0

200

400

600

800

1000

1.E-09 1.E-07 1.E-05 1.E-03 1.E-01

Gas u

pta

ke (

cm

3/g

)

P/P0

0

200

400

600

800

1000

1.E-09 1.E-07 1.E-05 1.E-03 1.E-01

Gas u

pta

ke (

cm

3/g

)

P/P0

0

200

400

600

800

1.E-09 1.E-07 1.E-05 1.E-03 1.E-01

Gas u

pta

ke (

cm

3g

-1)

P/P0

0

100

200

300

400

500

1.E-09 1.E-07 1.E-05 1.E-03 1.E-01

Ga

s u

pta

ke (

cm

3g

-1)

P/P0

0

100

200

300

400

1.E-09 1.E-07 1.E-05 1.E-03 1.E-01

Gas u

pta

ke (

cm

3g

-1)

P/P0

0

100

200

300

400

1.E-09 1.E-07 1.E-05 1.E-03 1.E-01

Gas u

pta

ke (

cm

3g

-1)

P/P0

0

100

200

300

400

1.E-09 1.E-07 1.E-05 1.E-03 1.E-01

Gas u

pta

ke (

cm

3g

-1)

P/P0

0

100

200

300

400

1.E-09 1.E-07 1.E-05 1.E-03 1.E-01

Ga

s u

pta

ke (

cm

3g

-1)

P/P0

Zr-L1 Zr-L2 Zr-L3 Zr-L4

Zr-L5 Zr-L6 Zr-L7 Zr-L8

b)

0 5 10 15 20

PS

D (

a.u

.)

Pore diameter (Å)

0 5 10 15 20

PS

D (

a.u

.)

Pore diameter (Å)

Zr-L4

Zr-L8

0 5 10 15 20

PS

D (

a.u

.)

Pore diameter (Å)

0 5 10 15 20

PS

D (

a.u

.)

Pore diameter (Å)

Zr-L3

Zr-L7

0 5 10 15 20

PS

D (

a.u

.)

Pore diameter (Å)

0 5 10 15 20

PS

D (

a.u

.)

Pore diameter (Å)

Zr-L2

Zr-L6

0 5 10 15 20

PS

D (

a.u

.)

Pore diameter (Å)

0 5 10 15 20

PS

D (

a.u

.)

Pore diameter (Å)

Zr-L1

Zr-L5

Page 5: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S5

S5. Stability analysis

The kinetics of degradation from the solids were adjusted using non-linear regressions in order to understand their

behaviour. For Zr-L1 to Zr-L8 in PBS, and Zr-L2 to Zr-L7 in H2O the profile was adjusted to a simple hyperbola

model [1]:

N (wt. %)= 𝑁𝑚𝑎𝑥 t

(𝑡1/2 + t) [1]

where N is the amount of linker released from the solid, Nmax is the maximum amount released, t is time in days

and t1/2 is the time needed to get half of the maximum amount delivered.

For Zr-L1 in H2O it was not possible to adjust the delivery to a simple curve. Instead, we used a hyperbola model

considering two different release stages [2]:

N (wt. %)= 𝑁max(1) t

(𝑡1/2(1) + t)+ N2𝑡 + 𝑎 [2]

where Nmax and t1/2 are considered for the first stage of delivery and N2 and a are the slope and intercept of the

linear part of the release.

For Zr-L8 in H2O, we used a hyperbola model considering a slope factor or Hill slope, which is related with the

interactions material-solvent [3]:

N (wt. %)= 𝑁maxt^h

(𝑡1/2^h + t^h) [3]

where Nmax is the maximum amount released, t is time in days and t1/2 is the time needed to get half of the

maximum amount delivered and h is the Hill slope.

Figure S4 and Tables S1 show the fitting of the degradation in PBS and H2O of the materials.

Table S1: Fit-curves for degradation profiles of Zr-based MOFs.

PBS H2O

MOF Equation R2 Equation R

2

Zr-L1 linker (wt%) = 76.33 t / (0.004959 + t) 0.9943 linker (wt%) = 34.61 t / (0.04002 + t) + 1.111*t - 0.6783 0.9641

Zr-L2 linker (wt%) = 76.23 t / (0.003767 + t) 0.9962 linker (wt%) = 5.170 t / (4.693 + t) 0.9963

Zr-L3 linker (wt%) = 90.75 t / (0.003325 + t) 0.9945 linker (wt%) = 8.753 t / (3.610 + t) 0.9877

Zr-L4 linker (wt%) = 57.92 t / (0.01034 + t) 0.9936 linker (wt%) = 0.1868 t / (0.08060 + t) 0.9238

Zr-L5 linker (wt%) = 69.66 t / (0.04697 + t) 0.9640 linker (wt%) = 0.3950 t -0.01018 0.9943

Zr-L6 linker (wt%) = 100.4 t / (0.09548 + t) 0.9980 linker (wt%) = 3.603 t / (3.867 + t) 0.9949

Zr-L7 linker (wt%) = 95.06 t / (0.07875 + t) 0.9897 linker (wt%) = 98.08 t / (4.097 + t) 0.9887

Zr-L8 linker (wt%) = 90.59 t / (0.07071 + t) 0.9847 linker (wt%) = 14.77 t^7.286 / (1.621^7.286 + t^7.286) 0.9965

Page 6: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S6

Figure S5. Stability analysis of Zr-based MOFs in PBS (black closed dots) and H2O (red opened dots).

S6. XRD analysis after PBS exposure

Figure S6. PXRD analysis of Zr-based MOFs after PBS exposure for 2 days. Color code of patterns: black, calculated; blue, synthesized; red, degraded after 2 days in PBS.

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Ma

ss

De

live

red

(%

)

Time (days)

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Mass D

eli

vere

d (

%)

Time (days)

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Ma

ss

De

live

red

(%

)

Time (days)

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Ma

ss

De

live

red

(%

)

Time (days)

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Mass D

eli

vere

d (

%)

Time (days)

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Mass D

eli

vere

d (

%)

Time (days)

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Mass D

eli

vere

d (

%)

Time (days)

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Mass D

elivere

d (

%)

Time (days)

Zr-L1 Zr-L2 Zr-L3 Zr-L4

Zr-L5 Zr-L6 Zr-L7 Zr-L8

2 10 18 26 34 42 50

2 q (º)

2 10 18 26 34 42 50

2 q (º)

5 15 25 35 45

2 q (º)

5 15 25 35 45

Inte

ns

ity (

a.u

.)

2 q (º)

5 15 25 35 45

2 q (º)5 15 25 35 45

2 q (º)5 15 25 35 45

2 q (º)

5 15 25 35 45

Inte

ns

ity (

a.u

.)

2 q (º)

Zr-L1 Zr-L2 Zr-L3 Zr-L4

Zr-L8Zr-L7Zr-L6Zr-L5

Page 7: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S7

S7. FTIR

Figure S7. FTIR analysis of Zr-based MOFs after PBS exposure. Color code of patterns: black, no exposure to PBS; red, 2 days; and, blue, 3 days of PBS exposure.

S8. Cytotoxicity analysis

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm-1)

L4L4 degraded 2DL4 degraded 3D

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm-1)

L3L3 degraded 2DL3 degraded 3D

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm-1)

L2L2 degraded 2DL2 degraded 3D

4000 3500 3000 2500 2000 1500 1000 500

Tra

ns

mit

tan

ce

(%

)

Wavenumber (cm-1)

L1L1 degraded 2DL1 degraded 3D

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm-1)

L8L8 degraded 2DL8 degraded 3D

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm-1)

L7L7 degraded 2DL7 degraded 3D

4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm-1)

L6L6 degraded 2DL6 degraded 3D

4000 3500 3000 2500 2000 1500 1000 500

Tra

ns

mit

tan

ce

(%

)

Wavenumber (cm-1)

L5L5 degraded 2DL5 degraded 3D

Zr-L1 Zr-L2 Zr-L3 Zr-L4

Zr-L5 Zr-L6 Zr-L7 Zr-L8

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

-

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

-

Concentration (mg/mL)

0

20

40

60

80

100

120

140

0 0.1 0.2 0.4 0.6 0.8 1

-

Concentration (mg/mL)

0

20

40

60

80

100

120

140

0.0 0.1 0.1 0.2 0.3 0.4 0.6 0.8 1.0

Via

bil

ity (

%)

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

-

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

-

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

-

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.00 0.10 0.20 0.40 0.60 0.80 1.00

Via

bil

ity (

%)

Concentration (mg/mL)

Zr-L1 Zr-L2 Zr-L3 Zr-L4

Zr-L5 Zr-L6 Zr-L7 Zr-L8

a)

Page 8: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S8

Figure S8. Cytotoxicity analysis. a) MTS assay for Zr-based MOFs; b) MTS assay for zirconium tetrachloride and

each organic linker of the Zr-based family. L8 was not measured as Zr-L8 showed cytotoxicity.

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

Via

bil

ity (

%)

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

-

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

-

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

Via

bilit

y (

%)

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

-

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

-

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

-

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0.0 0.1 0.2 0.4 0.6 0.8 1.0

Via

bilit

y (

%)

Concentration (mg/mL)

ZrCl4 L1 L2 L3

L4 L5 L6 L7

b)

0

2

4

6

8

0.25 0.50 1.00

Via

bil

ity (

%)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

LD

H r

ele

as

ed

(%

)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

Via

bil

ity (

%)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

Via

bil

ity (

%)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

Via

bil

ity (

%)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

LD

H r

ele

as

ed

(%

)

Concentration (mg/mL)

Zr-L1 Zr-L2 Zr-L3 Zr-L4

Zr-L6

a)

Zr-L5

Page 9: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S9

Figure S9. Cytotoxicity analysis. a) LDH assay for Zr-based MOFs and b) LDH assay for zirconium tetrachloride and each organic linker of the Zr-based MOF family.

S9. Thermogravimetric analysis (TGA)

0

2

4

6

8

0.25 0.50 1.00

Via

bilit

y (

%)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

Via

bilit

y (

%)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

LD

H r

ele

as

ed

(%

)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

Via

bilit

y (

%)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

Via

bil

ity (

%)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

Via

bil

ity (

%)

Concentration (mg/mL)

0

2

4

6

8

0.25 0.50 1.00

LD

H r

ele

as

ed

(%

)

Concentration (mg/mL)

b)ZrCl4 L1 L2 L3

L4 L5 L6

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

We

igh

t (%

)

Temperature ( C)

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

We

igh

t (%

)

Temperature ( C)

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

We

igh

t (%

)

Temperature ( C)

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Weig

ht

(%)

Temperature ( C)

Zr-L2

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Weig

ht

(%)

Temperature ( C)

Zr-L3 Zr-L4

Zr-L5 Zr-L6

a)

Page 10: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S10

Figure S10. Thermogravimetric analysis (TGA) of synthesized Zr-based MOFs compared with the loaded material.

a) calcein loaded materials and, b) -CHC loaded materials. Color code of patterns: black, empty material; red, loaded material; blue, free drug.

S10. Delivery profiles from crystalline and amorphous Zr-based family

The kinetics of calcein and -CHC delivery from crystalline and amorphous solids were adjusted using non-linear

regressions in order to understand the release behaviour. For the calcein loaded Zr-L3 to Zr-L6, amZr-L3 and amZr-

L6 materials the delivery was adjusted to a simple hyperbola model [4]:

N (wt. %)= 𝑁𝑚𝑎𝑥 t

(𝑡1/2 + t) [4]

where N is the amount released from the total drug-loaded amount in weight percent, Nmax is the maximum

amount released, t is time in days and t1/2 is the time needed to get half of the maximum amount delivered.

For the calcein loaded Zr-L2, amZr-L2, amZr-L4, amZr-L5 and all the -CHC loaded materials (crystalline and

amorphous) it was not possible to adjust the delivery to a simple curve. Instead, we used a hyperbola model

considering two different release stages [5]:

N (wt. %)= 𝑁max(1) t

(𝑡1/2(1) + t)+ N2𝑡 + 𝑎 [5]

where Nmax and t1/2 are considered for the first stage of delivery and N2 and a are the slope and intercept of the

linear part of the release.

Figure S8 and Tables S2 and S3 show the fitting of the experimental release and fitting parameters, respectively,

for calcein loaded and -CHC loaded materials. In both cases, as it was possible to detect the calcein and -CHC

delivered form all the amorphous materials it is possible to conclude that the ball-milling process is not provoking

the release of guest molecules.

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Weig

ht

(%)

Temperature ( C)

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Weig

ht

(%)

Temperature ( C)

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Weig

ht

(%)

Temperature ( C)

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Weig

ht

(%)

Temperature ( C)

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Weig

ht

(%)

Temperature ( C)

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Weig

ht

(%)

Temperature ( C)

b)

Zr-L1 Zr-L2 Zr-L3

Zr-L4 Zr-L5 Zr-L6

Page 11: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S11

Figure S11. Release profile of a) calcein and b) -CHC from the crystalline (in black closed dots) and amorphous (in red opened dots) materials. Black solid and red dotted lines represent the kinetic of delivery fitting using non-linear regression on crystalline and amorphous materials, respectively.

0

20

40

60

80

100

0 5 10 15

Ma

ss

De

live

red

(%

)

Time (days)

0

20

40

60

80

100

0 2 4 6

Ma

ss

De

live

red

(%

)

Time (days)

0

20

40

60

80

100

0 5 10 15

Mass D

eli

vere

d (

%)

Time (days)

0

20

40

60

80

100

0 2 4 6

Mass D

elivere

d (

%)

Time (days)

0

20

40

60

80

100

0 1 2 3 4

Mass D

eli

vere

d (

%)

Time (days)

Zr-L2 Zr-L3 Zr-L4

Zr-L5 Zr-L6

a)

0

20

40

60

80

100

0 1 2 3

Ma

ss

De

live

red

(%

)

Time (days)

0

20

40

60

80

100

0 1 2 3

Mass D

eli

vere

d (

%)

Time (days)

0

20

40

60

80

100

0 1 2 3

Mass D

eli

vere

d (

%)

Time (days)

0

20

40

60

80

100

0 1 2 3

Ma

ss D

eli

ve

red

(%

)

Time (days)

0

20

40

60

80

100

0 1 2 3

Ma

ss

De

live

red

(%

)

Time (days)

b)

Zr-L1 Zr-L2 Zr-L3

Zr-L4 Zr-L5 Zr-L60

20

40

60

80

100

0 1 2 3

Mass D

elivere

d (

%)

Time (days)

Page 12: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S12

Table S2: Fit-curves for calcein release from crystalline and amorphous Zr-based solids.

Crystalline Amorphous

MOF Equation R2 Equation R

2

Zr-L2 cal (wt%) = 82.21 t / (0.08366 + t) - 0.3220*t + 13.14 0.9900 cal (wt%) = 58.09 t / (0.4098 + t) – 0.2811*t + 10.47 0.9879

Zr-L3 cal (wt%) = 96.73 t / (0.07250 + t) 0.9902 cal (wt%) = 76.26 t / (1.007 + t) 0.9858

Zr-L4 cal (wt%) = 95.21 t / (0.04873 + t) 0.9540 cal (wt%) = 84.62 t / (0.9402 + t) + 0.8159*t - 2.879 0.9958

Zr-L5 cal (wt%) = 99.42 t / (0.2481 + t) 0.9964 cal (wt%) = 126.3 t / (0.5592 + t) - 2.3040*t - 8.367 0.9824

Zr-L6 cal (wt%) = 100.7 t / (0.05676 + t) 0.9912 cal (wt%) = 99.27 t / (0.2279 + t) 0.9864

Table S3: Fit-curves for -CHC release from crystalline and amorphous Zr-based solids.

Crystalline Amorphous

MOF Equation R2 Equation R

2

Zr-L1 α-CHC (wt%) = 89.79 t / (0.02686 + t) - 1.111*t + 13.99 0.9973 α-CHC (wt%) =94.42 t / (0.02567 + t) – 1.595*t + 10.41 0.9738

Zr-L2 α-CHC (wt%) = 78.86 t / (0.06801 + t) - 1.226*t + 23.84 0.9836 α-CHC (wt%) = 62.84 t / (0.02967 + t) + 2.931*t + 29.91 0.9961

Zr-L3 α-CHC (wt%) = 77.37 t / (0.06562 + t) - 1.446*t + 18.99 0.9700 α-CHC (wt%) = 69.61 t / (0.06692 + t) - 1.948*t + 17.47 0.9776

Zr-L4 α-CHC (wt%) = 93.47 t / (0.07793 + t) – 1.420*t + 10.68 0.9753 α-CHC (wt%) = 89.24 t / (0.04578 + t) – 1.254*t + 15.70 0.9858

Zr-L5 α-CHC (wt%) = 96.202 t / (0.04517 + t) - 0.8328*t + 6.8 0.9964 α-CHC (wt%) = 85.93 t / (0.03250 + t) - 0.9927*t + 8.976 0.9974

Zr-L6 α-CHC (wt%) = 45.48 t / (0.08153 + t) + 1.833*t + 48.48 0.9832 α-CHC (wt%) = 57.66 t / (0.02727 + t) + 3.330*t + 30.01 0.9974

S11. SEM nano-sized particles

Figure S12. SEM images of nano-sized Zr-based MOFs.

2 m

Zr-L1

5 m

Zr-L2

1 m

Zr-L3

1 m

1 m

Zr-L4 Zr-L6

5 m

Zr-L5

1 m

Page 13: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S13

S12. Cytotoxicity analysis of nano-sized particles

Figure S13. MTS assay of nano-sized Zr-based MOFs.

S13. Cytotoxicity analysis of -CHC loaded nano-sized particles

Table S4: Loading values for α-CHC into Zr-based nano-sized materials. The values were measured using UV-vis. Loading value of Zr-L1 is the same presented before as this was the same exactly material.

MOF α-CHC (wt.%)

Zr-L1 31

Zr-L2 1

Zr-L3 2

Zr-L4 4

Zr-L5 12

Zr-L6 20

-

20

40

60

80

100

120

140

0 0.25 0.5 1

Via

bilit

y (

%)

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0 0.25 0.5 1

Via

bilit

y (

%)

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0 0.25 0.5 1

Via

bilit

y (

%)

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0 0.25 0.5 1

Via

bilit

y (

%)

Concentration (mg/mL)

-

20

40

60

80

100

120

140

0 0.25 0.5 1

Via

bilit

y (

%)

Zr-L5 concentration (mg/mL)

Zr-L1 Zr-L2 Zr-L3

Zr-L5 Zr-L6

Page 14: Drug delivery and controlled release on biocompatible metal- … · 2016. 11. 3. · S1 Electronic Supporting Information for: Drug delivery and controlled release on biocompatible

S14

Figure S14. MTS assay of -CHC loaded nano-sized Zr-based MOFs and free -CHC. * indicates P ≤ 0.05 in comparison with the empty Zr-L6 MOF (Student’s test). Black bars correspond to empty material and white ones to loaded MOF.

S14. Calibration curves of calcein and α-CHC in PBS

Figure S15. Calibration curve in PBS pH 7.4 for calcein (left) and α-CHC (right) used for the release experiments.

0

20

40

60

80

100

120

140

0 0.05 0.1 0.25 1V

iab

ilit

y (

%)

Concentration (mg/mL)

-

20

40

60

80

100

120

140

Via

bilit

y (

%)

Concentration (mg/mL)

-CHC (mg/mL)

0.25 0.5 1

-

20

40

60

80

100

120

140

Via

bilit

y (

%)

Concentration (mg/mL)

-CHC(mg/mL)

0.25 0.5 1

-

20

40

60

80

100

120

140

Via

bilit

y (

%)

Concentration (mg/mL)

-CHC (mg/mL)

0.25 0.5 1

0

20

40

60

80

100

120

140V

iab

ilit

y (

%)

Concentration (mg/mL)

-CHC (mg/mL)

0.25 0.5 1

-

20

40

60

80

100

120

140

Via

bilit

y (

%)

Concentration (mg/mL)

-CHC (mg/mL)

0.25 0.5 1

-

20

40

60

80

100

120

140

Via

bil

ity (

%)

Concentration (mg/mL)

-CHC(mg/mL)

0.25 0.5 1

Zr-L1 Zr-L2 Zr-L3 Zr-L4

Zr-L5 Zr-L6 α-CHC*

y = 95.305x - 0.399R² = 0.9989

0

20

40

60

80

100

120

140

0.0 0.5 1.0 1.5

Ca

lce

in c

on

ce

ntr

ati

on

g/m

L]

Abs 498 nm

y = 39.622x + 0.6357R² = 0.9996

0

10

20

30

40

50

60

70

80

90

0.0 0.5 1.0 1.5 2.0 2.5

α-C

HC

Co

nc

en

tra

tio

n [

µg

/mL

]

Abs 337 nm