21
Page 1 Stanford CS Junji Ogawa MH students Feb. 11th. 1999 Feb. 11th. 1998 DRAM Design Overview Junji Ogawa DRAM Design Overview Stanford University Junji Ogawa [email protected] Feb. 11th. 1998 DRAM Design Overview Junji Ogawa Contents Trends of Standard DRAM History of DRAM Circuits Cell, Array and Major Circuits Embedded DRAM ASM Example Summary

DRAM Design Overview - graphics.stanford.edu

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DRAM Design Overview - graphics.stanford.edu

Page 1

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

DRAM Design Overview

Stanford University

Junji Ogawa

[email protected]

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Contents

・Trends of Standard DRAM

・History of DRAM Circuits

・Cell, Array and Major Circuits

・Embedded DRAM

・ASM Example

・Summary

Page 2: DRAM Design Overview - graphics.stanford.edu

Page 2

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

90 92 94 96 98 00 02 04 06 08 10

1000

100

20

50

200

500

64M

256M

1G

Die

Siz

e(m

m2

)

Early Production

Production256M

1G

4G

0.18 0.13 0.100.35

Rule

(um)

Year

i-line ?ArF

16M

0.50

64M

0.25

4G

KrF

128M

KrF+α

Standard DRAM Development

Conference

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Bit Cost Trend of DRAMs

Ru

le(

µm)

Die

Siz

e(

mm

2)

De

nsit

y(

Mb

its)

Bit

Co

st(

$)

10-2

10-1

100

101

102

103

104 10

-0

10-6

10-5

10-4

10-3

10-2

10-1

1980 1985 1990 1995 2000 2005 2010

Rule

Die size

Density

Bit Cost

Year

16M

64M256M

1G4G

Page 3: DRAM Design Overview - graphics.stanford.edu

Page 3

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Access Time Trend

TR

AC

(/R

AS

Access T

ime :

ns)

Po

we

r S

up

ply

Vo

ltag

e (

V)

1/t

AA

(/C

AS

Access F

req

uen

cy :

MH

z)

f C

LK

(Po

pu

lar

Syn

ch

ron

ou

s F

req

uen

cy :

MH

z)

VCCx10

TRAC

1/tAA

f CLK

107

108

109

4M 16M 64M 256M 1G 4G

1

102

101

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Pro

du

ct V

olu

me [

100 m

illi

on

]

SDRAM

'98 2000Year

'97 '99

16M

4M

64M

64M

16M

>128M

Rambus

FPM

SD

EDO

SD

SD

EDO

RD

?25 --

10 --

20 --

0 --

Standard DRAM Column Access Mode

Page 4: DRAM Design Overview - graphics.stanford.edu

Page 4

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

ASSP/ASIC

Sta

ndard

Operating Frequency

Custo

mizability

WRAM

VRAM

DRAM/Logic

SLDRAM

CDRAM

EDRAM

EDO

MDRAM

Function rich DRAM

100MHz 500MHz200MHz

DDR

1GHz 2GHz

High-speed DRAM

TargetSDRAM

RAMBUS

DRAM Operating Frequency v.s. Customizability

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Inte

rnall

y R

eg

ula

ted

Su

pp

ly V

olt

ag

e(v

)

Po

wer

Su

pp

ly V

olt

ag

e (

v)

Wo

rd B

oo

st

Vo

ltag

e (

v)

Bit Density

4M 16M 256M 1G 4G64M0

2

4

6

8 Internally Regulated Supply Voltage(V)

Power Supply Voltage (V)

Word Boost Level(V)

VCC & VII & WL Voltage Trend

Page 5: DRAM Design Overview - graphics.stanford.edu

Page 5

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

10-2

10-1

100

101

Acti

ve

Po

we

rtR

C=

min

. (A

)

Po

we

r S

up

ply

Vo

lta

ge

(V

)

Sta

nd

-by P

ow

er

( Lo

w P

ow

er

mo

de

:m

A)

4M 16M 64M 256M 1G 4G10

-2

10-1

100

101

Active Power

VCC

Low Power

Stand-by Power

Power Dissipation Trend

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Refresh Specification Trend

Numbers of Active S/As

Refresh Cycles

Refresh Interval (max.:ms)

Busy Rate (µ s)

Distributed Refresh Interval

Nu

mb

ers

of

Acti

ve S

en

se A

mp

lifi

ers

Refr

esh

Cycle

s

Refr

esh

In

terv

al (m

ax.:

ms)

Bu

sy R

ate

S)

Dis

trib

ute

d R

efr

esh

In

terv

al

102

103

104

105

100

101

102

103

1M 4M 16M 64M256M 1G 4G

Page 6: DRAM Design Overview - graphics.stanford.edu

Page 6

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

History

・1K DRAM Intel 1103 introduced late 1971

-3Tr PMOS, 1P1M,

-Vdd=0v,Vss=16v,Vbb=20v, Trac=300ns

・4K DRAM TI TMS4030 introduced 1973

-1Tr NMOS, 1P1M, TTL I/O

-Vdd=12v,Vdd=5v, Vss=0v,Vbb=-3/-5v

・16K DRAM Mostek MK4116 introduced 1977

-1Tr NMOS, 2P1M, Address multiplex

-Vdd=12v,Vdd=5v, Vss=0v,Vbb=-5v, Trac=250ns

**Open / Folded bit line, Double poly cell, Multi-PS

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Bascic Bitline Structure (1)

Memory

ArrayBL

WL

Memory

Array

/BL

S/As

Open Bitlines

Relaxed S/A layout pitch

Even WL coupling

Folded Bitlines

Memory

Array

BL

WL

/BL

S/As

Folded BL

Cell Size 8F2

WL pitch: 4F

BL pitch: 2F

Denser Memory

Uneven WL coupling

Open BL

Cell Size 6F2

WL pitch: 3F

BL pitch: 2F

Page 7: DRAM Design Overview - graphics.stanford.edu

Page 7

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

History (cont’d)・64K DRAM (’80,conference’79)

-Many changes at once - no dominant design

-Standardized, Page mode, Refresh functions

-Vcc=5v only,Vss=0v,Internal Vbb, Trac=200ns

-Boosted wordline, Active restore

・256K DRAM (’83,conference’82)

-1Tr NMOS, 3P1M(FJ), I.I. mask increasing

-Vcc=5v only, Nibble/SC/CBR func., Trac=150ns

-Open v.s. Folded, Redundancy, CMOS prototype

-Vdd bitline pre-charge

-Some ASM, Wide I/O (x4)

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

History (cont’d)

・1M DRAM (’86,conference’84)

-N-well CMOS, 3P1M, Vdd/2 cell plate

-Half Vdd bitline reference and pre-charge,

-Shared folded bitline

-x4/x8, Package and module variety, Test circuits

・4M DRAM (’89, conference’87)

-3D stacked or trench cell, CMOS, 4P1M,

-x16, Fast page/Self refresh, Trac=80ns

-Current-mirror data bus amp., Boosted I/O driver

-Word line strapping, Triple-well

Page 8: DRAM Design Overview - graphics.stanford.edu

Page 8

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Basic Bitline Structure (2)

Interleaved (Multiplexed)

Used in nearly all 16M

Relaxes S/A pitch

Memory

Array

WLU

Memory

ArrayBL

L

WLL

BLs

S/As

S/As

S/As

Memory

ArrayWL

U

Folded Shared

Memory

Array

BLL

/BLL

WLL

BLU

/BLU

S/As

Less area occupied

by S/As

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

History (cont’d)

・16M DRAM (’92, conference’90)

-N-well CMOS, 4P2M

-Internal Vdd down-converter (5v ext.---3.3v int.)

-Shared Y-decoder, Interleaved S/A,

-Vpp supply WL driver, RDRAM(PLL/DLL)

・64M DRAM (’95, conference ’91)

-Triple well CMOS, Vss Substrate, 4P2M,

-Vdd=3.3v, Separate I/O PS-pin (Vddq/Vssq)

-SDRAM (clocked In, pipelined, burst I/O, term. I/F)

-COB, Staggered Sense amp.

Page 9: DRAM Design Overview - graphics.stanford.edu

Page 9

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Circuit Evolution Picking up

・3Tr to 1Tr1C ・Address Multiplex

・Boosted Wordline ・Open BL to Folded BL

・Single Power Supply ・NMOS to CMOS

(Vbb gene., WL boost) ・Page & Refresh Mode

・Redundancy ・Appli. Specific Circuits

・Vdd/2 BL pre-charge (ex. SR for VRAM)

・ Internal DC converter ・Test mode

・ Clocked operation ・ Pipelined operation

・ PLL/DLL ・ High speed interface

・ Multi-bank core ・ Embedded core

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Cell Array and Circuits

(1) 1 Transistor 1 Capacitor Cell・Size Comparison to SRAM Cell

(2) Array Example

(3) Major Circuits (today’s example)・Sense amplifier

・Dynamic Row Decoder

・Wordline Driver

The other circuits interesting for VLSI designer

・Data bus amplifier ・Voltage Regulator

・ Reference generator ・Redundancy technique

・Replica technique ・High speed I/O circuits

Page 10: DRAM Design Overview - graphics.stanford.edu

Page 10

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

WL

BL

Cwb

BL /BL

WL

Passive element

(No gain, Refresh needed) Gain element in cell

6Tr embedded SRAM 1Tr1C Standard DRAM

SRAM v.s. DRAM

Cs

Cbl

Storage Node

Plate

Access Tr

(Cell Tr,

Transfer Tr)

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Comparison of SRAM and DRAM Cell Size

6Tr SRAM

Plainer

Stack

DRAM

Design Rule [um]

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cell

Siz

e [

um

2]

0.1

1

10

100

3Tr

Page 11: DRAM Design Overview - graphics.stanford.edu

Page 11

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

32 Mbit array.

0 7

DQ

MW

DECMW

DEC

8 global data buses

MWL

8 global data buses

and 8 amplifiers

0 7 8 15

32 Mbit 32 Mbit

DQ DQ

bank 0 bank 8

7 715 15

64 Mbit Core, a part of 256M DRAM

64 Mbit DRAM consists of two 32 Mbit arrays

bank 0 bank 8

Standard DRAM Array Design Example

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

256S

/A

4 R

ed-S

/A

4R

**S

/A

Mark

-RA

M(4

S/A

for 6

4K

)

256S

/A

1024S

/A+

4R

**S

/A+

16R

ed-S

/A+

4M

ark-R

AM

(256 C

L)

Sub-W

ord

Deco

der

256K

Cell

Arra

y←

s/a-0

←s/a-1

←s/a-2

←s/a-3

←s/a-4

←s/a-5

←s/a-6

←s/a-7

←s/a-8

←s/a-9

←s/a-10

←s/a-11

←s/a-12

←s/a-26

←s/a-27

←s/a-28

←s/a-29

←s/a-30

←s/a-31

←s/a-R0

←s/a-R1

←s/a-32

64K

4096S

/A+

16R

**S

/A+

64R

ed-S

/A+

16M

ark-R

AM

(64

S/A

)

(1024 CL

)

C-D

EC.

(64CL)C-D

EC.

(64CL) C-D

EC.

(64CL) C-D

EC.

(64CL) C-D

EC.

(64CL) C-D

EC.

(64CL)

C-D

EC.

(64CL)C-D

EC.

(64CL)

Colu

mn D

ecoder &

Driv

er (256C

L)

Mark

& S

pare C

ol.

Address R

AM

EO

R &

etc.

Mark

&A

dd.

RA

M

Driv

er

MarkOu

t

EO

R

Mark

&A

dd R

AM

(for 6

4K

)

1M

BL

OC

K #

1

1M

BL

OC

K #

2

1M

BL

OC

K #

3

1M

BL

OC

K #

4

1M

BL

OC

K #

5

1M

BL

OC

K #

6

1M

BL

OC

K #

7

1M

BL

OC

K #

8

1M

BL

OC

K #

9

1M

BL

OC

K #

10

1M

BL

OC

K #

11

1M

BL

OC

K #

26

1M

BL

OC

K #

27

1M

BL

OC

K #

28

1M

BL

OC

K #

29

1M

BL

OC

K #

30

1M

BL

OC

K #

31

12

8K

Sp

are R

ow

BL

OC

K #

R

1M

BL

OC

K #

0

CO

L. D

EC

OD

ER

Mark

& A

dd

RA

M(fo

rCO

L. )

32

M-C

EL

L B

LO

CK

100%

+0.3

9%

+1.5

6%

+ 1

.56%

=3.5

%

256

MWL

RC

LCL

Main Word Decoder / Driver

DRAM Array Example

Page 12: DRAM Design Overview - graphics.stanford.edu

Page 12

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

512K Array Nmat=16 or 12

( 256 WL x 2048 SA)

Interleaved S/A & Hierarchical Row Decoder/Driver

(shared bit lines are not shown)

SA

SA

SA SA

SA

SA

SA SA

SA SA

SA

SA

SA

SA

SA

SASA

SA SA

SA

SA

SA

SA

SA

SA

SA

SA SA

SA

SA

SA SA

PP P P

PP

QQQ

QM

ain R

ow

Dec

PPP

P

1 2 3 Nmat

Clu

mp T

R o

r so

DRAM Array Example (cont’d)

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

<WL Strapping Type>

Reset

Addresses WDi

AL strap line

P1 word line

Contact only (Strapping)

DynamicNAND

VCC

Row Decoder and Driver

Main

Row

Dec

Clu

mp

TR

or s

o

Page 13: DRAM Design Overview - graphics.stanford.edu

Page 13

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

<Hierarchical WL Type>

Main

Row

Dec

Clu

mp

TR

or s

o

Row Decoder and Driver (cont’d)

P1 sub-word line

AL Main Word Line

VPP

VPP

→ ↓

WDij

WDik

WDil

WDimReset Reset Reset Reset

Sub Word Decoder

PP

Negative Voltage?

Reset

Addresses

DynamicNAND

/rbnk#

Pre-decode

address

MWL

/pre#

# is bank No. MWDEC

level

shifter

VPP

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Sense Amplifier Circuits - Folded Shared Interleaved -

psa

nsa

ldb0z

ldb0x

ldb1z

ldb1x

PSANSA

BLR

/BLR

Local Data Bus

CL

BLL

/BLL

BLTR BLT

R

BS

VPR

t

/RAS

RAS

Add.

WD WL

/BL

BL

BS

PSA

NSA

LE

CL

Page 14: DRAM Design Overview - graphics.stanford.edu

Page 14

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Nch Pch

Nch Pch Nch

Nch Pch

Sense Amplifier Pitch Matched Layout

Bitlines

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Standard DRAM Design Feature

・Tightly depends on technology

・The row circuits is fully different from SRAM.

・Few product variation in the same technology

・“Trends” is mother , “Cost” is father .

・“Standard” gives us less freedom!

・Almost always analogue circuit design

・Simply forward critical path

・CAD: Spice-like circuits simulator

Fully handcraft layout,

Whole-chip tools must be a dream.

Page 15: DRAM Design Overview - graphics.stanford.edu

Page 15

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Embedded DRAM or Merged D&L

・Merged DRAM and Logic

-Technology choice and cost issue

----People have talked too much above.

-Otherwise, that’s a near future evolution.

・Current Technology behind advanced DRAMs’

・Small ASIC seems to be not yet on the business.

・How solve the following technical problem?

memory wall, granularity, I/O power

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Speed Gap between DRAM and CPU - Memory Wall -

1

10

100

1000

80 85 90 95 00Per

form

an

ce(

Sp

eed

Ra

tio)

Year

60%/year

7%/year

Increasing

The Gap

μPU

DRAM

Page 16: DRAM Design Overview - graphics.stanford.edu

Page 16

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

The numbers of DRAM on PCs

1Mb 4Mb 16Mb 64Mb 256Mb 1Gb

86 89 93 97 01 05

4MB

8MB

16MB

32MB

64MB

128MB

256MB

Main

Mem

ory

Siz

eDRAM Generation

32 8

16 4

8 2

4 1

8 2

4 1

8 2

Memory/System

growth @25%/year

Memory/DRAM

growth @60%/year

32

16

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Macro Power (MDL v.s. Standard DRAM)

0

1.0

2.0

3.0

32 64 128 256

Pow

er [

W]

I/O width

External

Standard DRAM

16

8

1

0.35um

8M Macro

4.0

2.35W

1.11W

I/O Load

Charging70%

Re-design

Page 17: DRAM Design Overview - graphics.stanford.edu

Page 17

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Macro Power (cont’d)

External use of

Standard DRAM

47%

8M

Macro

15%

Load

50pF

Pow

er[W

]2.35W

1.11W

Load 1pF

75%

Macro

Re-design & Shrink

Independen

t

on I/O No.

70%

0.78W

75 % Macro Power depends on

the numbers of I/O

Load 1pF

depend on I/O No.

(Column)

depend on I/O

No.

(Row)

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

M32R/D(Mitsubishi)

・0.45µm DRAM

・32-bit RISC CPU

+ 16Mbit DRAM

・Die Size: 153.7mm2

The First Commercial Product of Embedded DRAM

Page 18: DRAM Design Overview - graphics.stanford.edu

Page 18

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

0.25um Embedded DRAM Products

DRAM v.s. Logic Size

2 4 816 32 74

DRAM Size (M bits )

50

150

500

1500

5000

Logic

Ga

te (

K g

ate

s )

J (HDD)L

H

F

E’

E (TV)

A

C

G

B

Logic

Rich

DRAM

Rich

Network

Graphics

MCU Core

K

D

E

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Memory Density and Logic Gates

SRAM

1 Gb

Mem

ory

Den

sity

Gates100 K 1 M10 K

10 Mb

100 Mb

1 Mb

DR

AM

Are

a Ratio

=0.9

0.1

Standard DRAM Technology

MDL Technology

10 M

0.05

Pure Logic

Technology

0.35 um

0.25 um

0.18 um

C

D

B

MDL Process

: Affordable DRAM-density & Logic-gates in a 100mm2 Die

A

Page 19: DRAM Design Overview - graphics.stanford.edu

Page 19

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

DRAM Macro Size Shrinkー Which could make cost effective ?

10mm

Rule(um)

DR

AM

Macro A

rea(

mm

2)

C

A

E

8Mb

F

D

16Mb

0.50 0.35 0.25 0.18

100

0

:16Mb

: 8Mb

:32Mb

B

32Mb

10mm DRAM

Cost Effective

Region? G

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Application Specific Memory

・Various ASM introduced since ’83

-VRAM: 64K to 4M VRAM

-Field Memory(NEC), Triple Port(FJ)

-mostly for ASICs or conference chips

・Only VRAM got a semi-standardization

・ Longer design TAT

as more complicated spec. and circuits

・Redundancy and Test isuues: big problems

・Never major products

-Brief Introduction-

Page 20: DRAM Design Overview - graphics.stanford.edu

Page 20

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

変 換

)

BUS

Para

llel

to S

eria

l

Time Share

CPU efficiency 50%

Standard DRAM

256K Dual Port Video RAM

(a) Conventional 2D Graphic System

(b) 2D Graphic System used VRAM

Conditional Dual Port

1024 bit transfer @100ns

CPU efficiency 95%

BUS

VRAM

RAMSA

M

RAM

Sif

t R

egis

ter

CPU

CPU

CRT

CRT

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

S/A

SAM

RowDec .

Column Dec.

Cell Array

Amp.

Amp.

Sout/Sin

Dout/Sout

(Random Port)

(Serial Port)

・Narrow pitch matched SAM (or Sift Register) design

・No explicit bus for a mass of data transfer at a time

・A hinted solution by utilizing a memory parallelism

256K Dual Port Video RAM (cont’d)

Page 21: DRAM Design Overview - graphics.stanford.edu

Page 21

Stanford CS Junji Ogawa MH students Feb. 11th. 1999

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

4M bit Cubic Memory (conference ’90)

・16b x 16b x 16b (4Kbit) virtual bit map space

・six different ways of column access on the fly access

Feb. 11th. 1998

DRAM Design Overview

Junji Ogawa

Summary・Passive 1Tr1C cell leads all the features of dynamic

circuits and design complexity.

・The row circuits is fully different from SRAM.

・A Dinosaur, Standard DRAM, become almost dead,

because of both the technology saturation and

the narrow band-width itself.

・ The design technique should be transferred

for the coming embedded era.