280
SELECTED TOTAL SYNTHESES

Download Selected Total Syntheses

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

SELECTED TOTAL SYNTHESES

MACROCYCLIC STRUCTURES

MARVELS OF THE SEA: THE SPIRASTRELLOLIDES

R. J. Andersen et al., JACS 2003, 125, 5296; revision: Org. Lett. 2004, 6, 2607;

stereochemistry: JACS 2007, 129, 508; JOC 2007, 72, 9842;

total synthesis of spirastrellolide A: I. Paterson et al, Angew. Chem. Int. Ed. 2008, 47, 3016 and 3021

studies towards: R. P. Hsung, C. Forsyth, J. de Brabander, S. Chandrasekhar, A. B. Smith, A. Phillips, A. Fürstner

appreciable cytotoxicity

drive human breast cancer MCF-7 cells into premature mitosis before causing cell cycle arrest

activity is not mediated via tubulin or actin

strong inhibition of the serine/threonine protein phosphatase PP2A; IC50 = 1 nM

ANALYSISrelative stereochemistry within the individual sectors established

relationship between the sectors unknown until late 2007

absolute configuration unknown until late 2007

16 possible combinations !

NORTHERN SECTOR

for the methodology see: Kanemasa et al., JACS 1994, 116, 2324

THE NORTHERN DOMAIN

A. F. with M. D. B. Fenster, B. Fasching, C. Godbout, K. Radkowski, Angew. Chem. Int. Ed. 2006, 45, 5510

A. F. with B. Fasching, G. W. O‘Neil, M. D. B. Fenster, C. Godbout, J. Ceccon, Chem. Commun. 2007, 3045

for the development of the „relay strategy“ see: T. Hoye et al., J. Am. Chem. Soc. 2004, 126, 10210

REVISED ANALYSIS

THE SOUTHERN SECTOR

THE SOUTHERN SECTOR (II)

A. F. with G. W. O‘Neil, J. Ceccon, S. Benson, M.-P. Collin, B. Fasching, Angew. Chem. Int. Ed. 2009, 48, 9940

compare: A. Pfaltz et al., Organometallics 2003, 22, 1000

COMPLETION OF THE TOTAL SYNTHESIS

A. F. with S. Benson, M.-P. Collin, G. O„Neil, J. Ceccon, B. Fasching, M. D. B. Fenster,

C. Godbout, K. Radkowski, R. Goddard, Angew. Chem. Int. Ed. 2009, 48, 9946 and 9940

NN

O

H

O

H

HOH

H3C

CH3

O

CH3

O

CH3CH3

H3C

H3CO

H3C

OCH3

Iejimalide B

J. Kobayashi et al., J. Org. Chem. 1988, 53, 6147

Bioorg. Med. Chem. 2006, 14, 1063

very scarce and highly cytotoxic

(average GI50 = 13 nM)

in vivo activity (T/C = 150%)

no “COMPARE” correlation with any

standard anticancer agent

unknown mode of action

RETROSYNTHETIC ANALYSIS

NN

O

H

O

H

HOH

O

O

MeO

MeO

peptide coupling

YamaguchiJulia olefination

Julia

Heck coupling

HON

O

H

O

H

NH2

HO

MeO

X

RO

RO

OH

O

RSO2MeO

SO2R

O

lactonization

15

6

11

12 19

20

23

29

15

6

11

1219

20

29

olefination

BUILDING BLOCKS

MeOOCBr N(Boc)2+ MeOOC N(Boc)2

NHBocO

NHBocHO

Pd(OAc)2 cat.

P(o-tol)3 cat., Et3N

84%

(+)-crotyl-B(Ipc)2

82% (95% ee)

O

SiMe3

OH

SiMe3

NRu

NPh

Ph

Ts

H O

OMe

SiMe3

OMeHO

I

(0.6%)

iPrOH

98% (99% ee)

1. Still-Gennari, 87%

2. K2CO3, MeOH, 80%

3. Cp2Zr(H)Cl (3 eq), then I2, 80%

NHBocHO

OMeHO

I

OMeHO

OH

NHBoc

OMeO

OH

NHBoc

OMe OH

NHBoc

MeO

R = Et

R = H

20

21

18 23

COOR

+

Pd(OAc)2 cat., AgOAc

DMF, RT

46% (+13% isomer)

CuBr2 cat., tBuOK cat.

TEMPO cat., O2

94%

S

MeOCOOEt

N NN

N

O

O

Ph

1

11

NaHMDS ("Barbier"), THF

57% (E:Z > 10:1)

Me3SnOH, DCE, 94%

PREPARATION OF THE SECO-ACID

OMe OH

NHBoc

MeO

18 23

COOH NHBocO

O

MeO

MeO

OMe OH

NHBoc

MeO

OR

Yamaguchi

(Yonemitsu)

R

6O

O O

Cl

Cl

Cl

DMAP

RO

O O

Cl

Cl

Cl

N

NMe2

R

N

NMe2

O- DMAP.H

RO

R

O

1

16

6 1

R

OH

possible mechanism:

A. Fürstner, C. Aissa, C. Chevrier, F. Teplý, C. Nevado, M. Tremblay Angew. Chem. Int. Ed. 2006, 45, 5832

RETROSYNTHETIC ANALYSIS (II)

NN

O

H

O

H

HOH

O

O

MeO

MeO

peptide coupling

Suzuki / Stille ?

1

6

11

12 19

20

intermolecular

Suzuki coupling ?

7

RCM ?

HON

O

H

O

H

NH2

HO

MeO

BR2

RO

OH

O

MMeO1

19

20

29

esterification !I

I

(intramolecular)

(intramolecular)

LITERATURE PRECEDENCE

J. Wagner et al., JACS 2003, 125, 3849; L. A. Paquette et al., Helv. Chim. Acta 2002, 85, 3033

OMeOMe

B

O

O

pinacolborane

9-BBN cat.

56%

NHBocO

NHBocHO

OMs

TIPS

TIPS

NHBocHO

I

Pd(OAc)2 / PPh3 cat.

Et2Zn

72% (dr = 7.5:1)

3 steps

Ba(OH)2.8 H2O, (dppf)PdCl2 cat.

RT, 70%

NHBocO

O

MeO

MeO

OH

O

MeO

NHBocHO

MeOYamaguchi

73%

2nd APPROACH

2nd APPROACH

NHBocO

O

MeO

MeO

NHBocO

O

MeO

MeO

RuCl

Cl

PCy3Ph

N NMes Mes

96%

decomposition

NRO

H

O

OtBu

TBSOTf, lutidine

X

NH2

PivO

R = Piv

HO

O

NHCHO

OTBS

NRO

H

O

NHCHO

OTBS

EDC, HOBt

95% (X = H)

X

X

85% (X = I)

NO

H

O

O

R

O

HTBS

NHO

R

O

OTBSO

ON

OTBS

TBS

R = Ac

OH

O

MeO

NHO

MeO

O

NH

O H

OTBSH

O

O

MeO

MeO

N

O

NH

O H

OTBSH

N

N

DCC

O

O

MeO

MeO

RuCl

Cl

PCy3Ph

N NMes Mes

69%

N

O

NH

O H

ORH

R = TBS

R = HTBAF, 80%

A. F. with C. Nevado, M. Tremblay, C.

Chevrier, F. Teplý, C. Aissa, M. Waser

Angew. Chem. Int. Ed. 2006, 45, 5837

J. Am. Chem. Soc. 2007, 129, 9150

SCALE-UP AND MOLECULAR EDITING

> 1 g

CRUENTAREN A & B

B. Kunze, H. Steinmetz, G. Höfle, M. Huss, H. Wieczorek, H. Reichenbach, J. Antibiot. 2006, 59, 664

A. F. with M. Bindl, L. Jean, Angew. Chem. Int. Ed. 2007, 46, 9275;

Chem. Eur. J. 2009, 15, 12310

GLUTARIMIDE MACROLIDES:

POTENT TRANSLATION & CELL MIGRATION INHIBITORS

S. J. Danishefsky et al., Angew. Chem. Int. Ed. 2007, 46, 5576

LEARNING FROM THE LITERATURE

LACTIMIDOMYCIN: ANALYSIS

TOTAL SYNTHESIS OF LACTIMIDOMYCIN

A. F. with K. Micoine, J. Am. Chem. Soc. 2010, 132, 14064

Epothilone D (89, R = Me)

Epothilone B (87, R = Me)

Epothilone C (88, R = H)

Epothilone A ( 86, R = H)

O

OH

OHO

S

N

O

OR

O

OH

OHO

S

N

O

R

THE EPOTHILONES

[e][d]

[c]

[b]

[a]

OO O

OEt

OOHOH

OEt

OO O

95 R = TBDPS

94 R = H

RO OEt

OO

BrOEt

OHOCN

92

93

96 97 98

[a] Zn, ultrasound, THF; then aq. HCl, 71%; [b] TBDPSCl, imidazole, DMF, 90%; [c]

[((S)-BINAP)RuCl2](NEt3) (6 mol%), H2 (65 bar), Dowex, EtOH, 80°C, 71%; [d] 2,2-

dimethoxypropane, acetone, camphorsulfonic acid cat., 92%; [e] EtMgBr, NEt3, toluene,

70°C, 68%.

EPOTHILONE: BUILDING BLOCKS

[h]

[g]

[f]

[e][d]

[b,c]

[a]

OO O OH

OOR1 OR1

R2O

OO OR1 OR1

HO

103 R1 = R2 = H

104 R1 = R2 = TBS

105 R1 = TBS, R2 = H

102

106

S NO

O R

OO

99 R = H

100 R = Me

101

[a] n-BuLi, THF/HMPA, MeI, 78°

60°C, 94%; [b] LiAlH4, THF, 85%; [c]

Pr4NRuO4 cat., NMO, CH2Cl2, MS 4Å,

90%; [d] lithium enolate of ketone 98,

THF, 78°C, 70%; [e] PPTS cat., MeOH,

85%; [f] TBSOTf, 2,6-lutidine, 92%; [g]

camphorsulfonic acid, CH2Cl2/MeOH

(1/1), 78%; [h] PDC, DMF, 83%.

EPOTHILONE:

BUILDING BLOCKS

SYNTHESIS OF EPOTHILONES VIA RCAM

A. Fürstner, Ch. Mathes, K. Grela Chem. Commun. 2001, 1057; Chem. Eur. J. 2001, 7, 5299

O

OR

ORO

S

N

O

O

OR

ORO

S

N

O

O

OH

O

OHO

S

N

O

O

OR

ORO O

S

N

OH

S

N

O

OO O

R = TBS

[Mo] cat.

80%

Lindlar, H2

CH2Cl2

R = TBS

R = H

aq. HF

Epothilone C

OO

literature: 70%

Epothilone A79% over both steps

very scarce cytotoxic secondary metabolite of symbiotic dinoflagellate Amphidinium sp., cf. :

J. Kobayashi et al., JOC 2003, 68, 5339 (AX); JOC 2003, 68, 9109 (AY)

AMPHIDINOLIDE X AND Y

O OO

O

O

O

Amphidinolide X (1)

Amphidinolide Y (2)

(equilibrium mixture)

O

OHO

HO

O

O

OO

O

O

HO

HO

AMPHIDINOLIDE X: RETROSYNTHETIC ANALYSIS

O OO

O

O

O

HOOH

O

O

RO

OM

OH

X

O

1

13 14

19

1

13

14 19

STEREOCHEMICAL RELAY

X

R4O

O

19R2R1

O

R2

R1OH R1

O [M]R2

19

IRON CATALYZED SYNTHESIS OF ALLENOLS

C5H11

O

iPrMgCl

Fe(acac)3 (5 mol%)

toluene, -5°C, 5 min

94%, syn:anti = 10:1

ee = 93%

HO

C5H11

ee = 93% (syn)

A. F. with M. Méndez, Angew. Chem. Int. Ed. 2003, 42, 5355

for a short review on Fe-catalyzed cross coupling, see:

B. D. Sherry, A. Fürstner, Acc. Chem. Res. 2008, 41, 1500

TOTAL SYNTHESIS OF AMPHIDINOLIDE X

OROOHRO

RO

O

R2

RO

O

OH

TBDPSO

OH

R2 = H

R2 = Me

OI

PMBO

Sharpless

97%

1. Swern

2. (MeO)2P(O)C(N2)COMe

67%

LiHMDS,MeOTf, 95%

n-PrMgBr

Fe(acac)3 cat.

62%

syn:anti = 8:1

AgNO3

CaCO3

90%

TOTAL SYNTHESIS OF AMPHIDINOLIDE X

O O

IO O

COOMe

OEt

O O

O

OOOMs

OOOH

OOOPMB OO

OPMB

I

1. ethylene glycol, PTSA cat.

2. Dibal-H, Et2O

54%Et2Zn, 65%

Pd(OAc)2 + PPh3 cat.

anti : syn = 4.5:1

1. PMBCl, NaH, 94%

2. LiHMDS, MeI, 95%

Cp2ZrHCl, C6H6

I2, CH2Cl2

61%

1. DDQ, 89%

2.

Yamaguchi, 96%

HO COOMe

O

FIRST TOTAL SYNTHESIS OF AMPHIDINOLIDE X

OI

PMBO

B O

PMBO

OMe

Li

9-MeO-9-BBN

t-BuLi

for the „9-MeO-9-BBN“ variant of the Suzuki coupling, see:

A. Fürstner, G. Seidel, Tetrahedron 1995, 51, 11165

A. F. with O. Lepage, E. Kattnig, J. Am. Chem. Soc. 2004, 126, 15970

O OO

I

OMe

O

O

OOOO

COOMe

PMBO

O

(dppf)PdCl2 cat., Ph3As

74%

OOOO

O

O

Amphidinolide X

3 steps

AMPHIDINOLIDE Y:

STRATEGIC CONSIDERATIONS

O

OHO

HO

O

O

RO

OM

OH

XHO

O

HO

O

OH

X

OR

RO

O

X

OR

RO

O

12

1

13

18

1 6 7 12

1276

6

712

O

6

7

1,4-anti

chelate control

aldol

TOWARD AMPHIDINOLIDE Y

TBDPSO OMe

O

TBDPSO

COOMe

OAc

O

OAc

OMeP

O

O O

TBDPSO

O

O

OMe

TBDPSO

OH

O

OMe

TBDPSO

OPMB

O

Ru

P

Cl

Cl

PRu

P

ClClP

Cl

P

P= (S)-BINAP

Et2NH2

67

1. Dibal-H, 79%

2.

LiHMDS, 91%

NaOMe, MeOH

86%

[Ru], HCl cat.,

H2 (20 bar), MeOH

92%, dr > 23:1

3 steps

cf.: S. A. King et al., Org. Synth. 2005, 81, 178

TOWARD AMPHIDINOLIDE Y

O

ITMSO

MeO

TBDPSO

OPMB

O

PMBO

SiMe2Ph

O

TBDPSO

OPMB

O

SiMe2Ph

OH

major

1,4-anti

Et2BOTf, EtN(iPr)2

84%, dr > 4:1

1. TESCl, imidazole, 91%

2. MeMgBr, 96%

PMBO SiMe2Ph

OSiEt3HO

"matched"

1,3-syn

OTBDPS

(dipolar model)1,2-anti

(chelate-Cram

model) 1. TESOTf, lutidine, 92%

2. DDQ, 92%

3. Dess-Martin, 93%

O SiMe2Ph

OTESTESO

OTBDPS

COOMe

O

ITMSO

MeOCOOMe

O

OHO

HO

O

O

PMBO

OB

MeO

Li

I

PMBO

O

OMeB

O

TMSO

MeOCOOMe

RO

O

O

TMSO

MeOCOO

HO

O

OO

O

O

TMSO

MeO

Et3NH

tBuLi

(dppf)PdCl2 cat., Ph3As

K2CO3, 79%

1. DDQ, 75%

2. LiOH, then HCl/Et3N

Yamaguchiaq. HOAc

56% (over 3 steps)

TOTAL SYNTHESIS OF

AMPHIDINOLIDE Y

A. F. with E. Kattnig, O. Lepage J. Am. Chem. Soc. 2006, 128, 9194

for the synthesis and biological assessment of analogues, see: Chem. Eur. J. 2009, 15, 4030

for the synthesis and biological assessment of analogues, see: Chem. Eur. J. 2009, 15, 4030

ANALOGUES BY „DIVERTED TOTAL SYNTHESIS“

AMPHIDINOLIDE V

O

OH H

O

OH

Amphidinolide V

Isolation: J.-I. Kobayashi et al., Tetrahedron Lett. 2000, 41, 713

TOWARDS AMPHIDINOLIDE V

OH

OTBSBr

BF3KTHPO

OH

OTBSTHPOO

OTBSRO

O

O

OTBSO

O

O

Pd(OAc)2 cat., tBuNH2

84%

4-hexynoic acid

EDC

95%

O

OTBS

O

OZn

2RO

R = H

R = TBS

69%

TBSCl

imidazole

79%

TOTAL SYNTHESIS OF AMPHIDINOLIDE V

A. F. with O. Larionov, S. Flügge

Angew. Chem. Int. Ed. 2007, 46, 5545;

Chem. Eur. J. 2009, 15, 4011

30 mol%

80°C

With: A. F. with J. Heppekausen, R. Stade, R. Goddard,

J. Am. Chem. Soc.. 2010, 132, 11045

J. Kobayashi et al., Nat. Prod. Rep. 2004, 21, 77

very scarce

mixed polyketide biosynthesis

(very) potent cytotoxicity

interferes with actin

other biological targets?

WHAT IS THE RIGHT ORDER?

LITERATURE PRECEDENT

G. Pattenden et al., Tetrahedron Lett. 2000, 41, 7373

other studies toward amphidinolides B, H and G were reported by

Kobayashi, Chakraborty, Nishiyama, Myles, Carter, Crews, Nelson, Marco, Kalesse, Zhao

TOWARD AMPHIDINOLIDE H

for the methodology, see: Chem. Commun. 2008, 2873

TOWARD AMPHIDINOLIDE H (II)

A. F. with L. C. Bouchez, J.-A. Funel, V. Lipins, F.-H. Porée, R. Gilmour, F. Beaufils, D. Laurich, M. Tamiya

Angew. Chem. Int. Ed. 2007, 46, 9265

A. Fürstner et al., Chem. Eur. J. 2009, 15, 3983

PREPARED ANALOGOUSLY:

THE AMPHIDINOLIDE T FAMILY

J. Kobayashi et al., J. Org. Chem. 2000, 65, 1349 and 2001, 66, 134.

O

O

OH

O

O

O

O

O

HO

O

Amphidinolide T1 Amphidinolide T3

O

O

O

HO

O

Amphidinolide T4

O

O

O

HO

O

Amphidinolide T5

Review: J. Kobayashi et al., Nat. Prod. Rep. 2004, 77.

RETROSYNTHETIC ANALYSIS

O

Y

Cl

O

O

O

X

R3SiO

OR2

A

B

C

O

O

OR2

R1O

O

45

12 14

syn syn

O

O

OR2

R1O

O

Amphidinolide T

family

FRAGMENT I

X = SO2Ph

X = OH

O

XOH

NC

OH

TsO

O

OMe

RO

1. TsCl, Et3N, 94%

2. Dibal-H, toluene, -95°C

O

H

TsO

(-)-Ipc2B-allyl

Et2O, -100°C

70% (over 2 steps)

KCN, DMSO

99%

Dibal-H

CH2Cl2, -78°C

91%

PhSO2H

CaCl2, CH2Cl2

87%

N O

Ph

OO

N O

Ph

OOOR

OTBS

OMOM

OR

OMOM

OOTBS

OMOM

TBSO

1. Bu2BOTf, Et3N

2. methacrolein, 90%

3. MOMCl, (iPr)2NEt, CH2Cl2, 93%

1. LiBH4, Et2O, 92%

2. TBSCl, imidazole, DMF, 90%

O3, CH2Cl2, 86% TBSOTf, Et3N, Et2O

91%

FRAGMENT II

FRAGMENT III

N O

Ph

OO

OH

O

O

X O

O

X = OtBu

X = OH

X = Cl

O

OtBuO

OH

tBuO O

1. NaHMDS, THF, -78°C

then allyl bromide, 60%

2. LiOH, H2O2, aq. THF, 93%

[((R)-binap)RuCl2]2(NEt3) cat.

H2 (10 atm), MeOH, 95°C, 84%

ee = 98%

EDCI, DMAP

CH2Cl2, 93%

TFA, Et3SiH, quant.

(COCl)2, quant.

TOTAL SYNTHESIS OF AMPHIDINOLIDE T

O

SO2Ph Me

O

"inside" attack

SnCl4OTBS

OMOMTBSO

O

TBDPSO

I

OMOM

NOEO

O

OTBS

OMOM

H

12

O

Cl O

O

Zn/Cu, TMSCl

Pd(0) cat., 50%

O

TBDPSO

OMOM

O

O

O

86%

O

TBDPSO

OMOM

O

O

O

Ru

PCy3

PhCl

Cl

Mes MesNN

O

O

O

OMOM

TBDPSO

O

86%

O

O

HO

O

O

O

O

O

O

OH

Amphidinolide T4

Amphidinolide T1

E:Z = 6:1

A. Fürstner, C. Aissa, R. Riveiros, J. Ragot, Angew. Chem. Int. Ed. 2002, 41, 4763;

J. Am. Chem. Soc. 2003, 125, 15512

O

TBDPSO

OMOM

O

O

O

Ru

PCy3

PhCl

Cl

Mes MesNN

O

O

O

OMOM

TBDPSO

O E:Z = 6:1

O

TBDPSO

OMOM

O

O

O

Ru

PCy3

PhCl

Cl

Mes MesNN

O

O

O

OMOM

TBDPSO

O E:Z = 2:1

toluene, 110°C

82%

CH2Cl2, 40°C

86%

TOTAL SYNTHESIS OF AMPHIDINOLIDE T

OZnBr

Zn

BrZn

O

O

O

OMOM

TBDPSO

O

O

O

OMOM

TBDPSO

O

O

OMOM

TBDPSO

O

COOH

Ph3P=CH2

TiCl4

THF, reflux, 64%

O

O

O

OMOM

TBDPSO

O

TOTAL SYNTHESIS OF AMPHIDINOLIDE T

A. Fürstner, C. Aissa, R. Riveiros, J. Ragot, Angew. Chem. Int. Ed. 2002, 41, 4763;

J. Am. Chem. Soc. 2003, 125, 15512

O

O

OMOM

TBDPSO

O

O

O

TBDPSO

O

OH

O

O

HO

O

O

Amphidinolide T4 (4)

O

O

HO

O

OMOM

O

O

O

O

OH

Amphidinolide T1 (1)

[(Me2N)3S][Me3SiF2]

84%

1. Dess-Martin, 93%

2. Dowex, 52%

TMSCl, Bu4NBr

85%

1. Dess-Martin, 83%

2. HF-pyridine, 87%

PROPOSED STRUCTURES OF AND BIOCHEMICAL RELATIONSHIP

BETWEEN THE LEIODOLIDES

J. S. Sandler, P. L. Colin, M. Kelly, W. Fenical, J. Org. Chem. 2006, 71, 7245-7251;

correction: J. Org. Chem. 2006, 71, 8684

A. F. with A. Larivée, J. B. Unger, M. Thomas, C. Wirtz, C. Dubost, S. Handa,

Angew. Chem. Int. Ed. 2011, 50, 304

OTHER DIASTEREOMERS PREPARED ANALOGOUSLY

The NMR spectra of these isomers were close to those of leiodolide B reported in the literature,

but the match was not good enough to claim identity; therefore the structure of leiodlide B remains uncertain, cf:

A. F. with A. Larivée, J. B. Unger, M. Thomas, C. Wirtz, C. Dubost, S. Handa,

Angew. Chem. Int. Ed. 2011, 50, 304

isolated from various marine organisms by Kashman (1980), Scheuer (1985), Crews (1987), Jefford (1996), Hoye (2002)

previous syntheses: A. B. Smith et al., J. Am. Chem. Soc. 1992, 114, 2995; J. D. White et al., J. Org. Chem. 1992, 57, 5292

potent actin microfilament disrupting agents, cf. I. Spector et al., Science 1983, 219, 493.

THE LATRUNCULIN FAMILY

O

O

O

HN

S

OHH

O

O

O

O

HN

S

OHH

O

OH

O

O

OH

HN

S

H

O

OMe

O

O

O

HN

S

H

O

Latrunculin A Latrunculin B Latrunculin C Latrunculin D

O

O

O

HN

S

OHH

O

16-epi-Latrunculin B

O

O

O

HN

S

OH

H

O

Latrunculin B

RCAM/Lindlar

Fe-catalyzed

cross coupling

OR

O

S

RN

O

O

O

OH

Fe-catalyzed

cross coupling

Negombata magnifica

(formerly: Latrunculia magnifica)

TOTAL SYNTHESIS OF LATRUNCULIN B

O

OR

OEt

OO

OEt

OOTfMgBr

Fe(acac)3 cat.

97%

R = Et

R = H

NaOH, MeOH

92%

Ph-N(Tf)2

KHMDS

61%

For a comprehensive study on Fe-catalyzed cross coupling reactions of enol triflates see:

B. Scheiper, M. Bonnekessel, H. Krause, A. Fürstner, J. Org. Chem. 2004, 69, 3943

TOTAL SYNTHESIS OF LATRUNCULIN B

in the absence of Fe cat.: < 30% yield

using Cu(I) in catalytic or stoichiometric amounts instead of Fe cat. leads to decomposition

O2S1

C2

O2'

N3

C30

C5

C2'

C4

C2"

C31

C32

C36

C33

C35

C34

O37

C38

S

RN

O

O

H2N

O OEt

SH S

PMBN

O OH

O

S

PMBN

O Cl

O

MeMgBr

Fe(acac)3 cat.

Cl

NMe23 steps

ee = 87%

ee = 99%recryst.

80%

TOTAL SYNTHESIS OF LATRUNCULIN B

OMe

OMeBr

Br

OMe

OMeR

R = H

R = Me

OTBS

X

X = CH2

X = O

OMe

OMe1. O3, then Me2S

2. HC(OMe)3, H+

75%

4-dimethylaminopyridinium

bromide perbromide, DMAP

87%

LiHMDS

90%

BuLi, MeI

95%

1. (Ipc)2B(allyl)

2. TBSCl, imidazole

78%O3, MeOH

then Me2S, 94%

O2

S1

C2

C3'

C4'

N3

O4'

C30

C5

C5'

C4

C2'

C31

C32

O2'

O1'

C6'

C36

C33

C7'

C2"

C34

C12'

C35

C11'C8'

O37

C10'

C9'

C38

C9"

OTBS

O

S

PMBN

O

O

TiCl4, iPrNEt2

73%

TBSO O

PMBNS

O

OH

dr = 2:1

HCl

CSA, MeOH

64%

O

PMBN

S

OH

O

ORH

dr = 7:1

R = H

R = Me

X-ray of minor isomer

axial !

O

PMBN

S

OH

O

OMeH

O

PMBN

S

O

O

OMeH

O1. Tf2O, pyridine

2. NaO

O

58%

major isomer

equatorial

TOTAL SYNTHESIS OF LATRUNCULIN B

C9"

C7'

C9'

C5'

C10'C11'

C8'

C12'

C2"

C4'

O4'

O1'

C16'

C13'

C3'

C15'

O16'

C14'

C14"

C30

C2'

O2

N3

C36

O2'

C31

C2

C4

C6'

C35

C32

S1

C5

C34

C33

C38

O37

O

PMBN

S

O

O

OMeH

O[Mo] cat.

CH2Cl2/toluene

70%O

PMBN

S

O

O

OMeH

O

O

O

O

HN

S

OHH

O

Latrunculin B

1. Lindlar, quant.

2. CAN, 78%

A. Fürstner, D. De Souza, L. Parra-Rapado, J. Jensen,

Angew. Chem. Int. Ed. 2003, 42, 5358

PREVIOUSLY UNKNOWN DECOMPOSITION PATHWAY

O

O

OH

HN

S

R

O

O

O

OH

N

S

R

HO

14

1516

17

11 13

O

O

O

HN

S

OHH

O

DCl / CDCl3

EPIMERIZATION MECHANISM

TBSO O

PMBNS

O

OH

O

PMBN

S

OH

O

OHH

TBSO O

PMBNS

O

OR

N

S

O

PMB

O

OH

R

HO N

S

O

PMB

+ 2 H2O

d.r. = 2:1

d.r. = 7:1

13

11 13

13 13

13

11

11

11

H+

- 2 H2O +

major

“SECOND GENERATION” ASSEMBLY PROCESS

O

PMBN

S

OH

O

ORH

TBSO O

PMBNS

O

EtO

O

PMBNS

O

O

PMBNS

O

PMeO

O

MeO

R = H

R = Me

O

P

MeOMeO

BuLi, -78°C

60%

TBSO

O

Ba(OH)2

75%

aq. HCl

63%

MeOH, CSA

quant.

d.r. = 9:1

LATRUNCULIN A

O

PMBN

S

O

O

OMeH

O

O

O

O

PMBN

S

OMeH

O

O

PMBN

S

OH

O

OMeH

R = H

R = TfTf2O, pyridine

[Mo]

toluene/CH2Cl2

O

NaO

decompositionCAN

ENYNE-YNE METATHESIS: LATRUNCULIN A

L. Turet, A. Fürstner, Angew. Chem. Int. Ed. 2005, 44, 3462;

Chem. Eur. J. 2007, 13, 115

O

PMBN

S

OH

O

OMeH

O

TeocN

S

O

O

OMeH

O[Mo]

toluene/CH2Cl2

70%

O

O

O

HN

S

OHH

O

Latrunculin A

O

O

O

TeocN

S

OMeH

O

1. H2, Lindlar, 82%

2. TBAF, 62%

3. aq. HOAc, 80%

P. J. McLaughlin et al., Nature Cell Biol. 2000, 2, 376

bioactivity vanishes after N-alkylation

Lat A (16-membered) > Lat B (14-membered)

O

H

H GLU214

O

OO

HN

S

OHH

O

TYR69

ARG210

TYR186

ASP157

both epimers

(LAT B)

?

O

RN

S

OH

O

OMeH

RN

S

O

H

O

OTBS

O

OTBS

O

HH

RN

S

O

H

O

RN

O

O

H

O

RN

O

O

H

O

O

RN

S

OH

O

OMeH

O

RN

O

OH

O

OMeH

O

RN

S

OH

O

OMeH

HH

O

RN

O

OH

O

OMeH

HH

O

RN

O

OH

O

OMeH

HH

O

OH

O

OH

O

OH

O

OH

O

OH

DIVERTED TOTAL SYNTHESIS: LATRUNCULIN “LIBRARY”

O

O

O

HN

S

H

OHH

O

O

O

O

HN

S

OHH

O

O

HN

S

O

O

OHH

O

O

O

O

HN

S

OHH

O

O

O

O

HN

S

H

OHH

O

H

H

O

O

O

HN

O

OHH

O

O

O

OH

N

S

HO

O

O

O

HN

S

OHH

O

O

O

O

HN

S

OHH

O

O

O

O

HN

O

OHH

O

HH

A. Fürstner, D. Kirk, M. Fenster, C. Aissa, D. De Souza, O. Müller, PNAS 2005, 102, 8103

O

O

O

HN

S

OHH

O LAT-B

O

O

O

HN

S

H

OHH

O

H

H

A. Fürstner et al., Proc. Natl. Acad. Sci. USA 2005, 102, 8103

QM/MM CALCULATIONS

Latrunculin A / Actin Complex

refined and corrected picture of H-bonding network

importance of hydrophopic interactions

“Lat 32” / Actin Complex

different but equally strong hydrogen bond network

hydrophobic interactions optimized

with Prof. W. Thiel, Dr. T. Tuttle, Dr. C. Nevado,

Chem. Eur. J. 2007, 13, 135

SHORT SYNTHESIS OF PYRENOPHORIN

USING THE REVERSIBILITY OF RCM

A. F. with O. R. Thiel, L. Ackermann, Org. Lett. 2001, 3, 449

THE FIRST SYNTHESIS OF A TEN-MEMBERED RING BY RCM:

JASMINKETOLACTONE

A. F. with T. Müller, Synlett 1997, 1010

PHYTOTOXIC LACTONES

O

O

O

O

O

O

O

O

(Z)-isomer is ca. 3.5 kcal/mol more stable

CONCEPT

O

O

HO

HO

O

O

HO

HO

(Z)-isomer is ca. 1.5 kcal/mol more stable

O

O

O

O

OHO

OO

OO

OHO

OO

O

TsO O

O O

OCOOMe

OO

O HHO O

O O

O

TsCl, pyridine

77%

NaOMe, THF

62%

EtMgBr, CuBr

60%

Dibal-H

97%

Ph3P=CH2

77%

5-hexenoic acid

DCC, 84%

TOTAL SYNTHESIS OF HERBARUMIN I

MEDIUM SIZED RINGS: E/Z CONTROL BY “CATALYST TUNING”

O

O

O

O

N NMesMes

O

O

O

O

Ru

PCy3

PhCl

Cl

O

O

HO

HO

PCy3

Ru

PCy3

Cl

Cl Ph

O

O

O

O

cat.

cat.

86%only (Z)

E : Z = 7.6 : 1

78% aq. HCl

90%

Herbarumin I

A. Fürstner, K. Radkowski, C. Wirtz, R. Goddard, C. W. Lehmann, R. Mynott, J. Am. Chem. Soc. 2002, 124, 7061

CONFORMATIONAL RIGIDITY

OO

O

O

OHO

HO

O

OH

OHO

HO

O

O

O

overlap of x-ray structures

J. Am. Chem. Soc. 2002, 124, 7061

O

O

O

O

O

O

O

O

(Z)-isomer is ca. 3.5 kcal/mol more stable

AN INDEPENDENT CONFIRMATION

O

O

HO

HO

O

O

HO

HO

(Z)-isomer is ca. 1.5 kcal/mol more stable

(Z)-isomer is ca. 2.5 kcal/mol less stableO

O

TBSO

TBSO

OTBSO

O

TBSO

TBSO

OTBS

AN INDEPENDENT CONFIRMATION

R = TBS

O

O

TBSO

TBSO

OTBSO

O

RO

RO

OR

R = H

N N MesMes

Ru

PCy3

PhCl

Cl

CH2Cl2, reflux, 85%

TBAF

Díez, E.; Dixon, D. J.; Ley, S. V.; Polara, A.; Rodríguez, F. Helv. Chim. Acta 2003, 86, 3717

THE PINOLIDOXIN PUZZLE

A. Fürstner, K. Radkowski, C. Wirtz, R. Goddard, C. W. Lehmann, R. Mynott, J. Am. Chem. Soc. 2002, 124, 7061

O

O

HO

HO O

O

proposed structure

de Napoli, L. et al., JOC 2000, 65, 3422

O

O

HO

HO O

O

O

O

HO

HO O

O

O

O

HO

HO O

O

PINOLIDOXIN

excellent match with published data

(1H, 13C, IR, MS and [])

TOTAL SYNTHESIS OF MICROCARPALIDE

A. F. with T. Nagano, C. Müller, G. Seidel, O. Müller, Chem. Eur. J. 2007, 13, 1452

MICROCARPALIDE

(-)-GLOEOSPORONE: A FUNGAL GERMINATION SELF

INHIBITING MACROLIDE

OO

H

OH

H

O

O

correct structure: D. Seebach, S. L. Schreiber et al., Helv. Chim. Acta 1987, 70, 281.

other syntheses: D. Seebach et al. (1987); S. L. Schreiber et al. (1988), S. Takano et al. (1988),

A. B. Holmes et al. (1991), H. Irie et al. (1992), S. V. Ley et al. (2003)

(-)-GLOEOSPORONE: RETROSYNTHETIC ANALYSIS

(R) (R)

O OORO

H

H

OOR

OO

H

H

O

OOROO

H

OH

H

O

O

TOTAL SYNTHESIS OF (-)-GLOEOSPORONE

82%

91%

DMAP, pyridine

4-pentenoyl chloride

MeO

MeO O O

88%, ee > 98%

MeO

MeO OH

Ti(OiPr)4 (1.2 eq.)

(20 mol%)

Zn(pent)2

NHTf

NHTf

OMeO

MeO

NaHCO3, Me2S

MeOH, pTsOH

ozonolysis

TOTAL SYNTHESIS OF (-)-GLOEOSPORONE

91%

TBDMSCl, imidazole77%, de > 98%

90%

R = SiMe2tBu

R = H

O OOR

molecular sieves

(S)-Binol (20 mol%), Ti(OiPr)4 (20 mol%)

SnBu3

O

O O

CH2Cl2:H2O (1:1)

CF3COOH

MeO

MeO O O

TOTAL SYNTHESIS OF (-)-GLOEOSPORONE

54%

(-)-gloeosporone

MeCN

aq. HF

O OO

O

H

OH

KMnO4, Ac2O

O O

Me2tBuSiO

O

O

E : Z = 2.7 : 1

80%

O O

Me2tBuSiO

CH2Cl2, 40°C

Ti(OiPr)4 (30 mol%)

[Ru] (3 mol%)

O OtBuMe2SiO

A. Fürstner, K. Langemann, J. Am. Chem. Soc. 1997, 119, 9130

7

OHO

H

O

HO ON

4

O

OHO

HO O

65

3

O

OHO

HO

O

O

O

OHO

HO

O

O

OHO

HO OH

2 R = H

1 R = Me

O

ORO

HO

RESORYCLIC ACID MACROLIDES

lasiodiplodin (1), zeranol (3), zearalenone (4), resorcylide (5), monocillin I (6), salicylihalamide A (7)

TOTAL SYNTHESIS OF (R)-(+)-LASIODIPLODIN

Lasiodiplodin

[Ru]

MeO

MeO O

OO

MeO

MeO O

94%

[Ru]

MeO

MeO O

OO

MeO

MeO O

O

OMeO

HO

E : Z = 2.3 : 1

A. Fürstner, N. Kindler, Tetrahedron Lett. 1996, 37, 7005.

ZEARALENONE

(E)-isomer only !

no reactionO

OMeO

MeOO

O

PCy3

Ru

PCy3

Cl

Cl Ph 5 mol%

N N

Ru

PCy3

Cl

Cl Ph

O

OHO

HO O

Zearalenone

O

OMeO

MeOO

O

91%

A. F. with O. R. Thiel, N. Kindler, B. Bartkowska J. Org. Chem. 2000, 65, 7990;

see also: A. F. with G. Seidel, N. Kindler, Tetrahedron 1999, 55, 8215

HO

O

O

OH

NH

O17

Salicylihalamide A ( 1a): 17(E)

Salicylihalamide B ( 1b): 17(Z)

12

1

SALICYLIHALAMIDE

K. L. Erickson, J. A. Beutler, J. H. Cardellina, M. R. Boyd, J. Org. Chem. 1997, 62, 8188

SYNTHESIS OF SALICYLIHALAMIDE

R = MOM

R = H

OR

OMe

OO

OMe

O

Cl

NMe2X = Cl

X = OH

X

O

NO

Ph

O O

NO

Ph

O O 1. LHMDS

2. Br

85%

aq. LiOH, H2O2

99%

OLi

OMe

81%

[(R)-BINAP .RuCl2]2.NEt3 cat.

H2, MeOH

96%, de > 99%

MOMCl, iPr2NEt

90%

SYNTHESIS OF SALICYLIHALAMIDE

OR

OMe

O MOMO O

OtBu

O

MOMO OH

OtBu

O MOMO OH

OR

R = H

R = PMB

OLi

OtBu

98%

[(R)-BINAP .RuCl2]2.NEt3 cat.

H2, MeOH

93%, de > 98%

LiAlH4

98%

PMBCl, NaH (2 eq.)

85%

HO O

OH

DEAD, PPh 3

88%

HO

O

O

OMOM

OPMB

RCM APPROACH TO SALICYLIHALAMIDE:

THE E/Z PROBLEM

RO

O

O

OMOM

OPMB

RO

O

O

OMOM

OPMBRu

PCy3

Cl

Cl Ph

N N

5 mol%

toluene, 80°C

R Yield E : Z

H 69% 0 : 100

Me 93% 66 : 34

MOM 91% 68 : 32

SiMe2tBu 91% 40 : 60

A. F. with O. R. Thiel, G. Blanda,

Org. Lett. 2000, 2, 3731

TOTAL SYNTHESIS OF SALICYLIHALAMIDE

HO

O

O

OH

NH

O

R1 = R2 = H

R1 = MOM, R2 = Me

R2O

O

O

OR1

I

MeO

O

O

OMOM

O

R = H

R = PMB

MeO

O

O

OMOM

OR

DDQ, 94%

Dess-Martin

87%

CHI3, CrCl2

87%

BBr3, 88%

H2N

O

Cu-thiophene carboxylate

Rb2CO3

57%

A. Fürstner, T. Dierkes, O. R. Thiel, G. Blanda, Chem. Eur. J. 2001, 7, 5286

NON-CYCLIC POLYKETIDES

NHO

OMe OMe O

NOR

OH

Crocacin A (R = Me)

Crocacin B (R = H)

NH2

OMe OMe O

Crocacin C

NHO

OMe OMe O

NOMe

O

Crocacin D

H

THE CROCACINS

OR

O

O

NHTs

O

O

O

TsN

H

OHH2N

2. propionyl chloride

1. TsCl, Et3N

Et3N, CH2Cl2

82%

TiCl4, (iPr)2NEt

CH2Cl2

85%

R = H

R = TBS

TBSOTf

lutidine, 97%

LiBH4

THF, 89%OTBS

OH

O

I

O

AcOOAc

OAc

pyridine, CH2Cl2

87% OTBS

O

OMs

Et2Zn, THF, 72%

Pd(OAc)2 cat., PPh3 cat.

OR OH

1. TBAF, THF, 88%

2. MeOTf, CH2Cl2, 63%OMe OMe

R = TBS

OMe OMe

OR

O

OMe OMe

SnBu3

OMe OMe Bu3SnH

PdCl2(PPh3)2 cat.

THF, 88%

(sia)2BH

OMe OMe

B(sia)2

OR

O

IPd(PPh3)4 cat., THF

79%

Pd2(dba)3 cat.

TFP cat., NMP

32%

R = (CH2)2TMS

R = H

THF

TBAF, THF

89%

TOTAL SYNTHESIS OF CROCACIN C

A. F. with M. Besev, C. Brehm, Coll. Czech. Chem. Commun. 2005, 70, 1696

HETEROCYCLIC AND AROMATIC STRUCTURES

flooded former copper mine

pH ca. 2.5 (H2SO4)

Fe: 1200 ppm, Cu: 240 ppm, Al: 290 ppm, Zn: 650 ppm, As, Cd, Co, Mn etc

habitat for extremophilic Penicillium sp.

inhibits matrix metalloproteinase 3 (GI50 = 1.87 µM)

selective inhibition of OVCAR-3 (GI50 = 91 nM)

A. A. Stierle et al. J. Org. Chem. 2006, 71, 5357

BERKELIC ACID

WHAT IS BERKELIC ACID ?

A. F. with P. Buchgraber, T. Snaddon, C. Wirtz, R. Mynott, R. Goddard,

Angew. Chem. Int. Ed. 2008, 47, 8450;

Chem. Eur. J. 2010, 16, 12133

see also: B. B. Snider et al., Angew. Chem. Int. Ed. 2009, 48, 1283

J. K. De Brabander et al., J. Am. Chem. Soc. 2009, 131, 11350

BERKELIC ACID

ASPERCYCLIDES A-C

S. B. Singh, H. Jayasuriya, D. L. Zink, J. D. Polishook, A. W. Dombrowski, H. Zweerink,

Tetrahedron Lett., 2004, 45, 7605

THE ASPERCYCLIDES

A. F. with C. Müller, J. Pospisil, Chem.

Eur. J. 2009, 15, 5956

A. F. with C. Müller, Chem. Commun. 2005, 5583but:

A. F. with C. Müller, J. Pospisil, Chem. Eur. J. 2009, 15, 5956

ASPERCYCLIDE B

ROSEOPHILIN

N

O

NH

MeO

Cl

Roseophilin

Isolation: H. Seto et al., Tetrahedron Lett. 1992, 2701

For a review on the chemistry and biology of roseophilin see: A. Fürstner, Angew. Chem. Int. Ed. 2003, 42, 3582

ROSEOPHILIN: RETROSYNTHETIC ANALYSIS

N

O R

N

O

NH

MeO

Cl

O

NR

MeO

Cl+

CONCEPT

R

O

R

O

Pd+Lx

RNu

OH

N

R'

R

Nu

R

O

R'OR

O

R'O

Pd+Lx

RNu

OHR'O

STUDIES TOWARDS ROSEOPHILIN

RO

N

tBuMe2SiOBr

O

tBuMe2SiO ClCl Cl

tBuMe2SiO

O

COOMe

SO2Ph

S

1. NaI

2. AgBF4,

73%

tBuMe2SiO S

9-bromononanal

t-BuLi

84%

COOMe

SO2Ph

68%

, KH

STUDIES TOWARDS ROSEOPHILIN

83%

Dess-Martin

63%

TBAF, NH4F

85%

Pd(0) cat.

tBuMe2SiO

O

COOMe

SO2Ph

PhO2S OHO

O

OSiMe2tBu

PhO2S OHMeOOC

PhO2S O

OO

RO

N

STUDIES TOWARDS ROSEOPHILIN

PhO2S

BnO

N

OHO

PhO2S

Bn

NPhO2S O

OO

71%

2. SnCl4

1.

NMe2

Cl

70%

BnNH2, Pd(0) cat.

ROSEOPHILIN: THE MACROTRICYCLIC CORE

A. Fürstner, H. Weintritt, J. Am. Chem. Soc. 1997, 119, 2944.

2. PCC

1. Ca, NH3

R = H

R = Bn

RO

NPhO2S

BnO

N i-PrMe2ZnMgCl

t-BuOK

50%

BnO

N

RMO

N

N

O R

N

O

NH

MeO

Cl

O

NR

MeO

Cl+

THE HETEROCYCLIC SEGMENT

NMe2

ClX = Cl

X = OH

XOSiMe2tBu

O MeO OMe

52%

3. K2CO3, aq. MeOH/THF

2. TBDMSCl, imidazole

1. NaOH, MeOH,

OO

OMe

N

H

MeOOC

Cl

N

Ts

Cl

Br

1. Br2, HOAC, 90%

2. NaOH, H2O, 92% N

H

HOOC

Cl

Br

1. Cu-chromite

2. TsCl, NEt3, MeCN

67%

THE HETEROCYCLIC SEGMENT

62%

2. KH, TIPSCl, THF

1. K2CO3, MeOH

76%

PPTS, MeOH

Cl

Ts

NO

OMe

OSiMe2tBu

Cl

Ts

N

O MeO OMe

43-61%

3. Pd(PPh3)4 cat.,

2. ZnCl2, -78°C to 0°C

1. n-BuLi, -78°C

ClOSiMe2tBu

O MeO OMe

N

Ts

Cl

Br

Cl

(iPr)3Si

NO

OMe

FRAGMENT COUPLING: MODEL STUDIES

Cl

(iPr)3Si

NO

OMe

1. BuLi

2. CeCl3

3.

4. HCl

5. TBAF

N

O

K

N

ClHN

O

MeO

N

ClHN

O

N

HN

O

analogously:

FRAGMENT COUPLING (I)

CeCl2

ClSi(iPr)3N

O

MeO

O

N

K

no reaction

FIRST TOTAL SYNTHESIS OF ROSEOPHILIN

A. Fürstner, H. Weintritt, J. Am. Chem. Soc. 1998, 120, 2817

62%

N

O

NSi(iPr)3

MeO

Cl

SEMOHO

NSi(iPr)3

MeO

Cl

X

1. TBAF

2. aq. HCl

76 %

N

SEMO

N

O

N

MeO

Cl

. HCl

ANALOGUES

A. Fürstner, Th. Gastner, H. Weintritt, J. Org. Chem. 1999, 64, 2361

For biochemical investigations see: A. Fürstner, E. Grabowski ChemBioChem. 2001, 706

N

O

N

MeO

Cl

N

ClHN

O

MeO N

ClHN

O

N

HN

O

N

O

N

THE DICTYODENDRINS

first telomerase inhibitors of marine origin, cf. N. Fusetani et al., J. Org. Chem. 2003, 68, 2765

for telomerase as a target for chemotheraphy see: S. Neidle et al., Nature Rev. 2002, 1, 383

N

N

MeOOC

HO OSO3Na

H

OH

OH

OH

HO

N

N

O

HO OSO3Na

H

O

OH

OH

Dictyodendrin A Dictyodendrin C

N

N

O

HO OSO3Na

H

OH

OH

OH

HO

Dictyodendrin B

N

N

HO OSO3Na

H

O

OH

OH

HO

Dictyodendrin E

ANALYSIS

REDUCTIVE HETEROCYCLE SYNTHESIS

O

Ph

NH

O

OEt

O

Cl

NO

OEt

Ph

H

Cl"low-valent" titanium

A. Fürstner et al., JOC 1994, 59, 5215; JACS 1995, 117, 4468; Org. Synth. 1999, 76, 142

Reagent Solvent Isolated Yield

TiCl3 / 2 C8K DME 93%

TiCl3 / Zn („instant“) THF 87%

TiCl3 cat., Zn, TMSCl MeCN 79%

Review: A. Fürstner, B. Bogdanovic, Angew. Chem. Int. Ed. Engl. 1996, 35, 2442.

NO2

OiPr

O

MeO

1. TosMIC, NaH

2.

MeO

Br

83%

NO2

OiPr

O

N

MeO

MeO

1. Fe/HCl, 96%

2. O

Cl

OMeOMe

89%

HN

OiPr

O

N

MeO

MeO

O

MeO

OMe

low valent titanium

pyridine, DME

93%

N

N

MeO OiPr

H

OMe

OMe

OMehv

Pd/C, C6H5NO2

MeCN

N

N

MeO OiPr

H

OMe

OMe

OMe

81%

ATTEMPTED SYNTHESIS OF DICTYODENDRIN B

N

NH

OMe

OMe

MeO OMe

N

NHCl4Sn

OMe

OMe

OMe

N

NH

OMe

OMe

OMe

MeO

MeON

NHSnCl4

OMe

OMe

OMe

MeO

2

MeO

O

Cl

SnCl4, DCE

N

NH

OMe

OMe

MeO OMe

O

MeO

2

N

NH

OMe

OMe

MeO OiPr

CHO

MeO

N

NH

OMe

OMe

MeO OiPr

HO

MeO

1. MeLi, then BuLi

2.N

NH

OMe

OMe

MeO OiPr

Br

NBS

69%

97%

OMe OMe OMe

N

NH

OMe

OMe

MeO OiPrBr

CDCl3, RT

OMe

TOTAL SYNTHESIS OF DICTYODENDRIN B

A. F. with M. M. Domostoj, B. Scheiper

J. Am. Chem. Soc. 2005, 127, 11620; J. Am. Chem. Soc. 2006, 128, 8087

for alternative syntheses, see:

M. Iwao et al., Tetrahedron Lett. 2010, 51, 533; H. Tokuyama et al., Angew. Chem. 2010, 49, 5925

N

NH

OMe

OMe

MeO OiPr

HO

MeO

1. TPAP cat.

NMO, 66%

2. BCl3, 85%

ClS

O CCl3

O O3.

92%

N

NH

OMe

OMe

MeO O

O

MeO

SO

O

O

CCl3

1. BCl3, TBAI

2. Zn, HCOONH4

58%

N

NH

OH

OH

HO OSO3 NH4

O

HO

OMe OMe OH

TOTAL SYNTHESIS OF DICTYODENDRIN C

A. F. with M. M. Domostoj, B. Scheiper, J. Am. Chem. Soc. 2006, 128, 8087

N

N

O

HO OSO3NH4

H

O

OH

OH

Dictyodendrin C

N

N

MeO OSO3CH2CCl3

H

OMe

OMe

OMe

N

N

HO OSO3CH2CCl3

H

OH

OH

OO

1. BCl3 / TBAI

2. H2O2, MeCN

1. Zn/HCOONH4

57%

2. O2, MeOH

76%

DICTYODENDRIN E

N

NH

OMe

OMe

MeO OiPr

MeOMgCl

MeO

MeO

B

MgCl

BMeO

MeO

Pd(OAc)2, S-Phos

90%

OMe

N

NH

OH

OH

HO OSO3NH4

HO

O

for the 9-MeO-9-BBN variant see: A. Fürstner, G. Seidel Tetrahedron 1995, 51, 11165

A. Fürstner, M. M. Domostoj, B. Scheiper, J. Am. Chem. Soc. 2006, 128, 8087

1. BCl3

2. Cl3CCH2OSO2Cl

4. Zn, HCOONH4

5. DDQ

3.. BCl3, TBAI

SnMe3

MeO

BF3 K

MeO

B

MeOO

O

or:

or:N

NH

OMe

OMe

MeO OiPr

H

various palladium sources

OMe

N

NH

OMe

OMe

MeO OiPr

BrOMe

DICTYODENDRIN ANALOGUES

C38

O3

C36

C35

C37

C34

C15

C32

O1

C33

C2

N1

C3

C1C13C14

C20C4

C12

C19 C8

O2

C16

C9

N2

C21

C7C11

C10

C18

C24

C17

C5

C22

C6

C23

C26

C25

C27

C30

C28

C29

O4

C31

for noble metal catalyzed ring closures with formation of polycyclic (hetero)arenes, see: A. F. with

V. Mamane, P. Hannen, Chem. Eur. J. 2004, 10, 4556

A. F. with P. Buchgraber, M. M. Domostoj, B.

Scheiper, C. Wirtz, R. Mynott, J. Rust,

Tetrahedron 2009, 65, 6519

DICTYODENDRIN ANALOGUES

A. F. with P. Buchgraber, M. M. Domostoj, B. Scheiper, C. Wirtz, R. Mynott, J. Rust, Tetrahedron 2009, 65, 6519

TOTAL SYNTHESIS OF MOTUPORAMINE C

A. F. with A. Rumbo, J. Org. Chem. 2000, 65, 2608

O O

O

OH

HO

O

OH

HO

O

O O

OH

HO

O

O

1 2

3

O

OH

HO

O

O

O

4

C17

O1

O16 C2

C1

O1

C3

O5

O9

H5

C8

H7

C12 C9 O7O5

iv

ii

iii

i

Superposition of the X-ray structures of citreofuran (4, green) and culvularin (1, blue) in an orthographic projection

A. Fürstner et al. JOC 2003, 68, 1521

X-ray structure of citreofuran

A. Fürstner et al. JOC 2003, 68, 1521

CITREOFURAN

A. F. with A.-S. Castanet, K. Radkowski, C. W. Lehmann, J. Org. Chem. 2003, 68, 1521.

TOTAL SYNTHESIS OF CITREOFURAN

(-)-BALANOL

inhibitor of proteinkinase C (PKC) with IC50 values in the low nanomolar range

Balanol

OH

HO OO

HO

OH

O

OH

OH

N

O

H

N

+

OR

RO OO

RO

OR

O

OH

OR2

OH

N

R1

N

HO

FORMAL TOTAL SYNTHESIS OF (-)-BALANOL

A. Fürstner, O. R. Thiel, J. Org. Chem. 2000, 65, 1738

87%

Ph

PCy3

Ru

PCy3

Cl

Cl

55% (over both steps)

2. p-BnOC6H4COCl, Et3N

1. H2, Pd/C

91%

Mitsunobu

quant.

Boc2O, Et3N

94%

allylamine, 70°C

95%

NaH, BnBr

ee > 99%

Ti(OiPr)4 cat.

(D)-(-)-DET, tBuOOHOH OR

O

R = H

R = Bn

N

R

OH

BnO

R = H

R = Boc

N

Boc

OH

BnO

N

Boc

N3

BnO

OBn

OH

N

Boc

N

HO

FORMAL TOTAL SYNTHESIS OF HAOUAMINE

L. Garrido, E. Zubía, M. J. Ortega and J. Salvá, J. Org. Chem., 2003, 68, 293

A. F. with J. Ackerstaff, Chem. Commun. 2008, 2870

APORPHINE ALKALOIDSOMe

MeO

MeONH

OMe

MeO

MeONH

HN

OMe

OMe

MeO

from Polyalthia bullata

from Gutteria ouregon

Polyalthia bullata

OMe

MeO

MeO

Br

X

X = H

X = I

OMe

MeO

MeO

Br

N

O

O

OMe

MeO

MeO

NR2

Br

R, R = phthalimido

R = H

OMe

MeO

MeONH

OMe

MeO

MeO

NR2

O

OMe

MeO

MeO

NR2

Br

N

O

O

1. Pd(0),

2. Crabtree's catalyst, H2

B(OH)2

O

57%

Pd(O)

94%

I2, Hg2O

81%

1. CBr4, PPh3, 88%

2. DBU, 79%

InCl3

87%

H2NNH2quant.

CuI, CsOAc

71%

from Gutteria ouregon

OMe

MeO

MeONH

HN

OMe

OMe

OMe

CuCl2.2 H2O

tBuNH2, MeOH

86%

isolated from Polyalthia bullata

A. Fürstner, V. Mamane,

Chem. Commun. 2003, 2112

CRISTATIC ACID

Zechlin, L.; Wolf, M.; Steglich, W.; Anke, T.

Liebigs Ann. Chem. 1981, 2099

A. F. with T. Gastner, Org. Lett. 2000, 2, 2467

N

OH

HO

O

O

TMC-69

N

OH

HO

O

O

TMC-69-6H

17

N-HYDROXYPYRIDONES: TMC-69 AND TMC-69-6H

Hirano, N.; Kohno, J.; Tsunoda, S.; Nishio, M.; Kishi, N.; Okuda, T.; Kawano, K.; Komatsubara, S.;

Nakanishi, N. J. Antibiot. 2001, 54, 421, Tetrahedron 2001, 57, 1731

A. F. with F. Feyen, H. Prinz, H. Waldmann, Angew. Chem. Int. Ed. 2003, 42, 5361;

Tetrahedron 2004, 60, 9543

N

H

O

O

O

O

N

H

HO

OX

O

O

AcO

O

O

Cl

Cl

N

TBSO

OTBS

O

O

X = Cl

X = H

N

TBSO

OTBS

O

O

N

TBSO

OTBS

O

N

H

HO

O

O

phenylacetonitrile

50%

H2, Pd/C

97%

Pd(0), 65% (96% ee)

TBSCl, Et3N, 78%

Me2CuLi

S

NN

NN

Ph

O O

LiHMDS, 69% (over 2 steps)

1. H2, Pd/C

2. TBAF, 69% (over 2 steps)

2. (pyridine)MoO3(hmpa)

3. EDTA-Na

1. HN(TMS)2, TMSCl

71%N

OH

HO

O

O

Y. Sakano, M. Shibuya, Y. Yamaguchi, R. Masuma, H. Tomoda, S. Omura, Y. Ebizuka, J. Antibiot. 2004, 57, 564

structure revision: B. B. Snider, X. Gao, Org. Lett. 2005, 7, 4419;

M. Shibuya, B. B. Snider, Y. Sakano, H. Tomoda, S. Omura, Y. Ebizuka, J. Antibiot. 2005, 58, 599

EPOHELMIN B

TOTAL SYNTHESIS OF

EPOHELMIN B

A. F. with A. Korte, Chem. Asian J. 2008, 3, 310

PRODIGIOSINS

for a review see: A. Fürstner, Angew. Chem. Int. Ed. 2003, 42, 3582

immunosuppressive – synergistic action with cyclosporin and FK506

N

NN

H

H

MeO

NN

H

MeO

NH

H

NMeO

NH

N

N

N

NMeO

H

H

JACS 1998, 120, 8305 JOC 1999, 64, 8275Angew. Chem., in press

Agar plate with red colonies of Serratia marescens

Raphael‘s fresco „Mass of Bolsena“ in the Vatican (1508)

Orvieto Cathedral

the producing red bacteria are likely responsible for the „miracles of bleeding hosts“ reported in the

Middle Ages, e. g. in Bolsena, Italy, in 1263, commemorated until now by

the festival of Corpus Christi, cf.:

Angew. Chem. Int. Ed. 2003, 42, 3583

THE PRODIGIOSIN ALKALOIDS

for a review on the chemistry and biology of the prodigions see:

A. Fürstner, Angew. Chem. Int. Ed. 2003, 42, 3582

immunosuppressive – synergistic action with cyclosporin and FK506 in vivo

NN

H

MeO

NH

Streptorubin B

N

NN

H

MeO

ON

R

H

R

NHH

CYCLOISOMERIZATION OF ELECTRON DEFICIENT ENYNES

NTs

O

79%

toluene, 50°C, 66h

PtCl2 (5 mol%)N

Ts

O

85%

toluene, 50°C, 66h

PtCl4 (5 mol%)N

Ts

COOMe

MeO

NTs

O

NN

H

MeO

NH

Streptorubin B

NTs

O

NN

H

MeO

O

2. H2O 55%

1. KAPA

3. Bu3SnH, AIBN,

2. PhOC(S)Cl, 95%

1. LiAlH4, 96%

94%

HBF4.Et2O

Bu3SnH, Pd(0) cat.

NTs

NN

H

NTs

O

TOTAL SYNTHESIS OF STREPTORUBIN B

A. Fürstner, H. Szillat, B. Gabor, R. Mynott

J. Am. Chem. Soc., 1998, 120, 8305.

BUTYLCYCLOHEPTYLPRODIGIOSIN:

RETROSYNTHETIC ANALYSIS

N

NN

H

H

MeO

NH

O(HO)2B

N

Boc

N

MeO O

H

RETROSYNTHETIC ANALYSIS

NH

O

NH

N Pd OR N OR

K. Narasaka et al., Bull. Chem. Soc. Jpn. 2002, 75, 1451

R1

NO

R2O

R1

NPdLx

O

O

R2

NR1 NR1

H

Pd(0)

A B C D

O OAc

OO

MeO

NO

O

C6F5

NH

N

R

R = H

R = Boc

4

910

1. Dibal-H, 97%

2. Ac2O, Et3N, 97%

OO

MeO

NaH, Pd(0) cat., 74%

1. aq. DMSO,

2. H2NOH

3. F5C6COOCl

95%

Pd(OAc)2 cat.

(o-tolyl)3P cat., Et3N

54%

KAPA

65%

Boc2O,

DMAP, 69%

N

Boc

NBoc

O

NH

N

MeO O

H

N

N

MeO OTf

H

N

Boc

(HO)2B

NBoc

O

NBoc

1. BH3, H2O2

2. Dess-Martin

65%

1. Ph3P=CHCH2CH2CH3

2. H2, Crabtree

70%

CAN

CHCl3 / H2O / DME

65%

N O

MeO

H

aq. NaOH, DMSO

69%

Tf2O

79%

N

NN

H

H

MeO

Pd(0) cat., LiCl

70%

A. Fürstner, K. Radkowski, H. Peters,

Angew. Chem. Int. Ed. 2005, 44, 2777;

Chem. Eur. J. 2007, 13, 1929

BUTYLCYCLOHEPTYLPRODIGIOSIN

HN

N

NH

MeOO S

RN

N. N. Gerber, Tetrahedron Lett. 1970, 809.

Nonylprodigiosin

H

NMeO

NH

NH

NMeO

NH

N

Suzuki

alkylation

alkylation

condensation

RCM / hydrogenation

NONYLPRODIGIOSIN

57%

Na2CO3, LiCl

Pd(0) cat.

N

N

N

MeO

H

H

N

Boc

(HO)2B

58%

2. B(OMe)3

N

Li

1.

92%

Boc2O, DMAP

R = Boc

R = H

N

R

93%

Tf2O

NH

N

O

H

MeO

N

N

MeO

O

H

S CF3

O

O

N

NH

N

MeO

H

H

Cl

ClCl

N

N

N

MeO

H

HH

N

NH

HO

HN

Me

N

N

N

MeO

H

HH

Ph

PCy3

Ru

PCy3

Cl

Clcat.

65%

RhCl(PPh3)3 cat., H2

73%

Cl

Nonylprodigiosin.HCl(E)-isomer only !

A. Fürstner, J. Grabowski, C. W. Lehmann, J. Org. Chem. 1999, 64, 8275

I

II

III

IV

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IVI

II

N

NH

O

MeO

HN

NH

O

MeO

HN

NHMeO

H

Biological Evaluation:

Cleavage of Supercoiled DNA

in the presence of Cu(II)

A. Fürstner, E. J. Grabowski, ChemBioChem 2001, 2, 706

synthesis of analogues and studies concerning the effects of prodigiosin derivatives on the

proliferation of murine spleen cells and vacuolar acidification

A. Fürstner, J. Grabowski, C. W. Lehmann, T. Kataoka, K. Nagai, ChemBioChem 2001, 2, 60

(-)-ISOONCINOTINE

NN

H

N O

HH

NN

H

N O

HHH

H

2 X

N

H

HN

Cl

X

N

OR1

Isolation from the stem bark of Oncinotis nitida by

M. Hesse et al., Helv. Chim. Acta 1968, 51, 1813

ASYMMETRIC HYDROGENATION OF PYRIDINES

NO

N R

O

N

O

N R

OH

X

H2

Pd/CN

O

N R

O X

X

N R

X

N R N RPd/C

HX H2

NHO

O

H2

H H2 H

F: Glorius et al., Angew. Chem. Int. Ed. 2004, 43, 2850

B. Scheiper, F. Glorius, A. Leitner, A. Fürstner, Proc. Natl. Acad. Sci. USA 2004, 101, 11960

NCl Cl

NHO

O

BrMgOBn

NCl OBn NO

N

O

OBn

N

H

OHN

N

H

N O

HNs

OH

NN

H

N O

HR

R = Ns

R = H

NN

H

N O

HH

Ph

Ru

PCy3

PCy3

Cl

Cl

ee = 94%

Fe(acac)3 cat.

83%

CuI cat.

90%

H2 (120 atm)

Pd(OH)2/C cat.

78%

NBr

N O

HNs

K2CO3, NaI, 73%

1. Swern, 81%

2. Ph3P=CH2, 82%

HSCH2COOH

LiOH, 84%

then H2

76%

(-)-Isooncinotine

V. Prelog et al., Helv. Chim. Acta 1946, 29, 1524

previous syntheses: G. Büchi (1957), M. Kumada (1975), H. Nozaki (1980), M. Hesse (1992), M. Ando (2000)

MUSCOPYRIDINE

N NM M

N XX

NCl OTf

Cl N

N

BrMg

[Fe] cat.+ +

N6-heptenyl-MgBr

[Fe] cat.

A. Fürstner, A. Leitner, Angew. Chem. Int. Ed. 2003, 42, 308

for the preparation of the ruthenium indenylidene catalyst see: A. Fürstner et al., Chem. Eur. J. 2001, 7, 4811

since 2005 commercially available: STREM (g-quantities), UMICORE, Hanau (kg-quantities)

N

N

PhPCy3

Ru

PCy3

Cl

Cl

HCl/Et2O

then

+

0.006 M N

H

Cl

H2 (50 atm)

then aq. NaHCO3

N

57% overall

0.13 M

ADMET

polymer

„INTEGRATED„ SYNTHESIS OF MUSCOPYRIDINE

HIGHLY CYTOTOXIC PHENANTHROQUINOLIZIDINE-

AND PHENATHROINDOLIZIDINE ALKALOIDS

OMe

MeO

B(OH)2

I

Br

MeO

NBoc N

Boc

MeO

OMe

MeO

PtCl2 cat.

MeO

OMe

MeO

NBoc

97%

MeO

OMe

MeO

N

Cryptopleurine

A. Fürstner, J. Kennedy,

Chem. Eur. J. 2006, 12, 7398AntofineMeO

OMe

MeO

N

H

TylophorineMeO

OMe

MeO

N

H

OMe

FicuseptineMeO

N

H

O

O

MeO

I

Br

OMe

MeO

MeO

X

B(OH)2

OMe

MeO

X = Br

X = I

(dppf)PdCl2 (5 mol%)

LiCl, Na2CO3, DME/H2O

70%

BuLi

then I2

82%

N

Boc

OMe

B Li

MeO

OMe

MeO

N

Boc

MeO

OMe

MeO

N

MeO

OMe

MeO

RN

(dppf)PdCl2 (5 mol%)

THF, reflux

82%

PtCl2 cat.

toluene, 60°C

97%

aq. HCHO

HCl, EtOH

67%

A. Fürstner, J. W. J. Kennedy, Chem. Eur. J. 2006, 12, 7398

CRYPTOPLEURINE

ERYPOEGIN AND ISOSOJAGOL

A. F. with E. Heilmann, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 4760

2. 9-OMe-9-BBN, PdCl 2(dppf) (3%)

1. BuLi

77%

MeO

MeO

OMe

PdCl2(dppf) 3%

Natriumacetylid, B(OMe) 3MeO

MeO

OMe

Br

3. Br

TBDMSO

OMe

OTBDMS

OMe

MeO

MeO

MeO MeO

MeO

OMe

OR

OMe

R = OTBDMS

R = H

66%

Lindlar

74%

TBAF

95%

COMBRETASTATIN A4

A. Fürstner, K. Nikolakis, Liebigs Ann. 1996, 2107

ALKYLRESORCINOLS

HO

OH

OH

HO

HO

OH

OH

OH

OH

OH

OH

HO

OH

OHOH

HO

Na

B B

OMe

MeO

I2

B BB

RO

OR OR

OR

R = Me

R = H

Na

LiC CLi, THF/HMPA, 72%

9-BBN (3 eq)., THF

1. MeOH/HOAc (99:1)

2. NaOMe (2 eq.)

OTfMeO

OMe

PdCl2(dppf) cat.

62%

9-Iod-9-BBN, hexane, 98%

A. Fürstner, G. Seidel, J. Org. Chem. 1997, 62, 2332

isolated from Grevillea robustaisolated from Grevillea striata

The Turrianes

Hakea trifurcata

DNA-cleaving Alkylresorcinols from

Robustol

HO

OH

OH

OH

OMe

OH

OH

OHOMe

OH

OH

OH O

OH

OH

OH

oxidative

C-O-coupling

oxidative

C-C-coupling/

O-methylation

ALKYLRESORCINOLS: THE TURRIANES

TOTAL SYNTHESIS OF TURRIANES

Br

OH

OH

OH

O

Br

OPMB

OPMB

TBDPSO

CHOMeO

HO

OPMBMeO

MeO

ON

NO

O

OPMB

OMeOMe

O

O

O

TBDPSO

PMB

PMB

Mg, THF, reflux

84%

+

Vanilline

O

OPMB

OMeOMe

O

O

OPMB

PMB

O

OPMB

OMeOMe

O

O

OPMB

PMB

TOTAL SYNTHESIS OF TURRIANES

OMe

OR

OR

OROMe

OR

OR

ORRu

PCy3

PCy3

Cl

Cl

Ph

cat.

84%

E : Z = 6.9 : 1

but the natural product is (Z)-configured !

A. Fürstner, F. Stelzer, A. Rumbo, H. Krause, Chem. Eur. J. 2002, 8, 1856.

turrianes are efficient DNA-cleaving agents under oxidative conditions;

for the total synthesis and biological evaluation see:

OMe

OR

OR

OR

76%

F3CC6H4OH

Mo(CO)6 cat.

OMe

OR

OR

OROMe

OR

OR

OR

Lindlar

96%

R = PMB

R = H

BF3, EtSH

54%

or:

(tBuO)3W CCMe3 cat.

61%

TOTAL SYNTHESIS OF TURRIANES

Alstoniline

NN

H

MeO

O

MeO

Villagorgine B

NN

H

N

NH

Flavocorynanthyrine

NN

H

Sempervirine

NN

H

Flavopereirine

NN

H

Indolopyridocolin

NN

H

O

O

O

NH2

NCl

OH

ClO

O

O

NH

ON

OO

H

NN

H

NN

ClO4

89%

Ti-graphite

57%

H

NN

OH

Cl

HClAc2O

77%

Indolopyridocolin

Fürstner, A. Ernst, H. Krause, A. Ptock, Tetrahedron 1996, 52, 7329

Lamellarin O Dimethylether Lukianol A

3. BBr3

2. Ac2O, NaOAc1. KOt-Bu, H 2O

K2CO3, acetone

MeOC6H4COCH2BrTi-graphite

pyridine, DMAP

Cl

O OMe

O2.

1. H2, Pd/C

2. NH2OH1. BF3

.Et2O

OH

O

O

HO OH

NN

OMeMeO

O

OMe

O

OMe

N

OMeMeO

HO

OMe

ONH

OMeMeO

O

OMe

OO

N

OMeMeO

OO

OMeMeO67%

70%

52%

91%

59%

Lamellarin Q Dimethylether

A. Fürstner, H. Weintritt, A. Hupperts, J. Org. Chem. 1995, 60, 6637

71%

Camalexin

N S

O

NX2N

STMS

N

S

N

H

NH

O

SN

OHX = O

X = H

o-NO2C6H4COCl

83%

H2, Pd/C

98%

HCOOH, Ac 2O

87%

TiCl3, Zn

"Instant"

A. Fürstner, A. Ernst, Tetrahedron 1995, 51, 773

NH

HN

NH

HNO

O

1. TiCl3, Zn, THF, ("Instant")

2. EDTA

75%

(+)-Aristotelin

A. Fürstner, A. Hupperts, A. Ptock, E. Janssen, J. Org. Chem. 1994, 59, 5215

CARBOHYDRATES AND GLYCOLIPIDS

time

Conduritol F

RCM

R = H

R = Bn

OR

OR

RO

RO

D-glucose

OH

OH

HO

HO

O

OH

OBn

OBn

BnO

BnO

PCy3

RuCl

Cl

Ph

PCy3

MoO

O N

PhF3CF3C

F3CF3C

R = mesityl

PCy3

RuCl

Cl

Ph

RNNR

A. Fürstner et al., Tetrahedron2000, 56, 2195.

catalyst yield

60h 32% (GC)

1h 92%

2h 89%

IPOMOEASSIN

D. Kingston et al., J. Nat. Prod. 2005, 68, 487; Nat. Prod. Res. 2007, 21, 872

US 2006/0264383 A1

Ipomoea squamosa

RETROSYNTHETIC ANALYSIS

C14

O7

C11

C12

C10

C13

C9

C8

C7

O3

C6

O1

C27 C1

C26

C5C25

O2O4

C2

C3

C24

C4

C28

O9

O6 O5

C19

C29

C15

C30

O8

C16

C18

C17O10

C23O11

C20

C21

C22

REVISED RETROSYNTHETIC ANALYSIS

A. F. with T. Nagano, J. Am. Chem. Soc. 2007, 129, 1906

for the total synthesis and biological assessment of all naturally occurring ipomoeassins and analogues, see:

A. F. with T. Nagano, J. Pospisil, G. Collet, S. Schulthoff, V. Hickmann, E. Moulin, J. Herrmann, R. Müller, Chem. Eur. J. 2009, 15, 9697

for an alternative synthesis of ipomoeassin F, see: M. H. D. Postema et al., Org. Lett. 2009, 11, 1417 (Eisai)

K. Miyahara et al., Chem. Pharm. Bull. 1993, 41, 1925

review on the chemistry & biology of resin glycosides: A. Fürstner Eur. J. Org. Chem. 2004, 943

WOODROSIN I

Ipomoea tuberosa L.

O

O

O

OHHO

HO

O

O

O

OHO

HO

OH

HOHO

O

OO

OO

OH

O

O

O

O

OOHO

OO

O

OO

HO

RO

Ph

OO

O

BnOBnO

OBn

O NH

OO

BnOO O

O CCl3

OO

BnOO O

O

OBn

BnOBnO

O

OO

Ph

ROO

OO

O

R = PMB

R = H

O

O

O

O

BnO

BnO

O

O

O O

O

O

O

Cl

O

OBn

CCl3

NH

no reaction

TMSOTf, 62%

DDQ, 71%

O

OO

HO

RO

Ph

OO

O

BnOBnO

OBn

O NH

OO

BnOO O

O CCl3

O

O

O

O

BnO

BnO

O

O

O O

O

O

O

Cl

O

OBn

CCl3

NH

O

O

O

BnO

BnO O

O O

O

O

O

O

OBn

O

Cl

OBn

BnOBnO

O

OO

Ph

OOH

OO

O

no reaction

TMSOTf cat., 84%

A. Fürstner, F. Jeanjean, P. Razon, Angew. Chem. Int. Ed. 2002, 41, 2097; Chem. Eur. J. 2003, 9, 307 and 320

for the ruthenium indenylidene catalyst see: A. Fürstner et al., Chem. Eur. J. 2001, 7, 4811

cat.

Ph

Ru

PCy3

PCy3

Cl

Cl

OO O

O

O

O O

Cl

OBn

BnOBnO

O

OO

Ph

OHO

OOO

OBn

OBnO

BnO

O

O

O

94%

1.

O

O

O

OHHO

HO

O

O

O

OHO

HO

OH

HOHO

O

OO

OO

OH

O

O

O

O

OOHO

OO

O NHO

OBnO

O O

O CCl3

2. deprotection, 84%WOODROSIN I

O

O

O

BnO

BnO O

O O

O

O

O

O

OBn

O

Cl

OBn

BnOBnO

O

OO

Ph

OHO

OOO

E : Z = 9 : 1

60%HOTf cat.

TRICOLORIN A

O

O

HO

HO

OH

O

O

O

O

O

HOHO

O

O

O

O

O

HO

HOO

O

Tricolorin A OH

O

O

OH

RO

ROO

RO

RO

O O

O

O

O

OH

RO

ROO

RO

RO

O O

O

D-glucose, D-fucose

RCM

O

O

RO

RO

O

O

O

O

O

X

OR

67

for alternative syntheses of tricolorin A via macrolactonization strategies see:

C. H. Heathcock et al., J. Org. Chem. 1997, 62, 8406; Y.-Z. Hui et al., J. Org. Chem. 1997, 62, 8400.

TOTAL SYNTHESIS OF TRICOLORIN A

O

O

O

O

OH

R = H

R = Ac

OO

RO

O

RO

PhO

O

O

O

O

OO

AcO

O

AcO

Ph

NH

CCl3O

OO

OH

O

O

O

O

O

O

O

O

PhO

O

OH

O

O

PhO

O

O

O

O

O

BF3.Et2O

82%

KOMe, MeOH

71%

6-heptenoic acid

DCC, DMAP

71%

Ru

PCy3

RCl

Cl

PCy3

1.

2. H2, Pd/C

77%

Tricolorin A

A. Fürstner, T. Müller, J. Am. Chem. Soc. 1999, 121, 7814

THE MACROCYCLIC CORE OF TRICOLORIN A

C. W. Lehmann, A. Fürstner, T. Müller, Z. Kristallogr. 2000, 215, 114

OO

OH

O

O

O

O

O

O

O

O

Ph Ph

O

O

O

O

O

O

O

O

OH

OO

n

OO

OH

O

O

PhO

O

O

O

O

O

OO

OH

O

O

O

O

O

O

O

PhH

O

1. RCM

2. H2, Pd/C

77% 76% 76%

A. Fürstner, T. Müller, J. Am. Chem. Soc. 1999, 121, 7814

TOTAL SYNTHESIS OF TRICOLORIN G

A. Fürstner, T. Müller, J. Am. Chem. Soc. 1999, 121, 7814

OO

OH

O

HO

PhO

O

O

O

O

BnO

O

O

O

O

OPh

O

OH

OO

BnO

BnO

OAc

O

O

NH

CCl3

BnO

BnO

O

O

O

O

O

O

BnO

O

O

O

O

O

O

H

Ph

O

O

OBnO

BnO

BnO

O

O

O

O

OPh

O

O

OO

(Bu3Sn)2O

BnBr, 57%

OAc

OBnO

BnO

BnO

O

O

O

O

OPh

O

O

OO

1. KOMe, MeOH

2. 6-heptenoic acid, DCC

84%

1. Grubbs catalyst

2. H2, Wilkinson

Tricolorin G

RCAM: A. Fürstner, G. Seidel, Angew. Chem. Int. Ed. 1998, 37, 1734

OO

O

HOHO

OH

HO

OHO

OH

O

O

Sophorolipid Lactone

RCAM "Lindlar"

A. Fürstner, K. Radkowski, J. Grabowski, C. Wirtz, R. Mynott, J. Org. Chem. 2000, 65, 8758

for the catalyst see: A. Fürstner, C. Mathes, C. W. Lehmann, J. Am. Chem. Soc. 1999, 121, 9453

OO

OH

PMBOPMBO

OPMB

RO

RO

ORO

O

OO

O

RORO

OR

O

OO

O

RORO

OR

RO

ORO

OR

O

O

OO

O

HOHO

OH

HO

OHO

OH

O

O

NNN

Mo

R

AcO

AcO

OO

O

BrR

AcO

AcO

OO

O

OO

O

PMBOPMBO

OPMB

R = p-MeOC6H4-

AgOTf, lutidine

89%

cat.

CH2Cl2/toluene

78%

1. Lindlar, H2, quant

2. DDQ, 93%

CYCLOVIRACIN B1

26 = 64 possible isomers (!)

M. Tsunakawa et al., J. Antibiot. 1992, 45, 1467 and 1472.

O

O O

O

O O

OOO

O

HO

O

O

O

O

OH

OH

HO

OH

OH

HO OH

OHHO

OH

OMe

OH

OMe

OMe

HO

HO

OH

OH

3

19

25

3'

17'

23'

O

O O

O

O O

OOO

O

HO

O

O

O

O

OH

OH

HO

OH

OH

HO OH

OHHO

OH

OMe

OH

OMe

OMe

HO

HO

OH

OH

3

19

25

17'

23'

O

O O

O

O O

OO

OBn

OBn

BnO OBn

OBnBnO

OX

O(NH)CCl3

O

BnO

OMe

BnO

BnO

BnO

M

Y

O

O

O

O

OBn

OBn

OBn

OMe

OBn

OMe

OBn

OBn

Cycloviracin B1

O O(NH)CCl3

OBn

OBnBnO

HO

HO

O OH

X

C-17'

C-17

SYNTHESIS OF THE KEY BUILDING BLOCK

O

O

O

OBn

O

BnO OBn

HO

OHO OTBDPS

HO

OtBuO OH

O

OtBuO OHOLi

OtBu

61%

O

O

1. (PCy3)2Cl2Ru=CHPh

2. H2, Pd/C

75%

[(R)-BINAP.RuCl2]2.NEt3 cat.

H2 (15 atm), MeOH, 70°C

88%, ee = 98%

TEMPLATE DIRECTED CYCLODIMERIZATION

A. Fürstner, M. Albert, J. Mlynarski, M. Matheu, J. Am. Chem. Soc. 2002, 124, 1168.

O

OBn

O

BnO OBn

OHO OTBDPSHO

O

OBn

O

OBnBnO

O OHTBDPSOOH

K

NN

Cl

Cl

O

O O

O

O O

OO

OBn

OBn

BnO OBn

OBnBnO

OR1

R2O

KH, DMAP

71% isolated yield

STEREOCHEMICAL

ASSIGNMENT

106.4 ppm

O

HO

HOHO O

O

O

O

O

O OHOH

OH

O

OH

OR

RO

RO

106.4 ppm

(CH2)13OR1

O

RORO

RO O

O

O

O

O

O OROR

OR

O

R2O(CH2)13

(CH2)13OR1

O

RORO

RO O

O

O

O

O

O OROR

OR

O

R2O(CH2)13

(R)

(S)

(R)

(S)

R1 = H, R2 = TBDPS, R = H: 105.3 ppm

R1 = R2 = R = H: 106.4 ppm

R1 = H, R2 = TBDPS, R = H: 100.3 ppm

Cycloviracin B1

O

O O

O

O O

OO

OBn

OBn

BnO OBn

OBnBnO

STBDPSO

NPh

NN

N

O

O

HH

H

H

H

H

O

O O

O

O O

OOTBDPSO

O

O

O

OOBn

OBn

OBn

OBn

BnO OBn

OBnBnO

OBn

OMe

OBn

OMe

OBn

OBn

OO

OBn

MeO OBn

OBnO O

OBn

OMeBnO

BnO

O

LiHMDS, DME, 61%

A. Fürstner, J. Mlynarski, M. Albert, J. Am. Chem. Soc. 2002, 124, 10274.

Zn

OBn

NHTf

NHTf

O

O

BnO

OMe

BnO

BnO

CCl3

NH

O

O O

O

O O

OOO

O

O

O

OOBn

OBn

OBn

OBn

BnO OBn

OBnBnO

OBn

OMe

OBn

OMe

OBn

OBn Zn

OBn

Ti(OiPr)4

O

O O

O

O O

OOHO

O

O

O

OOBn

OBn

OBn

OBn

BnO OBn

OBnBnO

OBn

OMe

OBn

OMe

OBn

OBn

BnO

81%

Cycloviracin B1

1.

2. H2, Pd/C, 88%

Zn

OBn

NHTf

NHTf

O

O

BnO

OMe

BnO

BnO

CCl3

NH

(3R,19S,25R,3'R,17'S,23'R)-

O

O O

O

O O

OOO

O

O

O

OOBn

OBn

OBn

OBn

BnO OBn

OBnBnO

OBn

OMe

OBn

OMe

OBn

OBn Zn

OBn

Ti(OiPr)4

O

O O

O

O O

OOHO

O

O

O

OOBn

OBn

OBn

OBn

BnO OBn

OBnBnO

OBn

OMe

OBn

OMe

OBn

OBn

BnO

81%

1.

2. H2, Pd/C, 88%

A. Fürstner, M. Albert, J. Mlynarski, M. Matheu, E. DeClercq, J. Am. Chem. Soc. 2003, 125, 13133

TOTAL SYNTHESIS OF

MACROVARICIN D (BA-2836-4)

O

O

OMe

OHOH

HO

O O

O

OH

OHOHO

OH

O OHOH

HO

O

O

O

MeO

OHHO

OH

O

O

MeO

OHHO

OH

OO

(3R) (17S) (23R)

O

HOHO

HO

O

O

O

HOHO

HO

O

OH

O

O

OH

OHOH

HO

OH

O

O

O

OH

OHOH

HO

O

O

OH

OHOH

O

HOHO

HO

O

O

OH

OO

OH

O

1925

3

17

23

Macroviracin D

Cycloviracin B1

NHTf

NHTf

Zn

OBn

9

O

BnOBnO

BnO

AcO

O

CCl3

NH

OH

TBDPSO OtBuO

O

O

OBn

OBnOBn

R1O

TBDPSO OtBuO

O

O

OBn

OBnOBn

R1O

O OtBuO

O

O

OBn

OBnOBn

R1O

OH

OBn

OtBuO

NHTf

NHTf

, cat.

Zn

OBn

29

TMSOTf, 91%

1. TBAF, 90%

2. PCC

R1 = Ac

analogously for R1 = Bn

TOTAL SYNTHESIS OF MACROVARICIN D (BA-2836-4)

O

O

OBn

OBnOBn

R1O

OH

OBn

OtBuO

O

O

OBn

OBnOBn

BnO

O

BnOBnO

BnO

OR1

O

OBn

OtBuO

18 R1 = Ac

19 R1 = H

O

O

OBn

OBnOBn

AcO

O

BnOBnO

BnO

OTBDPS

O

OBn

OR1O

21 R1 = tBu

22 R1 = H

O

O

OBn

OBnOBn

BnO

O

BnOBnO

BnO

OBn

O

OBn

OR1O

16 R1 = tBu

17 R1 = H

OBnOBnO

BnO

TBDPSO

O

CCl3

NH

b)

d)

f)

TMSOTf, 88%

R1 = Bn

TMSOTf, 58%

R1 = Bn

TMSOTf, 79%

R1 = Ac

OBnOBnO

BnO

AcO

O

CCl3

NH

OBnOBnO

BnO

BnO

O

CCl3

NH

TOWARD MACROVARICIN D

O

BnOBnO

BnO

O

OAc

O

O

OBn

OBnOBn

BnO

O

O

OBn

OBnOBn

O

BnOBnO

BnO

O

O

OBn

TBDPSO

OBn

O

COOtBu

19 + 22

O

BnOBnO

BnO

O

OH

O

O

OBn

OBnOBn

BnO

O

O

OBn

OBnOBn

O

BnOBnO

BnO

O

O

OBn

O

OBn

O

O

Yamaguchi

86%

1. TBAF

2. TFA

82%

O

BnOBnO

BnO

O

OAc

O

O

OBn

OBnOBn

BnO

O

O

OBn

OBnOBn

O

BnOBnO

BnO

O

O

OBn

HO

OBn

O

COOH

1. Yamaguchi, 89%

2. NH3, MeOH, 86%

TOTAL SYNTHESIS OF MACROVARICIN D (BA-2836-4)

TOTAL SYNTHESIS OF MACROVARICIN D (BA-2836-4)

A. F. with J. Ruiz-Caro, J. Mlynarski, Chem. Eur. J. 2004, 10, 2214

O

BnOBnO

BnO

O

OH

O

O

OBn

OBnOBn

BnO

O

O

OBn

OBnOBn

O

BnOBnO

BnO

O

O

OBn

O

OBn

O

O

O

RORO

RO

O

O

O

RORO

RO

O

OR

O

O

OR

OROR

RO

OR

O

O

O

OR

OROR

RO

O

O

OR

OROR

O

RORO

RO

O

O

OR

OO

OR

O

R = Bn

R = HH2, Pd(OH)2 cat.

O

O

OBn

OBnOBn

BnO

O

BnOBnO

BnO

OBn

O

OBn

OH1O

Yamaguchi, 74%

O

n-Bu2BOTf, Et3N, 63%

N

O

O

O

Ph Me

OH

N

O

O

O

Ph

O O

OBn

OBn

NH

CCl3

AcO

BnO

TMSOTf, MeCN, 45%

O O

OBn

R1O

Me

O

BnO

OBn

R2O

R1 = auxiliary, R2 = Ac

R1 = R2 = H

LiOH, H2O2

aq. THF, 79%

O O

OR

OO

Me

O

O

RO

OMe

O

RO

OR

OR

OR

NN

Cl

Cl

KH, DMAP, CH2Cl2

54%

R = Bn

R = H

H2, Pd(OH)2

MeOH, quant.

likely via templated

cyclodimerization at a K+ center

Glucolipsin

STRUCTURE DETERMINATION OF GLUCOLIPSIN

VIA TOTAL SYNTHESIS

O O

OR

OO

Me

O

O

RO

OMe

O

RO

OR

OR

OR

O O

OR

OO

Me

O

O

RO

OMe

O

RO

OR

OR

OR

O O

OR

OO

Me

O

O

RO

OMe

O

RO

OR

OR

OR

diastereomers prepared analogously for structure determination purposes:

A. F. with J. Ruiz-Caro, H. Prinz, H. Waldmann, J. Org. Chem. 2004, 69, 459

O O

OH

OO

Me

O

O

HO

OMe

O

HO

OH

OH

OH

O

O

OH

OH

O

O

OH

OH

OMe

OMe

OH

OH

O O

OH

OO O

O

HO

O

O

HO

OH

OH

OH

O

HO

O

HO

HO

HO

OMe

O

O

O

OHHO

HO

O

O

O

OHO

HO

OH

HOHO

O

OO

OO

OH

O

O

O

O

OOHO

OO

Cycloviracin B1

J. Am. Chem. Soc. 2003, 125, 13132

J. Am. Chem. Soc. 2002, 124, 10274

J. Am. Chem. Soc. 2002, 124, 1168

Angew. Chem. Int. Ed. 2002, 41, 2097

Chem. Eur. J. 2003, 9, 307 and 320

Woodrosin I

Glucolipsin A

J. Org. Chem. 2004, 69, 459

O

O

HOHO

HO

HO

HO

O

OO

OHO

HOO

O

H

O

O

HO

HO

OH

O

O

O

O

O

HOHO

O

O

O

O

O

HO

HOO

O

Tricolorin A Tricolorin G

J. Am. Chem. Soc. 1999, 121, 7814

OO

O

HOHO

OH

HO

OHO

OH

O

O

Sophorolipid Lactone

J. Org. Chem. 2000, 65, 8758

O

HOHO

HO

O

O

O

HOHO

HO

O

OH

O

O

OH

OHOH

HO

OH

O

O

O

OH

OHOH

HO

O

O

OH

OHOH

O

HOHO

HO

O

O

OH

OO

OH

O

3

17

23

Macroviracin D

Chem. Eur. J. 2004, 10, 2214

HO O

HO

O

OR

OR

OHO

HOHO

HO

HO

O O

OR

(1) R = Ac "Caloporoside"

(2) R = H

O

HOHO

HO

O

OH

HO

OHO

(3)

b-MANNOPYRANOSIDES

[e]

[d]

[c]

[b]

[a]

OTf

OO

O

OR

OO

O

OR

B

OR

R = SiMe2tBu

R = H

+ CH2=CH(CH2)11CH2MgBrO

R = SiMe2tBu

R = H

OBnOBnO

OBn

O

OO

O

O

[f]

O

OHO

HO

HO

HOHO O

OH[g,h,i]

[a] CuCl(COD) (10 mol%), THF, 86%; [b] TBDMSCl, DMF, Imidazol, 94%; [c] 9-BBN (dimer), THF; [d] NaOMe (5 eq.), KBr

(1 eq.), PdCl2(dppf) (5 mol%), 65%; [e] TBAF, THF/H2O, 92%; [f] Ulosylbromid, CH2Cl2, MS 3Å, Ag(+1) auf Alumosilikat;

[g] NaBH4, CH2Cl2, MeOH, 78% über Stufen f) und g); manno : gluco ~ 10 : 1; [h] KOH (48% in H2O), DMSO/i-PrOH, 84%;

[i] Pd(OH)2 auf Kohle („Perlman Catalyst“), H2 (1 atm), MeOH, 90%.

A. Fürstner, I. Konetzki Tetrahedron 1996, 52, 15071

10

9

8

7

4

OO

O

tBuMe2SiO

O

R = H

R = SiMe2t-Bu

OTf

OO

O

R = SiMe2t-Bu

R = H

[b]

[c]

[e]

5

6

RO

OBnO

BnO

RO

[a]

[d]

[a] 13-tetradecenylmagnesium bromide, CuCl(COD) (10 mol%),

THF, -78°Cr.t., overnight, 86%; [b] TBDMSCl, imidazole, DMF,

r.t., 94%; [c] (i) [9-H-9-BBN]2 (0.5 eq.) THF; (ii) NaOMe (1 eq.),

KBr (1.1 eq.), PdCl2(dppf) (2.5 mol%), THF, reflux, overnight,

86%; [d] (i) BnOH, NaH, DMF, 3h, r.t., 92%; (ii) BnBr, K2CO3,

DMF, 4h, reflux, 93%; [e] TBAF, THF, r.t., 89%.

CALOPOROSIDE

D-mannoD-gluco

opening

epoxide

Suzuki reaction

RO O

RO

O

O

OR

ORO

RORO

RO

RO

O O

O O O

14

11

O

BrAcO

AcOAcO

OAc

O

OO

RORO

OR

OEt

12 R = Ac

13 R = Bn

O

OH

BnOBnO

OBn

OH

[a]

[b]

[c,d]

[a] Bu4NBr, s-collidine, EtOH, 85%; [b] BnBr, KOH, THF, 81%; [c]

2N HCl, THF; [d] K2CO3, MeOH, 1h, r.t., 87% over two steps

[b][a]

15 R = C(O)CH2Cl

O

RO

BnOBnO

OBn

OR

O

O

BnOBnO

OBn

Br

O

Cl

14

16

[a] (ClCH2CO)2O, pyridine, -20°-10°C, 1.5 h, 85%; [b]

HBr/HOAc, CHCl3, 0°Cr.t., 3 h, 95%.

CALOPOROSIDE

22 (R = 3,4-dimethoxybenzyl)

2120

17

14

BnO

tBuMe2SiO

BnO

OBn

OR

O

OH

BnOOR

tBuMe2SiO

BnO

OBn

OH

BnOOH

tBuMe2SiO

BnO

OBn

OR

19 R = tBuMe2Si

18 R = H

BnOO

RO

BnO

OBn

O

OMe

OMe

BnOOH

HO

BnO

OBn

OH

+

[a] [b]

[c]

[d]

[e]

[a] NaBH4, THF/H2O, 0°Cr.t., 2h, 96%; [b] 3,4-

dimethoxybenzaldehyde, H2SO4 cat., MS 3Å,

CH2Cl2, 3.5 h, 84%; [c] tBuMe2SiCl, imidazole, DMF,

15 h, r.t., 91%; [d] BH3.THF, THF, reflux, 2 h, 20

(62%) + 21 (32%); [e] (i) Swern oxidation; (ii)

NaClO2, HSO3NH2, THF/H2O, r.t., 10 min, 93%.

CALOPOROSIDE

24

27 R = SO2CF3

26 R = H

25 R = CH2C6H3(OMe)2

BnO

tBuMe2SiO

BnO

OBn

OR

O

O

BnO O

BnO

Cl

NMe2

23

BnO

tBuMe2SiO

BnO

OBn

OR

O

Cl

[a]

[b]

[c]

[e]

[f][d]29 R = H

28 R = tBuMe2Si

O

O

BnO O

BnO

O

OBnBnO

BnO

BnO

RO

BnO

OBn

OAc

O

O

BnO O

BnO

30

22

[a] 10, DMAP, CH2Cl2, 0°Cr.t., 16 h; [b] DDQ,

CH2Cl2/H2O, 0°Cr.t., 3.5 h, 74% (over last three

steps steps); [c] triflic anhydride, CH2Cl2/pyridine, 0°C,

15 min; [d] KOAc, DMF, r.t., 1 h, 75%; [e] KOAc, DMF,

0°Cr.t., 30 (75%) + 28 (18%); [f] BF3.Et2O, CH2Cl2,

0°Cr.t., 1.5 h, 83%

CALOPOROSIDE

[e]

[d]

[c]

[b]

[a]

1 R = H

34 R = Bn

33 R = SO2CF3

32 R = H

31 R = C(O)CH2Cl

RO O

RO

O

O

OR

ORO

RORO

RO

RO

O O

O O O

BnO O

BnO

O

O

OBn

OBnO

BnOBnO

BnO

BnO

O O

RO

O

16

29

+

[a] Ag+ on silica/alumina, MS 3Å, CH2Cl2, -5°C, 45

min, 74%; [b] thiourea, Na2CO3, EtOH/CH2Cl2,

reflux, 4 h, 75%; [c] triflic anhydride, pyridine, r.t.,

45 min, 78%; [d] Bu4NOAc, toluene, ultrasound, 16

h, 95%; [e] H2 (1 atm), Pd/C (5%), MeOH + HOAc

(1%), 22 h, 96%.

CALOPOROSIDE

A. Fürstner, I. Konetzki, J. Org. Chem.

1998, 63, 3072

O

O

OHON

N OH2N

HO NH2

HOH

OH

OH

OH

OH

HO

OHH2N

OH

OH

OHOHO

HO NH2

HOH

OH

OH

OH

OH

1

HikosamineHikizimycin

HIGHER SUGARS

O

O

OO O

OHOO

OH

O

OR

R = H

R = TMS

OO

OTBS

O

OITMSCHN2, BuLi

K2CO3, MeOH

65%

1. TBSOTf, lutidine, 95%

2. NIS, AgNO3, 92%

OMe

OMe

O

O

O

O

OH

OTBS

O

O OTBS

O

O

O

1. LiAlH4, 94%

2. TBSCl, NaH, 71%

Swern, 76%

OTBS

O

O

OOO

OTBS

O

OICrCl2 (1 eq.), 82%

or:

CrCl2 cat., Mn, LiCl, TMSCl, Bu4NCl, 88%

+

O

O

OH

TBSOOO

OTBS

O

O

O

O

OH

TBSO

O

O

OTBS

O

O

H2, Pd/C, EtOAc

89%

N OO

O

O

TBSO

O

O

OTBS

O

O

phthalimide, DEAD

PPh3, 62%

O

O

OTBS

O

OO

O

ONR2

OH

O

HO

O

OTBS

O

O

O

ONR2

O

O

O

OTBS

O

OHO

O

ONR2

OH

O

H

1. HF/pyridine, 98%

2. Swern, 75%

-NR2 = phthalimido

RuCl3 cat., FeCl2(H2O)4 cat.

NaIO4, 57%

orthogonally protected hikosamine

A. F. with M. Wuchrer, Chem. Eur. J. 2006, 12, 76

LIPIDS, OXYLIPINS AND PROSTAGLANDINS

MARINE OXYLIPINS

M. Kurada et al., Chem. Lett. 1989, 267; W. H. Gerwick et al., J. Nat. Prod. 1994, 57, 171;

K. Kosuaka et al., J. Nat. Prod. 2003, 66, 1318

A. Fürstner et al. Chem. Eur. J. 2001, 7, 4811

now commercially available from Umicore and Evonik

PROTECTING GROUP FREE TOTAL SYNTHESIS OF ECKLONIALACTONE A

A. F. with V. Hickmann, M. Alcarazo, J. Am. Chem. Soc. 2010, 132, 11042

O

OO

O

O

O

O

O

Ancepsenolide

Dehydrohomoancepsenolide

ANCEPSENOLIDES

moderately cytotoxic marine „acetogenins“, cf. F. J. Schmitz et al., Tetrahedron Lett. 1966, 7, 97; J. Org. Chem. 1971, 36, 719; G. Cimino et al., J. Nat. Prod. 1999, 62, 1194;

for a previous synthesis of ancepsenolide by Ru-catalyzed Alder-ene reaction see: B. M. Trost et al., J. Am. Chem. Soc. 1994, 116, 4985

TOTAL SYNTHESIS OF DEHYDROHOMOANCEPSENOLIDE

A. Fürstner, Th. Dierkes Org. Lett. 2000, 2, 2463.

96%

Lindlar

75%

cat.

(tBuO)3W

70%

[Ru] cat.

70%

1

3. ester 1

I2.

1. CuCN (1 eq.)

ZnX = ZnI

X = I

O

O

O

O

X X

O

OO

O O

OO

O

71%

DEAD, PPh3OHBrHO

O

+BrO

O

PROSTAGLANDIN LACTONES FROM Tethys fimbria

G. Cimino et al., Experientia 1991, 47, 56; J. Org. Chem. 1991,

56, 2907; Tetrahedron Lett. 1989, 3589.

first and only example of “in vivo storage” of prostaglandins

O

O

HO

OO

O

AcO

O

O

HO

HO

OO

O

O

PROSTAGLANDIN LACTONE E2

O

O

TBSO

O

O

O

TBSO

O

R = H

R = TES

OR

O

TBSO

IOTES

MO

TBSO

Bu3Sn OTES

O

TBSO

O

O

HO

O

OH1. TESCl, imidazole

2. Bu3SnH, AIBN cat.

73%

1. BuLi

2. Me2Zn

3.

HOAc

74% (overall)

5-heptynoic acid

94%

iPrN=C=NiPr, DMAP

Mo[N(tBu)(Ar)]3 cat.

CH2Cl2/toluene

73%

1. H2, Lindlar, 86%

2. HF, MeCN, 88%

PGE2

COOH

OHHO

O

pig liver esterase

A. Fürstner et al., Angew. Chem. Int. Ed. Engl. 2000, 39, 1234, J. Am. Chem. Soc. 2000, 122, 11799

SOME PGE2 LACTONE ANALOGUES

O

O

HO

O

O

HO

O

O

OO

O

HO

O

PGE2-lactone

O

O

HO

OO

O

HO

O

O

O

HO

O

A. Fürstner, K. Grela, C. Mathes, C. W. Lehmann, J. Am. Chem. Soc. 2000, 122, 11799.

ALKYNE CROSS METATHESIS

A. Fürstner, C. Mathes Org. Lett. 2001, 3, 221.

PGE2

COOH

OHHO

O

51%

COOMe

O

TBSO OTES[Mo] cat., CH2Cl2, toluene, 80°C

OMe

MeO O

O

OTES

O

TBSO

TERPENOIDS

TOTAL SYNTHESIS OF DACTYLOL

HO

DactylolShirahama et al., 1985

(9 steps)

O

MeO

Gadwood et al., 1986

(20 steps)

O

Paquette et al, 1987

(17 steps)

HO

Feldman et al, 1990

(12 steps)

O Molander et al, 1995

(13 steps)

OCOOMe

Harmata et al., 2000

(16 steps)

Previous Syntheses: (a) Gadwood,R. C.; Lett, R. M.; Wissinger, J. E. J.Am. Chem. Soc. 1986, 108, 6343. (b)Paquette, L. A.; Ham, W. H. J. Am.Chem. Soc. 1987, 109, 3025. (c)Feldman, K. S.; Wu, M.-J.; Rotella, D.P. J. Am. Chem. Soc. 1990, 112,8490. (d) Molander, G. A.;Eastwood, P. R. J. Org. Chem. 1995,60, 4559. (e) Hayasaka, K.; Ohtsuka,T.; Shirahama, H.; Matsumoto, T.Tetrahedron Lett. 1985, 873. (f) M.Harmata, P. Rashatasakhon, Org.Lett. 2000, 2, 2913.

RO

RO

O

OO

OH

OMO

R = H

R = SiMe3

HO

HO

MeLi, CuI, Bu3P

H

O

77%

MesylCl, DMAP

85%

Bu3SnH

83%

MgCl

CeCl3

80%

(TMS)2NH

MeCOCl, 93%

1. [Mo] (3%)

2. TBAF

92%

R = H

R = SiMe3

(TMS)2NH

MeCOCl, 95%

1. [Mo] (3%)

2. TBAF

85%

ZnCl2, Pd(0) cat.

6 steps, overall yield ca. 21% (Dactyol) + 18% (epimer)

A. Fürstner, K. Langemann, J. Org. Chem. 1996, 61, 8746.

SYNTHESIS OF SABINOL

V. Mamane, T. Greß, H. Krause, A. Fürstner J. Am. Chem. Soc. 2004, 126, 8654

HO

O

PtCl2 (5 mol%)

toluene, 80°C, 2h

NaBH4, CeCl3

OH

trans-sabinol

65%

sabinone

78%

O

SiMe3

BF3

see also: M. Malacria et al., JACS 2004, 126, 8656; F. D. Toste et al., JACS 2004, 126, 10858

CUBEBENE

A. Fürstner, P. Hannen, Chem. Eur. J. 2006, 12, 3006

see also: A. Fürstner et al., Chem. Commun. 2004, 2546 (sesquicarene).

Review on Iron Catalyzed Cross Coupling:

A. Fürstner et al., Chem. Lett. 2005, 34, 624

HAcOH

HTfOH

HMeH

O

O

PtCl2 cat.

MeMgBr

Fe(acac)3 cat.

90%

-cubebene

O

toluene, 80°C

92%

PROPARGYL ACETATES AS SYNTHETIC EQUIVALENTS FOR

α-DIAZOKETONES

O

N2

OOAc

O

O

TWO CONCEIVABLE PATHWAYS

M

O

O

O

OM OAc

M

O

O

path I

path II

HAcOH

O

O

PtCl2 cat.

toluene, 80°C

92%

HAcOH

O

O

PtCl2 cat.

toluene, 80°C

79%

+

HAcOH

1 : 1

single isomer

A. Fürstner, P. Hannen, Chem. Eur. J. 2006, 12, 3006

THE MOST LIKELY PATHWAY

M

O

O

O

OM OAc

M

O

O

path I

path II

A. Fürstner, P. Hannen, Chem. Eur. J. 2006, 12, 3006

for a computational study see: J. Marco-Contelles et al., Organometallics 2005, 24, 3182

A. Fürstner, A. Schlecker, Chem. Eur. J. 2008, 14, 9181

analogously:

EPOXYSESQUITHUJENE AND CONGENERS